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On the Continuous Garrima-Radiation Accompanying the Beta-Decay of Nuclei
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The quantum mechanical calculations of Knipp and Uhlenbeck, and F. Bloch of the continuous y-spectrum
associated with the sudden change of nuclear charge during P-decay have been extended to forbidden
P-transitions and to the different types of P-interactions. It is shown that the p-spectrum has practically
the same shape, and the ratio of total p-intensity to P-intensity is almost the same for forbidden transitions
as for allowed transitions, irrespective of the P-interaction. This accounts for the good agreement of the
theory for allowed transitions with the experiments of C. S. Ku on 15P~, a "forbidden" p-emitter. A simple
classical analogue is given to explain this uniformity and is shown to justify the interpretation that the prob-
abilities for the P- and p-emission processes may in a very good approximation be taken as independent.

I. INTRODUCTION

HE existence of a weak continuous y-spectrum
accompanying the P-decay of nuclei was first

shown experimentally by Aston' in his measurements
on RaE. Subsequently it has been observed in various
p-radioactive elements by many investigators2 most
recently by C. S. Wu' using 15P".

A satisfactory theory of this inhomogeneous low

intensity radiation was given simultaneously by Knipp
and Uhlenbeck, 4 and F. Bloch' who showed quantum
mechanically that continuous radiation of the observed
order of magnitude, e.g. , roughly u=1/137 quanta per
P-particle could be attributed to the sudden change in

nuclear charge when the particle is created and leaves
the nucleus. This radiation has been called "internal"
bremsstrahlung in contradistinction to the "external"
bremsstrahlung which is the continuous electromagnetic
radiation which is classically associated with the
acceleration of a passing electron by the Coulomb field
of the nucleus. The need to extend the calculations of
Knipp, Uhlenbeck, and Bloch (henceforth denoted by
KUB) becomes apparent when one seeks to compare
theory and experiment. In the first place the theory was
developed only for allowed P-transitions assuming the
Fermi' polar vector interaction. On the other hand RaE
and 1~P" are generally classified' as first and second
forbidden p-emitters, respectively. Hence any agree-
ment between theory and experiment thus far might
appear as fortuitous. Indeed, one knows that, for
instance, the internal conversion of y-radiation is quite
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di6erent for the higher multipoles which correspond to
the successive degrees of forbiddenness of the y-transi-
tion. To check the theory, therefore, it is necessary to
extend the calculations of KUB to forbidden p-transi-
tions.

Since the Fermi polar vector interaction is but one of
five linearly independent relativistically invariant inter-
actions (see reference 7) which might be used in the
p-decay theory, it is also of interest to see whether the
calculated internal bremsstrahlung varies appreciably
with the choice of interactions, in which case it could
serve as a means of distinguishing between them. For
this reason we have also extended the calculations of
KUB to the different p-interactions for 6rst and second
degrees of forbiddenness.

The method of calculation is the same as in K.UQ.
The joint probability per unit time $(k) dk for emission
of a quantum of energy k is obtained by a second order
perturbation calculation, corresponding to the occur-
rence of the over-all process in two steps:

(1) The transition from initial to intermediate state
consisting of the nuclear transformation accompanied
by the creation and emission of a P-particle and a
neutrino.

(2) The transition of the electron from its inter-
mediate state to a final state by simultaneous emission
of a light quantum of energy k.

The initial state, 0, of the unperturbed system is
taken to be the state in which only the parent nucleus
is present with an available energy lVO. The transition
to the intermediate state, 1, is due to the electron
neutrino interaction Irp. In this state of the system some
neutron in the nucleus has been transformed into a
proton, an electron has been created in a state s' of
energy S', and momentum p, , and also an anti-
neutrino in a state of energy 8', and momentum p, . The
energy of the intermediate state is W&. In the final state,
f, the nucleus and neutrino remain unchanged, but in
virtue of the interaction, II~, of the electron with the
electromagnetic radiation field, a quantum of energy k
and momentum k has been emitted leaving the electron
with energy 8', and momentum p, .**The energy of the
final state is 8'g=S'0=iV, +8"+k. The total prob-

**The relativistic units will be used throughout, k= m =c= 1.
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ability S(k)dk for the emission of a y-quantum with
energy between k and k+dk is

