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Theory of the Effective Range in Nuclear Scattering
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The scattering of neutrons up to about 10 or 20 Mev by protons can be described by two parameters,
the scattering length at zero energy, a, and the effective range, ro. A formula {16),expressing the phase
shift in terms of a and ro is derived; it is identical with one previously derived by Schwinger but the
derivation is very much simpler. Reasons are given why the deviations from the simple formula are
very small, as shown by the explicit calculations by Blatt and Jackson.

The theory is then applied to proton-proton scattering, with a similarly simple result. Moreover, a
method is developed to compare proton-proton and proton-neutron scattering without explicit calcu-
lation of a nuclear potential.

The most recent experimental results are evaluated on the basis of the theory, and accurate values
for the effective ranges are obtained for the triplet scattering of neutrons, and for proton-proton
scattering. The nuclear force between two protons is found to dier by a slight amount, but beyond
doubt, from that between neutron and proton in the singlet state. All actual results agree with those
obtained by Breit and collaborators, and by Blatt and Jackson.

I. INTRODUCTION

CHWINGER' has shown that the phase shift
b in the triplet neutron-proton scattering is

related to the wave number k by the relation

k cotb= —y+-', (y'+k')ro+O(k'ro), (1)
where y is related to the deuteron binding energy,
6) bv

e = (k'/M) y' (2)

and ro is a constant of the dimension of a length,
which is called the effective range" of the nuclear
forces. The term of order k4ro' is negligible at
"classical" ' neutron energies. Therefore, if b is
obtained from experiment and k cotb plotted
against the neutron energy (i.e. , k'), a straight line
will result. The slope of this line determines the
effective range ro, the intercept at k=0 gives the
scattering length' at zero energy, a, by means of the
relation

1/a —=n =y(i ——,'pro).

The singlet scattering can be treated in an analogous
way.

It has long been suspected that "classical"
nuclear scattering experiments can only determine
two parameters in the nuclear potential, let us say
an efFective range and an effective depth. This was
demonstrated with the greatest thoroughness by
Breit and his collaborators' for proton-proton

* This work was done while the author was a Visiting Pro-
fessor at Columbia University, New York, New York.' J. Schwinger, Harvard lecture notes (hectographed only).
Quoted by J. Blatt, Phys. Rev. 74, 92 (1948). See reference 6,
Sections 2 and 3.' The expression "classical nuclear physics" was introduced
by S, Allison to describe the energy region up to, say, 10 or 20
Mev.

3 E. Fermi and L. Marshall, Phys. Rev. Il, 666 (1947).
4 Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939);

Hoisington, Share, and Breit, Phys. Rev. 56, 884 (1939}.

scattering. For any reasonable shape of the nuclear
potential, they could choose two parameters (depth
and range) in such a way as to fit the observed
scattering essentially within experimental error.
This showed that practically no information could
be obtained, from classical scattering experiments,
on the shape of the potential. Subsequently, Landau
and Smorodinsky' surmised the relations (12) and
(51) which are similar to (1). However, Schwinger
was the first to give a general proof of these rela-
tions.

Schwinger's proof is based on a variational
principle and is quite complicated. It is the main
purpose of this paper to give a greatly simplified
derivation. Because of the simplicity, it is then easy
to calculate higher terms in Eq. (1),and in particular
to show generally that the neglected term is not
only of order k4 but in addition has a very small
coe%cient. For the proton-proton scattering, a
similar equation (Eq. (51)) can be derived with
very little trouble; moreover, the relation between
proton-proton and proton-neutron force can be
established without explicit calculation of the
nuclear potential. In a subsequent paper, it will be
shown that the photoelectric and the photomag-
netic effects of the deuteron can be calculated in
terms of the effective ranges, and that the theory
can be generalized to the case of tensor forces.

Blat t' has applied Schwinger's theory to an
evaluation of the experiments on neutron-proton
scattering. Blatt and Jackson6 have analyzed all
the implications of the theory and have, in addition,
given very useful curves and formulas showing the
relation between the parameters of potentials of

' Landau and Smorodinsky, J. Phys. Acad. Sci. U.S.S.R. 8,
154 {1944);Smorodinsky, J. Phys. Acad. Sci. U.S.S.R. 8, 219
(1944); ll, 195 (1947}.' J. M. Blatt and J. D. Jackson, Phys. Rev. this issue.
Referred to as BJ. As far as possible, the same notation is
used here as in BJ ~
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various shapes, and the effective range and scat-
tering length. They have also evaluated the coef-
ficient of k'ro' in (1) for various potential shapes.
We shall therefore refer to their paper with regard
to quantitative numerical results obtainable with
the present theory.

its asymptotic form f, and there will therefore be
no contribution to the integrated term (left-hand
side) from the upper limit R. For the same reason,
the integral on the right-hand side can now be
extended to infinity. At the lower limit, N&=u&=0
so that this term does not contribute. This leaves

Ei 2h'ki—o—/M. (4)

Let u& by the radial wave function multiplied by r,
for an 5 state; then uj satisfies the Schrodinger
equation

d'ui/dr'+ k,'ui V(—r) u, = 0, (5)

where V is the potential energy, multiplied by
M/h'. For another energy, we have

du /odr' +ko'uo —V(r)uo =0. (5a)

Multiply (5) by uo and (Sa) by ui, subtract and
integrate; then we get

8 R

uoui' —uitto' = (koo —kio) f uiuodr, (6)
JQ

where the upper limit R is arbitrary.
If R is infinity, the orthogonality relation results.

If R is chosen equal to the range of the nuclear
forces, one obtains the relation of Bethe and Peierls'
between scattering phase shift and k. We shall not
use (6) directly, but first introduce a comparison
function if which represents the asymptotic be-
havior of u for large distances, vis.

fi =A i sin(kir+ bi), (7a)

where bi is the phase shift' for energy Ei. It is
most convenient to choose the normalizing factor
A i so as to make f= 1 at the origin, thus:

fi = sin(kir+ bi)/sinai. (7)

This will at the same time determine the normaliza-
tion of u since u is supposed to approach if asymp-
totically for large r including normalization.

For the f's, a relation analogous to (6) will hold,
VM. :

&if 1 4'l0'2 (ko kl )J~ $11$ d .or
a 0

Now subtract (6) from (8). Then, if the upper limit
R is chosen large compared with the range of the
nuclear forces, each function I; will be equal to

7 H. A. Bethe and R. E. Peierls, Proc. Roy. Soc. A148, 146
(1935).

SA/l considerations refer to S waves; therefore we do not
need to put the orbital momentum in evidence by writing B~.
The subscript in this paper will generally refer to the energy,
not to l.