S(k)dk =

X (Wo —W )'(W —k) L(W k)' 1)»

(flH, I~)(IIHslo) '
xg (1)

8'g —8'p

coming from the nucleus with energy 8", will emit a
quantum of energy k. (In this calculation the initial
electron wave function is taken to be an outgoing wave
solution of the Dirac equation divergent at the origin
corresponding to a source of electrons at the nucleus.
The final electron state is that for a free particle. ) Then
in virtue of the assumed independence of these two
processes, they are able to write

S(k) = I dW,S(W„k)= I dW.P(W,)4'(W., k). (3)

0.8

Og

0
5 S

Fro. 1. Energy distribution of the y-rays following allowed
p-transitions, scalar and vector theory, for 8'Ii=10 in relativistic
units. Ordinate kS(k) normalized to unity for k=0. Abscissa,
k measured in relativistic units.

Exact, from Eq. {5).—————Approximate 8'o large, from Kq. (5a).

where 8', =8"p—8' is the energy with which. the
electron is "born, " and where the integrations over 0„
0, and QI, are integrations over the directions of the
momenta of the electron, anti-neutrino and the light
quantum and summations over the polarizations of
these particles respectively. The particular interaction
IIp used by KUB was the "polar vector allowed. " If
one wanted only the probability per unit time for the
non-radiative emission with energy between lV and
W+dW, this would be given by

&(W)dW= 1i(2x)'PW(WO —W)'I (oIHs II) I'dW (2)

On comparing (1) and (2) there appears to be no good
reason to suppose that the probability for the over-all
process should be simply the product of the probability
for each. Nevertheless, Knipp and Uhlenbeck4 have
given an alternative method for this calculation in
which the two steps in the radiative P-decay are
assumed to be independent. They first obtain the
probability E(W)dW for the emission of a P-particle
with energy W using the conventional P-theory as
indicated by Eq. (2), and then with a first order per-
turbation calculation they obtain the conditional
probability per unit time C(W„k) that an electron

t.o

This expression, if it were valid, has the advantage
that for any given P-spectrum one can insert for E(W)
the experimentally observed energy distribution of the
outgoing P-electrons thereby eliminating from the cal-
culation of the radiative e8ects any lack of uniqueness
inherent in the P-theory itself. For example, the question
of which interaction to use is avoided, as is also any
mention of the unobserved neutrino.

The sole justification of Knipp and Uhlenbeck for
introducing this method of calculation is the u posteriori
one that for allowed transitions it yields exactly the
same result as the more rigorous second order per-
turbation method. But Morrison and Schi6' argue that
it is only for allowed P-transitions that these two methods
of calculation will agree, and that for forbidden
P-transition in which the electron-neutrino coupling
depends explicitly on the momenta of these particles
these two methods should no longer agree.

Our calculations with the forbidden P-transition
show that although the two diferent methods of evalu-
ating the internal bremsstrahlung do not yield exactly
the same results, they are nevertheless in good enough
agreement to warrant the use of the simpler form (3)
in practice for comparison with experiment. In addition,
by way of making physically plausible the interpreta-
tion of the P-emission and radiation as independent
processes, we show in Section III that the function
4 (W„k) may also be obtained classically.

II. RESULTS

The electromagnetic interaction for emission of a
p-quantum of momentum k and polarization e& is

H„= (2xa/k)&(e ep)e '"'"

where n is the fine structure constant, e the Dirac
matrix operator. In the Born approximation one
neglects the eGect of the nuclear charge on the electron
so that both the electron and anti-neutrino wave func-
tions are the 4-component plane wave solutions of the
Dirac equation

A,
exp(ip, r), for the electron

(0)&

8
y = exp( —ip, r), for the anti-neutrino

(0)&

I P. Morrison and L. I. Schiff, Phys. Rev. 58, 24 (1940).
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normalized to unity in the volume Q. For IIp we take
the different interactions for the P-decay.

A. The AHovred Transitions. Scalar and Vector
Interactions

The total intensity of the y radiation is

W'0—1

I,= ~t dkkS(k)
0

For the polar vector interaction which RUB used,
the matrix element of Hp is given by

G imi —Wp'+ —Wo4-
4n.4 45 6

ln(Wo+ (Wo' —1)&)

144

(1IIIoi0) =G d~i (1"QU)(A*o.)—(V*aQU) (A*ao.))
10322 27

+Wp(Wp' —1)& — Wp4 — Wp'+
225 200 3600'

where G is the constant determining the strength of the
coupling of the electron neutrino field to the nucleons,

Q is an operator which transforms a neutron state into
a proton state and U and t/ are the nuclear wave func-
tions for the neutrons and protons respectively. For an
allowed transition the second term is dropped. Writing
M for the matrix element involving the unknown
nuclear wave functions

KUB obtained

M =
) d V*QU.

with x=lVO —k. For 8'0 large compared to unity one
can simplify the above formula by keeping only the
terms of the highest order in t/t/"0 and x, and replacing
(x —1)& by x, then one obtains

aGoi3fio1 -2
S(k)= —8'o'x' —lVox'+ —x' ln2x

4~' k 3 15

~11 7 689—
i

—W, x —-W~+ *
i

. (5a)
900 )

The comparison of this equation with the exact one (5)
is given in Fig. 1.

G-'iWi 1 ~ ~

S(k) =— — dW. (Wp —W,)'
2x4 k ~g+k

X L(W.'+ W.') ln(W. +p,)—2W.p,], (4)

where W, = It/', —k. After integration this becomes

aGoi3Ii o 1
S(k) = — Wp'(-', x'+ x) —Wp(xo+ x' —o')

4x' k

7 3
+—x'——x ln(x+ (x' —1)'*)

15 8

)11 4q ~7 1 q
Wp

i
x+—

i Wpi x+ x
E9 9j E4 8 )

689 1021 8x'- x' ——(x'-1)&, (5)
900 1800 75

For large 8'0, this simplifies to

aG'iMi' 1
l~- —Wp'(ln2Wo —2.22).

2x4 45
(6)

so that ratio of total y-intensity to total P-intensity
for this allowed transition becomes

I~/Is =4a/3or(ln2Wp —2.22). (9)

Knipp and Uhlenbeck' rewrite S(k) as given by (8)
in the form

~W'0

S(k) = I dW, P(W.)C (W„k) (10)

where P(W,) is given by (11) and

aP. W.'+W,o

4 (W„k)= — ln(W, +p,)—2 . (11)
n.p,k W,p,

4(W„k) is interpreted as the conditional probability
that a P-electron emitted with energy W, will radiate a
p-quantum of energy k. In fact they show, further, that
if one does not average over the direction of the
quantum: J'dQo in (5), then one may factor out a
function depending on the angle 8 between k and p, .
This diGerential conditional probability is given by

nP, lV, '+8', '
d4(W„k, 8) =

P.k W.(W,—P, cos8)

1 —1 dQp (12)
(W,—p. cos8)'

and integrates to (11).
Both the differential and integrated probabilities (11)

and (12) are precisely the same as they obtained by the

The P-energy distribution is given by

P(W,) = (Go
i
3f

i
o/2m') (Wo W.)'W—.P„(7)

whence in the approximation Wp))1, the total P-in-
tensity becomes

G'i%i' 1
Ip dW—,—(W,—1)P(W,)— —Wp', (g)

2m' 60
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alternative first order perturbation method mentioned
in Section I.

By comparing the scalar P-interaction with the vector
interaction one can easily convince oneself that one gets
the same formulas (4)—(12) for an allowed scalar
transition if one redefined M by

M= drV~PQU

B. First Forbidden Transition; Scalar
Interaction

For this case the matrix element depends explicitly
on the electron and neutrino momenta

(l~Hs~0)=G/Q(A, *PB.)[—i(y, +y,) M]
with

M= drV~PUr

Substituting this matrix element into (1) and per-
forming the summation over the spins and the two
directions of the polarization one finds

2+6' r r'

S(k)= k
~ dP.P.'W.P, ,

'

dfl. t do. "df4
(2m)' ~

X x[(y. +y.) M]-'
W, W, (W,'—W. ')'

(k y.)(k y")
X 2$',8' 5'.8".—1—

(k y.)(k y*)—W,W, (W.'—W.')+ (W.'—W.')
k2

8081 281 1189
x' — Wax'+ Wo'x'

7350 75 240

151 ii
Wo'x4+ —W04x' . (15)

48 12

The total y-energy emitted is to this approximation

aG'{M{' 1
I„= — Wp'(ln2WO —2.30).