IL NEUTRON-PROTON SCATTERING, EFFECTIVE
RANGE

Consider a neutron of energy E~ and wave
number k&. If 8& is in the laboratory system,

Now we have normalized f to unity at r =0 (Eq. (7)),
and the derivative of P can easily be obtained from
(7) so that we find

ko cot8o kl co t'ai = (ko kl ) l (fifo ttino)dr (10. )

1IIis equation ~s exact and is the fundamental
equation of our theory.

We can now apply (10) to the special case ki ——0.
Then

ki cot8i ———a —= —1/a, (11)
where a is the scattering length of Fermi and
Marshall, for zero-energy neutrons, which can be
determined with great accuracy. For the triplet
state, a is positive, for the singlet state, negative.
We shall use subscripts zero for the wave functions
referring to zero energy, and we may drop the
subscripts for state 2. Then (10) becomes

k cot8= —a+-', k'p(0, E) (12)
with

o p(0, E) =
~

(PoP uou)dr. —
Q

(13)

Clearly, p has the dimension of a length. It can
also be defined for two arbitrary energies,

o p(E1, E2) = (4 lfo —oilno)d».
"Q

(13a)

The important point is now that g and u dier
only inside the range of the nuclear forces Therefore.
the integrands in (13) and (13a) will be different
from zero only inside the force-range. However, in
this region the wave functions n and f depend only
very slightly on energy, because kr is small and the
potential energy is much larger than O'. Therefore
it will be a good approximation (indeed a very good
one, as we shall show in the next section) to replace
u by uo and f by iso and to write

-', p(0, E) =-', p(0, 0) —= -', ro —— Qo' uo')dr (14)— .
Q

This quantity is now a constant, independent of
energy, and we call it the ef/ectioe range. ' lt is

9 F. C. Barker and R. E. Peierls, Phys. Rev. 75, 312 (1949),
have given a similar derivation for the effective range. Also
similar are the calculations of G. F. Chew and M. L. Gold-
berger, Phys. Rev. 75, 1637 {j.949}.
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identical with the eAective range used and defined
by Blatt and Jackson. (For the shape of the func-
tions fo and up see their Fig. 3.) Schwinger deFined

r0 by

-', ro= I (P,' u, ')d—r,
0

(14a)

e vr (15)

with v defined in (2). Since p(Zi, Ep) is insensitive
to the energies Ej, and E2, it makes little difference
if both of them are replaced by —e where e is the
binding energy of the deuteron; so Schwinger's
effective range is very close to ours. Blatt and
Jackson have shown that (14) will give a somewha, t
closer approximation to the scattering than (14a).

Using (14), then, the fundamental relation (12)
reduces to

k cotb = —n+-', k'rp. (16)

Schwinger's relation (1) is obtained from (10) if the
comparison state is taken to be the ground state.
As pointed out by Blatt, and mentioned in the
Introduction, these relations are both very con-
venient for the analysis of neutron-proton scat-
tering data, although some complication is caused
by the mixture of triplet and singlet scattering. If
these two parts can be separated and b determined
for triplet and singlet separately, a straight line is
obtained when the empirically determined quantity
k cotb is plotted against the "energy" k'.

Equation (16) may be inserted in the formula for
the cross section,

0 sin'8
= [k '+ n' k'nr -p-

4pr k' k'+ k' cot'6

+ ikoroo+ 0(konroo) j—i (1 /)

Actually, the more complicated Schwin ger ex-
pression (1) gives a, simpler result because several
terms combine, vis.

4x
P1 vr, + ', (k'+ v') r, —-

(k'+v')
+0(k'vr oo) ]-'. (18a)

Thus, in first approximation, the cross section is
multiplied by the constant factor 1/(1 —vrp) as
already pointed out by Bethe and Peierls. But the
following correction term, pi(k'+V')roo, while in
general much smaller than the first, still is unaf-
fected by the omission of higher order corrections
in (16) or (1):these neglected terms will only give
contributions of relative order (krp)'. Schwinger
has pointed out that the term in (kro)' is required

where u, and fp refer to the ground state of the
deuteron, and in particular Pp is the asymptotic
solution

in order to keep the cross section everywhere
below the permitted maximum, 4pr/k'. This maxi-
mum is reached when coth=0, i.e. , k'=2n/rp. For
triplet scattering, with the numerical values given
in the next section, this corresponds to 20 Mev
neutron energy (laboratory system).

n=v —-', v'p(0, —p) =v(1 —pvro), (19)

which is also contained in the Schwinger relation
(1). This provides the most accurate way to deter-
mine ro for the triplet state'' because y is known
from the binding energy of the deuteron and o. from
the parahydrogen scattering.

Since all the relevant experimental data are still
subject to correction, it is desirable to indicate the
change of the result which would be caused by a
given change of the experimental numbers. We put:
Binding energy of deuteron

p=2.21(1+pi) Mev. (20a)

Scattering cross section of slow neutrons by free

protons or = 20.36(1+pp) barns. (20b)

Scattering of parahydrogen

(3a&+a,)'=0.624(1+ pp) barns, (20c)

where ag and a, are the scattering lengths for triplet
and singlet, respectively, so that

The corrections e&, e2, e3 may be just as easily posi-
tive as negative; the present indicated probable
errors are about

pi = &0.009 (&20 kev), (22a)

pp = &0.005 (&0.10 barn), (22b)

pp = &0.08 (&0.050 barn). (22c)

The value for the binding energy of the deuteron
is taken" mainly from the reaction

C'4+H =N"+n,
whose threshold has been accurately determined by
Shoupp and Jennings" giving Q= —620&9 kev.
The energy of the P-rays from C" is extremely well
known, e.g. , from the measurement of Langer,
"I am indebted to Dr. K. Bainbridge for a discussion of the

experimental information on the deuteron binding energy at
the Conference on Classical Nuclear Physics at Chicago,
December 1948. Dr. Bainbridge will publish a more detailed
discussion in the near future.

"Shoupp, Jennings, and Sun, Phys. Rev. 'H, 1 (1949).

III. DETERMINATION OF RANGE FROM PARA-
HYDROGEN SCATTERING

If the state 2 in (10) is taken to be the ground
state, then from (15) we have Pp'(0) = —v, and we
find



EFFECTIVE RANGE IN NUCLEAR SCATTERING 41

Cook, and Price," and is 156.3+1.0 kev. This
gives for the differencet

n —H =776&9 kev. (23a)

Combining this with the mass spectrograph doublet

H2 —D =1432a2 kev, (23b)

we get for the binding energy of the deuteron

n+H —D = o = 2208&7 kev. (23c)

Probably the best dhrect measurement of the binding
energy is the recent one by Bell and Elliot" at
Chalk River who measured the energy of the y-rays
from the capture reaction and found

e =2237~5 kev (24)

1/y =4.332(1+-',oi) X10 "cm (25)

for the two scattering lengths

—a, = (2.375+1.11oo+0.072oo) X 10 ' cm, (26a)

a&= (0.528+0.37oo —0.108oo) X10 "cm, (26b)

and, using (19), for the eRective range

ro = (1 56+2.7&i+5.0&a —1.5&a) X 10 "cm. (27)

"Cook, Langer, and Price, Phys. Rev. 74, 548 (1948).
f ¹teadded in Proof.—Recent measurements by Taschek,

Jarvis, Argo, and Hemmendinger (Phys. Rev. 75, 1268 (1949))
and by Tollestrup, Jenkins, Fowler, and Lauritsen (Phys.
Rev. 75, 1947 (1949) and private communication) on the
difference He'+n —H3- H give values for n —H of 782&/ kev
and 789+6 kev, respectively, which would slightly raise e if
(23b) is correct. However, this does not resolve the discrepancy
pointed out in footnote 14.

'8 R. E. Bell and L. G. Elliot, Phys. Rev. 48, 1552 (1948).
'4 T. Lauritsen has informed the author that he has re-deter-

mined the energy of the ThC" y-ray by direct comparison
with annihilation radiation, and found 2618&5 kev. This
would indicate a de6nite discrepancy between (23c) and (24).

'6 See the review by W. E. Stephens, Rev. Mod. Phys. 19,
19 (1&47)."Melkonian, Rainwater, and Havens, Phys. Rev. 75, 1295
(1949}.

'7 Sutton, Hall, Anderson, Bridge, DeVA're, Lavatelli, Long,
Snyder, and Williams, Phys. Rev. 72, 1147 (1947).

referred to the ThC" y-ray which was taken as
2620 kev. Since this involves an absolute calibration
of y-ray energies" and since (23a) involves only the
measurement of small energies, we shall pro-
visionally adopt (23c) until the small discrepancy
between it and (24) is resolved. In any case, the
lower values (2185 kev) found earlier"' seem to be
discredited.

For the free proton cross section, we take the
very accurate value obtained by Melkonian, Rain-
water and Havens" with the Columbia velocity
selector. For the parahydrogen scattering, the
value of Sutton et al."obtained at Los Alamos was
taken; a relatively generous probable error seemed
indicated (see the discussion in BJ, Section VI).

The values chosen in (20) give for the "radius of
the deuteron"

Inserting (22), we find for the contributions to the
uncertainty of the eRective range:

from the deuteron binding energy
0.024 X 10 " (27a)

from the free-proton scattering
0.025X10 ", (27b)

from the parascattering 0.12X10 ". (27c)

As is to be expected, the parascattering gives the
greatest uncertainty and more precise experiments
are very desirable. An additional uncertainty arises
from the slight diRerence between p(0, —o) and
p(0, 0) which depends on the shape of the potential;
from Fig. 14 of BJ this eRect may be estimated to
be an increase of ro by about 0.01 for the square
well, and a decrease of about 0.04 for the Yukawa
potential, as compared with the value given in (27).

The singlet scattering range cannot be deduced
with any certainty from existing neutron-proton
experiments (BJ Fig. 8). The best procedure still
seems to be to assume approximate equality of
force in the singlet state for proton-proton and
neutron-proton. The proton-proton data (Section 6)
give rp=2. 7&10 " which we shall assume to be
true also for neutron-proton singlet scattering.
This means a large difference between the eRective
ranges for triplet and singlet states. Now for square
wells the eRective range is nearly equal to the
actual width (intrinsic range) of the square well and
therefore the intrinsic ranges come out very dif-
ferently for triplet and singlet (1.85 and 2.55 X 10 ",
respectively). But for long-tailed potentials, there is
a large difference between intrinsic and effective
range, especially for the triplet state which is rela-
tively strongly bound. For such potentials, then,
the same intrinsic range may easily be compatible
with the observed large diRerence in eRective
ranges in singlet and triplet states. This is true, in
particular, for a Yukawa potential if the intrinsic
range is chosen to be

b, =b& ——2.5X10 "cm. (28)

That it is possible to use the same intrinsic
potential for triplet and singlet, is due to the fact
that the "Yukawa" curve for b/ro vs. nr„Fig 6of.
BJ, is very steep when nro is large which it is for the
triplet state, sis. about 0.3 from Eq. (26b) and
(27). Therefore almost any value of b& is compatible
with a given ro, and among them also b.. It is
therefore better to turn the argument around and
assume b&

——b. to bq given by (28), and r& by (27),
then we get b&/r& 1.6; and from——BJ Fig. 6 we find
aro ——ri/a, =0.28 in good agreement with (26b), (27).
Thus, if we knew (a) that the potential had a
Yukawa shape and (b) that ab is rather large, we
could predict the eRective triplet range quite
accurately from the scattering length a& alone,
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without knowing the binding energy of the ground
state; or we might even predict ri and u& (and thus
the parahydrogen scattering) directly from the
binding energy of the deuteron, using mr~=0. 3 and
Eq. (19).

The fact that the small effective triplet range is
compatible with a large singlet range for a long-
tailed potential, is the reason why Bohm and
Richman" found it possible to explain the observed
neutron-proton scattering up to 6 Mev with the
same well for singlet and triplet provided they took
a long-tailed well.

IV. ENERGY DEPENDENCE OF EFFECTIVE
RANGE

We shall now study the dependence on energy of
p(0, P), as defined by Eq. (13).For this purpose we
expand the comparison function P up to second
order in k; we get from (7)

P =coskr+cot8 sinks
= 1 ——',k'r'+k cotb r ', k' c—ot-br'+0(k4r4). (29)

Now we insert for k cotb the first approximation
(16) which is also accurate including terms of
order k', then

f = 1 —nr+ 2k'r(ro —r) knr' ——(29a)

This function is zero at r=0 because all P's are
normalized to unity at this point; then it becomes
positive because k cotb (the slope of f) increases
with energy; y~ has a negative curvature which
arises from the term coskr in (29); therefore it
becomes zero again, at

r —=ri =ro(1 ——3nro) (31)

which is rather close to ro, and is negative thereafter.
In this approximation, then, the functions P for all
energies will intersect near the effective range. (See
Fig. 1.)