2m 4 315
(16)

The probability of P-emission for this case is

G'{M{' p, '+p' 2 p 'p'
Pg(W. )=

2m' 3 9 8',8',

from which it follows, to the same approximation as
(16), the P-intensity:

—(4/3) p 'p, '(W.+W,)+4k W,W,

—(4/3)kp '(2 —W W,)] ln(W, +p,)

+p,[—4W,W, (p.'+p, ')+ (g/3) p, 'p, '

—4kW. (W '—W W+W ')+(4/3)kW p ']I. (14)

The last integral is again elementary but the final ex-
pression is lengthy. For large tVf) one has the approxi-
mate expression,

~G'I M
I

'1 64
S(k) = — x' ——Wax'+ —Wo'x'

9~4 k 105 15 4

7 1—-W,~~4+-e,4&3 ln2~
4 2

Ip (G'
~

M {
'/2s')——(1/420) Wo'.

(k y.)(k y")
+ (»' y") +, ' ' ' ( ) The ratio of p-intensity to P-intensity isk'

where W, is related to k, p„W, and 8 by

W.2—W '=2k(W, —p, cose).

Remembering also the conservation of momentum:
y, = y,+k, one sees that in the square bracket k enters
either scalarly or through the scalar products with y,
and p, . Ke can thus integrate first over-all directions of

k keeping the angles kp, and kp, 6xed. After this
integration and the integrations over all directions of
y, and y, and changing finally the last variable of
integration from p, to W, in order to compare the
present result with the probability for the beta-decay,
one finds

nG' {M{'1
S(k) = — dw. p.

4x' 3 k &g+k

X {[2(p '+p, ')W (W,'+W, ')

Ir/Is =4a/3s (ln2WO —2.30).

%e see that for large 8'0, this ratio is almost exactly the
same as the ratio (9) calculated for the allowed P-tran-
sition.

The exact factorization of the integrand of (14) into
a product of P(W,) and 4(W„k) is not possible. But if
we assume that k is small, so that 8',—W, and all the
terms in the curly bracket involving k can be neglected,
we can again write,

S(k) = d W,Pg(W, )4 (W„k),
1+4

where 4(W„k) is precisely the same expression as
(11), as obtained for the allowed P-transition. One can
even show that for small k the factorization holds for
the differential probability with the same dC as given
by (12).
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C. Second Forbidden, Scalar Theory

The matrix element for this case is

(tl IIp! o) = (G—/11)~* *P&.Ll(p"+P.)-(p"+P.)pkI- j
where now M is a symmetrical tensor of the second rank
given by

3I;;= d V PQUr, r, .

I.O

0.6

M» can be separated into two invariant parts,

3Iij 3kIaa~ij+ (~ij 3IrIaa~ij) ~

The erst term gives merely a small correction to the
allowed transition. Only the second part gives a con-
tribution to the second forbidden transition. %e shall
denote this spur zero tensor by R;,. The calculation goes
as before, and one obtains

0.4

0.2

0
0 5 6

nG2 2
S(k) =——

! Z.p! '~"dW.p.
Sx4 15

X }LW. (W '+ W.') (p '+ p ')'

+ (4/3) W,p, 'p, '(W, '+ W, ')

(4/3)p 2p 2(p 2+p 2)(W +W )

+4kW, W, ((5/3) p.'+p.')

+ (4/3) kp'W. W.(P'+P')
—(8/3)kp '(p '+2p, ')j ln(W, +p,)
+P,L

—2W,W (p '+p ')' —(8/3)W. W p 'p '

+(8/3)P'P'(P'+P')
+ (4/3) kp. '(p. '+3p.')W.

4kW (W 2 W W +W 2)((5/3)p 2+p 2)

—(8/3) k'W, W,—(16/3) k'p, 'W.W,

+(40/9) k'p, '+4k'W W, (W,'—W.W,+W, -')

—(4k'/3)W W W '+(8/9)k'p 'W']} (19) and

The total gamma-intensity is to this approximation

~G~!z.p!
2

Iv=- Wo"(ln2WO —2.35). (21)
2+4 90 63

The corresponding P-emission proba, bility and the total
P-intensity are given respectively by

G'!E~p! ' 1 1

P W P' (P'+P')+ —P'P"-
2m' 30 9

P2(W, ) =

p2p 2-
2 2

45 S',lV. .

FIG. 2. Energy distribution of the &-rays following P-transitions
of different degree of forbiddenness, scalar theory. W0 ——10.
Ordinate kS(k) normalized to unity for k=0, abscissa k measured
in relativistic units.