The energy dependent term x& is obviously small
for any value of r comparable with ro, i.e. , anywhere
within the range of the nuclear forces, whatever
their shape. This is because x~ has two zeros, one
at 0 and one at ri and is therefore a small fraction of
ro' in the interesting range. Therefore P —$0 will be
a small numerical coefficient multiplied by (kro)-'

which itself is small for energies up to j.0 Mev or so.
We shall see that this makes the simple theory of
Section II such a good approximation.

The correction to the simple theory is given by

The first two terms are independent of energy, the
other two are proportional to the energy. It is often
convenient to write f in the form

=k )t (P,x, u,v,)d—r,
0

(32)

4 =4o+k'xi+k'x~+

Then, according to (29a),

(3o)
if we set, in analogy to (30),

u =uo+k'vi+k'v2+ (32a)

I.O

0.9

0.8

0.7

xi ———,'r (r0
—r) ——,'nr'. (30a)

The first part of (32), the integral of Poxi, is small
because xi has been shown to be small (compared
with ro') inside the range of the nuclear forces. The
function vj must also be small in this region because
it must approach x~ as soon as the nuclear forces
become negligible, and must be zero for r =0.
Therefore the factor of k' in (32) must be small
compared with ro'.

BJ have written the phase shift formula in the
form

k cotb = n+ ,'k'ro Pk4ro'—+ . -. —(33)

"o 0.5 I.Q I.5

FIG. i. The comparison functions P es. radius for (A) the
ground state of the deuteron, (8) the triplet state of energy
zero, and (C) a neutron vrhose kinetic energy in the laboratory
system is twice the binding energy. All curves intersect at
the eA'ective range ro.

"D. Bohm and C. Richman, Phys. Rev. '71, 567 (1947).
This fact was pointed out to the author by Dr. Blatt.

Our argument then shows that P must be a small
numerical coefficient. This is indeed what BJ find

by explicit calculation. According to their Fig. 10,
P is in most cases less than 0.05 and never exceeds
0.14. It depends, of course, on the shape of the
potential and on the quantity nro, see Eq. (11).

It is very easy to calculate P for a square well,
especially if we assume the resonance level to lie
exactly at zero energy, i.e. , if n =0. Then fo is equal
to unity, n is zero, ro is equal to the actual width b

of the well, and x& is positive throughout the region
contributing to the integral in (32). The first term
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in this integral then gives 02

prD

AxAr =
p

rsr0

r(rp —r)dr =~r pP (34)

The factor here is indeed small. Moreover, the
second term in the integral (32) has always the
opposite sign and is in general smaller than the first
(since up&~fp everywhere); so the actual result of
(32) will be even smaller than that obtained from
the first term alone. Explicitly, we have for the
square well

01

z
O

Qz
D
U

CV
' 0
L

1.5

up = sinKr, K = pr/2b,

u = sin L(K'+k') &rj,
v~ ——(u —up)/k' = (r/2K) cosKr,

(35a)

(35b)

(35c)

-Q. 1

&a

upv dr =rp'/2pr'.

This is indeed of the same sign, and smaller than,
Eq. (34). Combining them we get

p(0, k') = rp+0. 0654k'r p'

I' = —0.0327.

(36)

(36a)

The correction to the e8'ective range is very small.
For 10 Mev and the observed value of rp, Eq. (27),
we have krp=0. 54 and the second term of (36) is
2 percent of the first. The efI'ect on the phase shift
is about 0.3'. This shows the excellence of the
simple (Schwinger) approximation given by Eq.
(16).

We have seen that the correction function x» is
positive for r &r»=ro, negative for r &r». Therefore
the correction term (32) is positive for the square
well where the entire contribution comes from
r &r». On the other hand, for a long-tailed potential
such as that of Yukawa, most of the contribution
to (32) is likely to come from r &r~, where xq is
negative, especially because ~x~~ is on the whole
greater for r &r». Therefore we should expect that
the correction term (32) is negative (I' positive) for
long-tailed potentials. BJ have shown that this is
indeed the case for the Yukawa and the exponential
potential ~

Another factor which tends to make (32) negative
is that in this case v» is algebraica11y larger than x»
so that the second term in (32) gives an additional
negative contribution. (For the square well, v~ is
algebraically smaller than x~.) This is illustrated in
Fig. 2. This argument, as vrell as the calculations
for Fig. 2, are due to Dr. C. Longmire.

The coe@cient I' is the first parameter in the
expansion (33) of k cotb which depends on the
shape of the potential. If the scattering experiments
could be made accurate enough to deduce I',

information on the shape would be obtained. If the
plot of k cotb es. k' deviates from a straight line
upwards we have a concentrated potential (square
well or Gaussian); if the deviation is downwards
the potential has a long tail (exponential or
Yukawa potential). For the present, the experi-
mental accuracy is not su%.cient to make any devi-
ations from the straight line significant. The only
arguments for the shape of the potential are then
of the type presented in the last section, vis. that
the Yukawa potential permits the intrinsic range
to be the same for triplet and singlet, while the
square well would require very different intrinsic
ranges in the two cases. From the triplet or the
singlet scattering separately, each as a function of
energy, nothing could be said about the shape.
Moreover, to predict the scattering at an energy
where it has not been measured, the straight line
relation (16) appears to be the simplest as well as a
very accurate method.

U. PROTON-PROTON SCATTEMNG: THEORY

In the case of proton-proton scattering, the
Coulomb potential is added to the nuclear inter-
action. If m». is the radial wave function multiplied
by r, for wave number k», then

pv&" +kq'w~ ——Vrvj+2rv&/Dr. (37)

The last term represents the Cou1omb potential,
and D is the Bohr radius for two protons,

D =2kP/Me'=5. 76X10 "cm (38)

(factor 2 because of reduced mass). Because of the
relative smallness of the Coulomb potential, the

-0.2

FIG. 2. The energy-dependent corrections to the wave
function os. radius (a) the correction y»=dp/dk' to the com-
parison function, (b) the correction v»=du/dk' to the actual
wave function for a square well, (c) v1 for a Yukawa potential.
In b and c, the energy of the resonance level was assumed to
be zero.
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Bohr radius D is very large compared with nuclear
dimensions. 1his will be useful in the analysis.

%'e use again a comparison function, y, which is
the solution in the Coulomb field alone, vis.

»). Then we get

'P2 (») vol (») (k2 kl )Jt (221p22 22l12212)d»

+kl Pl = 2pll/D». (39) = -', (k22 —kl') P(E1, Z2) (45)
It is so chosen that m becomes equal to p asymp-
totically, i.e. , outside the range of the nuclear forces.
'The function q itself is quite complicated but most
of its relevant properties, as well as tables, have
been given by Yost, Wheeler, and Breit. "-' For
kr&&1, q has the asymptotic form

p2
= C sin(k» —g log2k»+ 2 argI'(1+i')+ hl), (40)

where C is a normalizing constant,

~ =e2/»=1/kD = (25 o kev/&)' (41)

is a very useful parameter, and argI' is the complex
phase of the I'-function,

I'(x) = [I'(x)
) expt i argI'(x)]. (41a)

The phase shift relative to the regular Coulomb
function is denoted by 8 (Breit's Xp). The function
pp, like its counterpart p in Section II, shall be
normalized to unity at r=0. It can then be ex-
pressed, at any value of r, by a combination of
regular and irregular solutions in the Coulomb
potential which are denoted by I' and 6, respec-
tively, by YKB, thus:

p2= Cp(G+ F coth),

where Co is the well-known normalizing constant
for Coulomb wave functions,

2» |» 2»
CpG= 1+—

~
In——In»l

DL D

where C is Euler's constant, 0.577 ~ and 0 the
logarithmic derivative of the F-function.

so that

I"(s+ 1) t'1 1
~() =

F(s+1) =1 iv s+v)

00

R.P. e(iZ)+C=„2 P
~=1 V(V2+ q2)

(46b)

Further evaluations are given by YWB. For
reasonably high energy ()0.5 Mev) it is suflicient
to set

R.P. %(ig)+'C=qpsp, sp= Q 2 '=1.202. (46c)
p=l

in complete analogy with (10), (13a). Equation (45)
defines the "e8'ective range" p.

We must now investigate the derivative 22'(»).
For small but finite r, YKB give for the irregular
function

22»2t

1)
(43)

Ke abbreviate

CpG= 1+(2»/D)Dn(2»/D)+ 22g(g)+ C —l ] (47)

where g is a known function of g, vis.
As before, the normalization of p determines that
of m.

Then, using a proof entirely analogous to Section
II, we get

g = —2 lng+2g2 Q 1
—'(l 2+»I2) —l.

The regular function is up to order r simply

(47a)

+2+1 /1+2 ~2~1 +~1~2 and therefore

~R

(k2 kl ) (&plp22 W12212)d» ~ (44)

The only difference as compared with Section II is
that we now take a finite lower limit », which,
however, we assume to be very small compared with
»p The integ.rated term in (44) is again zero at the
upper limit; at the lower limit, the functions m are
zero and the pl's are 1 (within corrections of order

~0 Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1937).
Quoted as YKB.

y = Cp(G+ Fcot h)

=1+(2»/D) Dn(2»/D)+21g(n)+C —1

+ 2 Cp'kD coth]

2r 2r m cotb
=1+ ln + R(v)+C 1+

D D g2r 27

(49)

where the values of Cp, (42), and of g, (41), have
been inserted.

It is seen that p' is logarithmically infinite for
» =0. Therefore the direct use of pp'(0) is impossible,



EFFECTIVE RANGE IN N UCLEA R SCATTE R I NG

(51a)
D(szr»» 1) s2»»»»

For large energies, g becomes small and this ex-
pression goes over into k, as it should. For small
energies (large s), however, the denominator
becomes very large and consequently cotb ap-
proaches infinity (8~0) much more rapidly than
for neutron-proton scattering. Physically this means
the elimination of nuclear scattering by the Coulomb
potential barrier.

The second difference is the appearance of the
given function g(zl) on the left side of (50) and (51).

On the right-hand side, the definition of p is the
same as for neutron-proton scattering. Therefore
the same arguments hold as there: p is very nearly
independent of the energy, and may therefore be
replaced by p(0, 0) which may again be called the
effective range. Moreover, the Coulomb potential
also has very little influence on the wave functions
inside the range of the nuclear forces; therefore we
may in good approximation replace p, m by the
functions f, zz obtained in the same nuclear poten-
tial without Coulomb potential (see also Section
VII). Then the effective range is defined by

2x cot62 2x cot8i
z z'-

z
i'= —g(nz) -g(ni)+

D

(50)(k z klz) p(gi» Qz)»

or, putting kq=0:
2m cotb

f=g(g—)+ =DL —a'+-', k'p(0, E)], (51)

where n' is a constant, independent of energy, and
analogous to the reciprocal scattering length 0| in
(16).

Equation (51) is quite similar to (16). It also was
obtained by Schwinger' from a variational prin-
ciple. Previously, the relation had been stated but
not proved by Landau and Smorodinsky. The
quantity f itself was already defined and found
useful by Breit, Condon, and Present" in their 6rst
theory of the proton-proton scattering. These
authors pointed out that f should be independent
of energy if the range of' the nuclear forces were
zero, and derived the consequences of such an
assumption for the behavior of 8 as a function of
energy.

The left-hand sides of (51) and (50) differ from
(16) in two respects: first, the factor of cotb is not

zr, = (z 0' —zoo')dr = (Poz —uo')dr, (52)
~o ~o

where the subscript 0 again refers to zero energy,
just as for neutron™proton scattering.

and it is for this reason that we had to use a finite simply k but (in (50))
lower limit r in (45). But if we take the dzgererzcs of
the values of y' for two diferent energies, E~ and Ej.
and at the same r, the troublesome term logr
cancels out since it is energy-independent. We get
then from (45), (49):

I I I I I I I I I I ( I

I2.0

II 0

f(E)

lo,o

I I I I I I I I I I I I

0 05 1.0 l5
I I I I

2.0
E {MEv)

I I I I I I I I I I I I

2.5 30 3.5 4.0

FIG. 3. Experiments on proton-proton scattering up to 4 Mev. The function f, Eq. (51), is plotted es. energy.
The experimental points fall very accurately on a straight line, as the theory predicts.

e R.agan, Kanne, and Taschek; Q Heydenburg, Hafstad, and Tuve; &( Herb, Kerst, Parkinson, and Plain;
& Blair, Freier, Lampi, Sleator, and Williams.

~~ Breit, Condon, and Present, Phys. Rev. 50, 825 (1936).
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TaaLE I. Proton-proton phase shifts.