Allowed.————First forbidden.
Second forbidden.

Making the same approximation 8'p) 1, and integrating

O.G2 2 1 58 86 488
5(k) = — —

!R~p! '— —x' ——Wax'+ Wi'x'
8m4 15 k 63 21 63 The ratio

62 1
Ip= !2p!' W—o"

2m' 90 84
(23)

364 151 11
lVp'x'+ 8'p4x' ——Wp'x4

45 30 6

1 - 151553
+—8'p'x' ln2x- x'—

3 79380

72661
t/t/'px'

8820

239 ii
Wo'x4+ —Wo'x' . (20)

72 18

33142 1138 16577
+ Wp2x' — H/'p'x'+ - TVp4x'

2205 75 1800

I&/Ip =4u/3gr(ln2Wp —2.35) (24)

is again very nearly the same as (9) and (18).
As in the previous section the factorization of the

integrand in Eq. (19) is not possible. By making the
same assumption of k small, one gets exactly
I'.(W.)C'(W„k) with the same function C as before.

D. Other Interactions

To investigate the effect of different interactions we
have also made the calculations with the tensor inter-
action. For allowed transitions one gets exactly the
same result as in A. The results for 6rst forbidden
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transitions are much more complicated, since more than
one nuclear matrix element enters in the 6nal ex-

pression, and we wiB not reproduce them here. We have
shown, that for small k the 6nal result can again be
factorized as in Eq. (3) where the P(W,) is the com-

plete 6rst forbidden energy distribution containing all
the nucleon matrix elements and C is again given by
(11). It seems therefore certain that the same fac-
torization will hold in all other cases.

I,/Ip= 4a/3s (ln2WO —2.3). (25)

This is in spite of the fact that the P-intensities

(W—1)Pr, (W) vary strongly both in shape and mag-
nitude for these same transitions. (Pz(W) denotes the
P-distribution for I.th forbidden transition. )

This behavior is not di%cult to explain if one grants
the factorization of S(k) as given in Eq. (3) to be valid
for forbidden as well as allowed P-transitions. For then
the logarithmic energy dependence of C(W„k) will

smooth out the variations in PI.(W,), and one can show

easily that one will get for the ratio I~/Ip for large Wo

the value (4a/3s) log(2WO) for all values of I..
It is important to note that while the assumption of

factorizability of S(k) in the above form is sufficient to
explain the uniformity of the ratio I„/Ip, this assump-
tion has not been made in obtaining the formulae for
I~/Ip. These were all obtained from the second order
perturbation method (and evaluated for Wo large).
However, we have shown in Section II that the fac-
torization is valid provided only that k is small com-

pared to Wo and 8',. But by inspection of the curves of
Fig. 2, one sees that this restriction is a posteriori
satis6ed since most of the radiation intensity occurs at
the low energy end of the spectrum and goes rapidly to

IG. DlSCUSSION

In Fig. 1 are plotted the y intensity kS(k) es. k for
the allowed scalar interaction using both the exact
expression (5) and the approximate one (Sa) for Wo ——10,
corresponding to an upper limit of 5 Mev for the
P-spectrum. It is seen that the difference is negligible
over the whole energy range. Accordingly, we confine
our discussion of the behavior of the y- and P-inten-
sities, I~ and Ip, to this simplifying approximation.

To compare the shapes of the y-intensity curves for
the different degrees of forbiddenness we have plotted
kS(k) vs. k for the scalar interaction: allowed, 6rst, and
second forbidden in Fig. 2. The ordinates have been
adjusted to coincide for k=0. It is clear that one could
not hope to distinguish degrees of forbiddenness on
account of the almost identical shapes of these curves.

The absolute y-intensities do increase with suc-
cessive degrees of forbiddenness. However, a striking
feature of our results is that the ratio of total y-intensity
to total P-intensity is essentially independent of the
degree of forbiddenness of the P-transition and is given

by

zero as k approaches 8'o. Hence the alternative method
of Knipp and Uhlenbeck appears justi6ed whatever the
P-interaction, and it is clear why the experiments have
been in such good agreement with the allowed theory
of RUB.