Energy (kev)
Reference
R*
b (degrees)

Energy {Mev)
Reference
R
I5

Energy
Reference
rr, (90')**

176.5

0.544
5.77

2.42

48.17

200.2

0.448
6.78

3.04

63.0
51.17

8.0
27

6.0+0.35
52.6

225.9

0.353
7.85

3.27

69.0
51 ~ 50

249.5

0.256
9.03

3.53

77.5
52.08

14.5

3.34~0.2
52.0

275.3

0.177
10.05

298.3

0.118
10,97

321.4

0.070
11,83

+ g is the ratio of observed scattering at 45' to Mott scattering.
++ Differential cross section in center of mass system.

VI. ANALYSIS OF PROTON-PROTON SCATTERING
EXPERIMENTS

To analyze the many accurate experiments on
proton-proton scattering, we merely need to take
the phase shifts of the s-wave from experiment,
calculate the left-hand side of Eq. (51), and plot it
against the energy. This has been done in Fig. 3.

It is seen that the experimental points fall very
accurately on a straight line, as (51) demands. The
line was actually drawn through the lowest energy
points of Ragan, Kanne, and Taschek" (at 176 and
200 kev) and through the highest energy points of
Blair, Freier, Lampi, Sleator, and Williams" (3.27
and 3.53 Mev). Then the points of Herb, Kerst,
Parkinson, and Plain'4 fall very beautifully on the
straight line. Only those of Hafstad, Heydenburg,
and Tuve" are off the line, as was noticed before
by Breit et al. and as is explainable from the early
date at which this work was done, and from the fact
that the electrostatic generator was pushed to the
limit in energy.

For the two latter sets of experiments, I took the
phase shifts from the work of Breit, Thaxton, and
Eisenbud. 4 For the former two, they were evaluated
by Longmire, using only the absolute scattering
cross section at 45'. We realize that this is not the
most accurate method of evaluation but it is simple
and quick. The phase shifts obtained by Longmire,
and used in constructing Fig. 3, are given in Table I.

The slope of the line in Fig. 3 is

0.942 per Mev (53a)

with an accuracy of 5 percent or better. Using D
from (38), and (see (4))

E(Mev) =0.830k'(barn ')

~ Ragan, Kanne, and Taschek, Phys. Rev. 60, 628 (1941).
~3 Blair, Freier, Lampi, Sleator, and Williams, Phys. Rev.

74, 553 (1948).
"Herb, Kerst, Parkinson, and Plain, Phys. Rev. 55, 998

(1939).
's Heydenburg, Hafstad, and Tuve, Phys. Rev. 56, 1018

{1939).

we get the effective range

(2 71&0.13)X10 "cm. (53)

This is in complete agreement with the analysis by
Breit and collaborators. The limits on ro can now be
set considerably closer than by Breit, Thaxton,
and Eisenbud, primarily because of the extension
of the experiments to lower and higher energies, and
to some extent because the very simple linear
relation used here permits a very easy estimate of
error by inspection.

The intrinsic range is slightly smaller than the
effective range since the "level" of the proton-
proton system is virtual. Using the scattering
lengths given in Section VII, Eqs. (65) and (70),
together with Fig. 6 of BJ, one obtains

b=2.55X10 "for square well, (54a)

b=2.4 5)&1 0" for Yukawa potential. (54b)

Experiments on proton-proton scattering have
also been done at higher energy, by Dearnley, Oxley,
and Perry" and by R. R. Wilson and collaborators "
These are not as accurate as those at lower energy.
However, we have plotted them in Fig. 4, together
with the continuation of the straight line of Fig. 3.
The agreement is not very good. In the case of the
experiments of Wilson et al. the deviation is easily
within the given experimental error. However, the
point of Dearnley et al. is definitely off the straight
line. The deviation is in the direction expected for a
square well, while all other arguments favor some-
thing similar to a Yukawa potential. Moreover, the
deviation is 4 times as great as expected for a
square well. In fact, it was already noticed by
Dearnley et al. that their cross section was lower
(therefore k cotb larger) than would be expected
from the square well used by Breit et al. to fit the

"Dearnley, Oxley, and Perry, Phys. Rev. 73, 1290 (1948);
(7 Mev).

~7 R. R. Wilson and E. Creutz, Phys. Rev. 71, 339 (1947);
(8 Mev). Robert R. Wilson, Phys. Rev. 71, 384 (1947); (10
Mev). Wilson, Lofgren, Richardson, Wright, and Shankland,
Phys. Rev. 'D, 1131 (1947); (14.5 Mev).
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VII. COMPARISON OF PROTON-PROTON AND
NEUTRON-PROTON SCATTERIN

Breit, Condon, and Present" first pointed out the
approximate equality of the proton-proton potential
and the neutron-proton potential in the singlet
state. It is the purpose of this section to compare
proton-proton and neutron-proton interactions
without calculating the nuclear potential explicitly.

In addition to the functions m, y used in Section
V to describe the proton-proton scattering, we shall
use also the function u which would be obtained in
the same nuclear potential without the Coulomb
potential, and its asymptotic function f Then . u
satisfies Eq. (5) and P has the form (7).

The problem is greatly simplified by considering
all these functions for energy zero. It is true that
direct experiments on proton-proton scattering at
this energy would not give any information about
the nuclear force between the protons. However,
the value of the function f,

'

Eq. (51) and Fig. 3,
for E=O will give us all the necessary information
about the wave functions m and p for zero energy,
in particular their behavior for small r. The inter-
cept of the straight line of Fig. 3 gives

f(0) =8.62. (55)

We shall first investigate the behavior of the
Coulomb comparison function y. Inserting (51)
in (49) we find that for very small r, ip' is given by

yo'(r) = (2/D) [ln(2r/D)+ C+-',f(0)7, (56)

and that
v = 1+r[go'(r) —2/D7. (56a)

In q, terms of order r' have been neglected which
will be permissible for our purposes. In q', however,
we shall need the next term which may be obtained
either from YWB or by integration of (39), using
(56a):

p' = q 0'+ (2r/D) (q o' —4/D). (56b)

Now let us obtain a relation between wave func-
tions with and without Coulomb field in the same
nuclear potential U just as we previously compared
wave functions of diAerent energy. The wave equa-
tions for the two functions to be compared are
(37) and (5), and since V is supposed to be the
same, we have, dropping the subscript 1:

low energy data. The direction of the deviation
precludes its explanation as a tensor force effect on
the I' waves. Because of the excellent fit to the
straight line at lower energies, we find this deviation
hard to understand.

tions" P and y whose wave equations also differ
by the Coulomb potential:GATI

(57a)

In this case, we do not integrate from r =0 because
would be infinite at this limit, and the integral

on the right-hand side would diverge. We have
therefore used an arbitrary lower limit r&, and we
shall now define ri by requiring that the right-hand
sides of (57) and (57a) be equal, in other words by
the equation

(Pp uw)dr/r —=
r1 aJ p

uwdr/r. (58)

/=1 —apr (60)

since it is the asymptotic solution for energy zero
in the absence of nuclear and Coulomb potential.
The constant ap can thus be determined from (59)
in terms of the "observed" intercept f(0), Eq. (55).

22

20

f(E)
I8

I6

l4

40 60 80 I00 I20 I40 I60
E (MEV)

An evaluation of r~ will be given below.
Now, since the right-hand sides of (57) and (57a)

have been made equal, the left-hand sides are also
equal. At the upper limits, the integrated terms are
equal by the definition of P, p as the asymptotic
expressions for I, m. At the lower limit, the inte-
grated term in (57) is zero, therefore that in (57a)
must also be zero. In other words, at the point r~ the
logarithmic derivatives of P and ip are equal,

(59)

But p'/ip can, at any point, be determined from
(56a), (56b). On the other hand, P must have the
form

R ~B
uw' —wu' = (2/D) ' uwdr/r (57).

0 0

A similar relation holds for the "asymptotic func-

FiG. 4. Experiments on proton-proton scattering from 7 to
15 Mev, f vs. B.The straight line is the same as in Fig. 3, the
experiments do not agree very well with it.

Q Dearnley, Oxley, and Perry; & Wilson and Creutz;
Wilson.
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Then og can be interpreted as an equivalent re-
ciprocal scattering length, i.e. , as the reciprocal
scattering length which mould be obtained for
neutron-proton scattering if the nuclear potential
were the same as for proton-proton scattering, This
can then be compared with the measured n" = 1/a,
for singlet neutron-proton scattering.

Inserting (56a), (56b), and (60) into (59) gives,
after some simple algebra and neglect of second-
order terms in ri/D:

&p ~p (rl)+(«i/D)(pp' 2/D)—, (61)

where happ' is still given by (56). Greater accuracy
could be obtained using the representation of y in
terms of Bessel functions. "

That it is possible to find a point r~ at which the
logarithmic slopes of the Coulomb function y and
the straight line P are equal, is due to the peculiar
behavior of the Coulomb function (see Fig. 5). As
shown by (56a), the function q begins at r =0 with
the value 1 and logarithmically infinite negative
slope. It reaches a minimum and then rises. At
larger r, it shows the typical exponential rise
expected inside the Coulomb potential barrier.
There must therefore be a point where the function

has the same logarithmic slope as any given
straight line.

We shall now determine ri. Since qr'/rp depends
only slightly on ri (Eq. (56)), an approximate value
of r ~ will be sufhcient, and since the Coulomb
potential is unimportant inside the nuclear poten-
tial, it is permissible to replace the Coulomb func-
tions y, w in the definition (58) of ri by the "neu-
tral" functions P, u. We shall do the calculation
explicitly for the specially simple case 0, =0 which

I.3

P'dr/r =In(b/ri) =
I u'dr/r

~r1 0

sin'(~r/2b)dr/r =-', (C+Inm —Cia), (62)
p

where Ci is the integral cosine,

Therefore

(62a)

In(r&/b) = —0.8245, ri ——0.4384b (63)

so that r& turns out considerably smaller than the
e6'ective range which, with our assumptions, is
equal to b. With (54a), we get

r~ = 1.12 X 10 "cm.

We shall show below that (63) remains a very
good approximation, even for finite scattering
length, but that the approximation would be con-
siderably less good if we replaced b by rp in (63).
This makes the calculation slightly involved: one
needs a to obtain b from rp using the curves of BJ,
but one needs b to calculate 0. In practice, a very
rough estimate of a suffices to get an accurate value
for b so that there is no real difficulty.

Using b from (54a), and using (63), (56), (56a),
(61), (38), and (55) we get:

yps'(ri) = (2/D) [In(2b/D)+4. 06j
=0568X10"cm ' (64)

corresponds to a resonance level at zero energy.
This is a good approximation because n is actua11y
small; a result for finite 0 will be given below. If we
take 0 =0 and a square well, u is given by uo in
(35a). Since u=f for r )b, (58) becomes

l2 ps(ri) =1.024p,

—o.s s =0.585 X10"cm —',
(64a)

(65)

I0

09

0.8
0 20

r (Io l~ Cm)
30 40

FIG. S. a}The wave function q (comparison function) in the
Coulomb field, es. radius, for zero energy with the constant &

(Eq. 73a) as given by experiment, b) the function P corre-
sponding to neutron-proton scattering by the same nuclear
potential (for a square well), c) P for the actual neutron-proton
scattering in the singlet state, d) P for the triplet neutron-
proton state. Note the small di8'erence between a, b, and c,
the large difference between these and d. Note also the greatly
enlarged scale of ordinate: All functions are near unity inside
the range of nuclear forces, and b and u agree within a few
percent.

where the subscripts P and S stand for proton and
square well, respectively. This result may be com-
pared with the neutron-proton scattering in the
singlet state which gives, according to (26a)

—a"s = —1/a" s ——0.421X10"cm '. (66)

For a Yukawa potential we shall not do the
exact calculation but choose an approximate wave
function of the form (again for zero binding energy)

uo ——1 —e—&". (67)

As Schwinger' has shown, such a wave function
when used in the variational method, will give the
depth of the potential correctly within 1 part in
10,000. Chew28 has pointed out that uo itself agrees

"GeofFrey F. Chew, Phys. Rev. V4, 809 (1948).
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&o=2 t (1—uo')dr=3/P.
~0

(67a)

For the "effective Coulomb radius" we get then the
equation

with the exact wave function within 3 percent. The
parameter P is related to the parameter in the
meson potential and also directly to the effective
range which is

In (63), (68) we have used wave functions for
infinite scattering length. For finite scattering
length, the case of a square well can easily be
treated and gives

ri =0 438. 4b(1+0 114.nb+0 47 1.n'b'+ ) (7 1 )

where b is the intrinsic range and 0| the reciprocal
scattering length. Using Oi from (65) and b from
(54a), gives for the parenthesis in (71) the value
1 —0.0065; an exact calculation gives 1 —0.0072.
Thus ri/b is almost unchanged. - However,