The fact that the rather complicated calculations
with diferent interactions all lead to the same result
(25) suggests a simple underlying physical as well as
formal reason. We now show that in the same approxi-
mation in which the method of Knipp and Uhlenbeck
is valid, the function 4(W,k) may be obtained purely
classically thus further corroborating their interpreta-
tion as to the independence of the P-decay and p-emis-
sion processes.

We consider the following model for the y-emission:
An electron, having been created during the nuclear
transformation, is ejected instantaneously with velocity
e at time t =0, and since Z= 0, moves with uniform
velocity v ever after. Classically, of course, one cannot
account for the creation of the electron or how it got
its energy. However, once given this kinematical de-
scription of the electron's motion following the nuclear
P-decay, one may ask: What is the spectral distribution
of the energy radiated by the electron? This is a
straightforward problem for classical electromagnetic
theory, and we sketch its solution.

Starting with an arbitrary current distribution J(r, I)
having Fourier transform:

e—('icy/c) r

A„(r)= ~~dr'J„(r') exp[ —(ice/c)n r'j,

where the integral is taken over the coordinates r' of
the current distribution and r is the distance from the
source to the observation point in the wave zone; n is
a unit vector in the direction x'.

For the total energy radiated in the angular frequency
range Au and in solid angle dO in the direction n, one
readily obtains

-2

dW„(8, y) =—n&& I J„(r') exp[(ice/c)n r'jdr'
C

(26)

For our case, the current is given by'

J(r, 1)=iwib(x)b(y)b(s —st) for t) 0
=0 for t ~&O,

where i, is a unit vector in the s-direction, taken as the
direction of emission of the P-electron, and the b's are

' I. Tamm, J. Df Phys. (U.S.S.R.) 1, 439 (1939).

~co

J (r)=—
~

d/J(r, t)e '"'
2m. ~ „

the transform of the vector potential in the radiation
field will be given (in Gaussian units) by
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Dirac 8-functions. Then

e
J (r)=i,—h(x)h(y)e-&' *'"&, z)0

2m.

Inserting this in the bracket of Eq. (26), one gets a
factor sin8 from n&(i„and the integral becomes

dr'J (r') exp[(ia)/c)n r'j

e
d&e

—(i'/e) (1—P cosy) &

2x' ~p

2v2 sin28
dW (8, y)= dQ.

4n'c' (1—P cos8)'

Dividing by &or, we may interpret

dC (v, 8, a&)
=—dW (8, @)/ku

as the probability for the electron with velocity v to
emit a quantum of energy of frequency co at an angle 8.
Thus

sin 2tII

dC (s, 8, (a) = slntIId8
2~fuse' (1—P cos8)'

a P' sin'8
d8

2s.co (1—P cos8)'

(27)

where cx =e'/Itc and P = v/c. Integrating over 8, one gets

n 1 1+P
4(s, co)=——ln —2 .

7') .P 1—P
(28)

2s. is)(1-P cos8)

so that the spectral distribution, di8erential in angle is

To see that the expressions (27) and (28) are the
proper classical analogues of the quantum mechanically
derived formulas (11) and (12), we need only remark
that if one sets W, =W„P,=P, in (11) and (12),
which is required by the assumption k small, and take
into account the relations for a relativistic electron in
relativistic units

P/W =P and W' = 1/(1 —P')

then they become exactly the classical formulas (27)
and (28) above.

The total energy radiated, gotten by integrating (28)
over aH frequencies will be infinite. But this is due to
having assumed an instantaneous change in velocity
from 0 to v. In reality, it will take a finite time 7- for the
acceleration of the electron to its final velocity v, and
then the spectrum will go to zero for u&)2s/r This.
time must be of the order 5/mc' in order to correspond
to the observed y-spectrum and, of course, has nothing
to do with the P-lifetime.

%e remark finally on the angular distribution of the
emitted y-quanta. From (27) it is seen that for the fast
electrons, P~1, almost all the radiation is in the forward
direction in which the p-particle was emitted, while for
small electron velocities, (27) reduces to a sin'8 dis-
tribution, as for a classical dipole. One can therefore
expect an angular correlation between the P-rays and
y-quanta.
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