40
uo'dr/r ro/b =1 4n '—nb =1.0640 (71a)

so that
= In (PR/2) +C, (67h)

r, = 2/(Py) = 2ro/3y = 0.374ro
=0.374b=0.91X10 "cm, (68)

differs appreciably from unity: This shows that it
is indeed a much better approximation to use b

in (63) than to use ro. Now a slight change in ri, hy
the relative amount e, will give a change of —n by

using b from (54b) and with y=ec. This gives
instead of (64)—(65)

oo(&r' = (2/D)LIn(2b/D)+3. 90oj =0.509, (69)

—bn = (2o/D) (1+2ripo') =0.39o = —0.0028 (71b)

with the values of qo', ri, etc. given above. This is
practically negligible and changes (65) to

(py ——1.014', (69a) Q.~s=0.582X10"cm ' (65a)

—nI, y ——0.517X10"cm ' (70)

where the subscript V stands for Yukawa potential.
It is seen that the Yukawa potential gives a

result somewhat closer to the neutron-proton
result (66). This is in agreement with the result of
Breit, Hoisington, Share, and Thaxton"' obtained
by explicit calculation of the nuclear potentials.
However, the difference between the Yukawa and
the square we11 results is not large, and, judging
from Blatt and Jackson's results for other phe-
nomena, the other potentials commonly used
(exponential and Gaussian) are almost certain to
lie in between. This means, then, that there is a
defi, nite difference between the nuclear forces in the
singlet state for neutron-proton and for proton-
proton. This result follows also from the explicit
calculations of Breit et aI, , if the modern value of
the neutron-proton cross section, Eq. (20b), is used.

On the other hand, the difference between
neutron-proton and proton-proton force is ob-
viously quite small, vis. about 0.1—0.16X10"cm '.
This figure might properly be compared with the
reciprocal range of the forces which is about
4 X 1D' cm . In agreement with this, Breit zt pi
found that the difference between the depths of the
two potentials (for the same range and shape) need
only be 1.5—3 percent. Thus the hypothesis of the
charge-independence of nuclear forces is still very
good, provided, of course, that range and shape are
the same for which, unfortunately, there is still no
experimental proof.

"Breit, Hoisington, Share, and Thaxton, Phys. Rev. 55,
1103 (1939).

For the Yukawa well, the approximate wave
function

u=1+ar —e ~" (72)
gives

rx = (2/Py) L1 —0.245n/P 0 051—n'/. P + ] (72a)

and P is related to the effective range by

Pro 3+4n/P——

In our case, we get

3rgy/2ro = 1 —0.067,
b/ro ——1 —0.097,

3r gy/2b = 1.033.

(72h)

(72c)

The change of ri with n, for given b, is therefore
slightly greater than for the square well, and we get

—bn =0.0112,
—a. =0.529X10"cm '. (70a)

This makes the difference between Yukawa and
square well somewhat smaller, the difference
between the proton-proton and neutron-proton
scattering somewhat larger.

Finally, we shall compare the asymptotic wave
functions with and without Coulomb potential, y
and P (see Fig. 5). The Coulomb function looks
fairly complicated, mainly because of its logarith-
mically infinite slope at r =0; but all this complica-
tion makes very little difference for the value of the
function, owing to the very large value of the
"proton Bohr radius" D which is about 20 times
the effective range. With the constants as observed
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(Eq. (55)), the function s has a minimum at f/p has a maximum at »=»& whose value is

where

r; =yDe & =0.216X10 "cm,

I. = ~+ lf(0) (73a)

4(» )/~(» ) =1+2» /D
=1.040 for square well
= 1.032 for Yukawa potential.

(75a)

The result(73) is about the Compton wave-length
of the proton, h/3'. At its minimum, s has the
value

q; =1—e r=0.9925, (73b)

which is very close to unity.
The two functions y and f are very close together

for all values of r inside the range of the nuclear
forces. Neglecting higher terms,

f= 1+(2»/D) (I +In2»~/D), (74)

y = 1+(2»/D) (I +In2»/D —1), (74a)

and the ratio is

f/A=1+(2»/D)(l n&»/ +»1). (75)

As is clear from the definition of »~ in (59), the ratio

At other values of r, the functions are closer to-
gether. This shows that it must be a very good
approximation to replace y and w by P and u,
respectively, in calculating r1. Also it shows that for
a given nuclear potential, ro and the correction I'
(see Section IV) must have substantially the same
values as in the absence of the Coulomb potential.
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Bands from Doubly Excited Levels of the Hydrogen Molecule*

G. H. DIEKE
'rhe Johns Hopkins University, Baltimore, Maryland

(Received March 9, 1949)

A band system of H2 is described which has as upper state (2p0.)' 'Z. Although this state has two
electrons excited, its energy is about the same as that of the states with only one electron excited
to a two-quantum state. The position of the lines and their intensities are very irregular. These irregu-
larities, however, can be satisfactorily explained as being due to the interaction with the (1so.) (2so.) Z
state.

I. INTRODUCTION
' 'N a previous paper' the system 2s 'Z~2p 'Z of
~ - the hydrogen molecule was discussed. The
analysis of the upper state 2s 'Z, or more completely
(1so)(2so) 'Z, revealed strong perturbations which
could only be accounted for by the presence of
another electronic state slightly above the 2s 'Z
state. The nature of the perturbations showed that
the perturbing state must be a 'Z, + state, with the
same symmetry properties as the 2s'Z state. As
all the low lying states of the molecule with one
electron excited were already accounted for, this
had to be a state with both electrons excited, and
some arguments were given which made it prob-
able that this hypothetical state was (2po)' 'Z.

The existence of a doubly excited stable state
with such low energy seems at first sight rather sur-
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prising, and it is, therefore, highly desirable to ob-
tain further information concerning this state.
So far the only evidence for its existence has been
furnished by the perturbations in the 2s 'Z state.
Naturally the situation would be strengthened a
great deal if bands could be found coming from this
(2po)' Z state. Such bands have been available since
1937, but inconsistencies in their structure made
some of them rather uncertain, so that they were
not published. In the meantime, quantitative in-
tensity measurements' in the infra-red have become
available which make it possible in many doubtful
cases to judge whether the bands are genuine or
not. In this way the regularities previously found
were sifted and amplified and they are now believed
to be correct at least in their essential points, and
they form the basis of the present paper. The
evidence is derived entirely from the H2 spectrum.
The analysis of the analogous bands of the HD and
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