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%heeler/ that g„and g, are likely to be equal, the ratio (3) is
approximately equal to 4. If, on the other kand, we adopt their
best observational values g„=10 " erg-cm~ and g,=2.2)&10 "
erg-cm', the ratio is approximately equal to 20. In both cases,
there is clear disagreement with recent results at Berkeley, 4 which
indicate that the ratio (3) is substantially less than unity.

An estimate for the magnitude of the integral in (2) can be
obtained by taking its upper limit to be roughly equal to Mc;
this is equivalent to assuming that nucleon theory is valid in the
non-relativistic domain, and that relativistic intermediate states
can be ignored. Alternatively, the self-energy of a m-meson at rest
due to intermediate nucleons can be calculated, and set equal to
roc'. The same integral appears (again with neglect of a factor
-mc in the energy denominator), and the values obtained for it
in the two ways are approximately the same. When the latter
evaluation of the integral is used, and g„ is taken equal to 10 "
erg-cm' in order to obtain agreement with the rate of nuclear
capture of negative p.-mesons, we obtain r „—2.3X10 ' sec.,
which is in fair qualitative agreement with the observed value. '
This makes the computed mean life for m-e decay much too
small to agree with experiment; while the discrepancy could be
removed by the assumption of a direct ~—e coupling that largely
cancels the second-order contribution, this is a rather unlikely
possibility. Thus, it would seem that the rate of nuclear beta-
decay is too large to be consistent with the small rate of m —e
decay, if either x —e coupling' or nucleon-electron coupling is
assumed by itself.

The interaction {1)also leads to p, —e decay as a second-order
process, but the rate computed in this way is far too small to agree
with experiment.
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'N connection with the programs of accelerators under way in
~ - this country, it seemed useful to collect as many data as pos-
sible about the production of mesons by high energy particles.
When looking through the literature we found that for the case
where the bombarding particle is a high energy nucleon, two dif-
ferent results had been obtained. Using straightforward third-
order perturbation methods, Urban and SchwarzlI obtained for the
cross section a'

a =. 4(g~/kc}'(M/y)'(Mc'/Ep)'(h/Mc}' log(M/p), (1}
where g is the coupling constant, M the mass of a nucleon, p the
mass of the x-meson, and Ep the energy of the bombarding nucleon.
Equation (1) and also the following equations give only the 6rst
terms in a series expansion in inverse powers of Ep. This paper was
essentially a corrected version of the paper of Nordheim and
Nordheim' who had arrived at practically the same result, although
using an incorrect expression for the perturbation matrix element.
As in the following, a charged scalar 6eld was assumed. Inde-
pendently, the result of Eq. (1) was obtained by us' making the
same simplifying assumptions.

A different result, however, was obtained by Wang' using the
Weizsicker-Williams method. His result was

~=X(g'/hc)'(iV/p) (iVc2/Ep}(h/Mc) (2)

where E is a constant of the order of magnitude unity.

Since it. seemed to us that the Keizsacker-Williams method
should give reliable results for high energies, we have performed
the third-order perturbation calculations, now retaining all terms.
It then turned out that the final result is essentially identical with
Wang's formula. Our final result is

a = (m/8) (g'/Ac}'(M/p) (Mc'/Ep) (A/Mc}'. (3)

It is interesting to note that formula (3) does not give an Ep '
dependence as one might expect from dimensional considerations, "
thus indicating a dependence of the matrix element on energy. The
difference between formulas (1) and (3) arises from the fact that
in the evaluation of the matrix elements, Urban and Schwarzl, ' as
well as the present authors in their preliminary calculations, '
neglected terms arising from the momentum of the virtual meson
which were taken into consideration in the calculations leading to
formula (3). Recoil was also taken into account, but this did not
inQuence the 6nal result.

We should like to express our sincere thanks to Professor H.
Wergeland for discussions on the subject of this letter. Detailed
calculations will be published in a report of the Purdue Syn-
chrotron Project to the ONR.
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A S is well known, the wave function of an electron in a perfectly
periodic potential field consists of a plane non-attenuated

wave, modulated with the period of the potential. In Bloch's
model of a solid, the periodicity of this potential is equal to the
periodicity of the lattice ions. It follows, therefore, that in such
an ideal solid an electron would experience no scattering or in
other words the electrical resistivity should be zero.

The above is a fundamental property of an ideal {i.e., rigorously
periodic) lattice and is deduced from quantum mechanics without
any approximation being involved. If one now inquires as to how

closely any real crystal approximates this model, the following
modes of departure may be envisaged:

(1) If the situation is such that the states in the lowest Brillouin
zone are completely occupied by electrons, and an energy gap
between it and the next higher zone exists (no overlap), we should,
in the vicinity of absolute zero, have no net current, i.e., the crystal
would be an insulator with an in6nite resistivity at O'K.

{2) In the more pertinent case of a monovalent metal such as
gold with a half-occupied first zone, departures of the lattice from
perfect periodicity can be due to the following: (a) Finite excita-
tion of the Debye waves. This is temperature dependent and will

vanish at the absolute zero. (b) Strains and impurities. (c) Crystal-
lite boundaries in polycrystalline material.

These last three will, of course, be temperature independent at
low temperatures. Accordingly, as the temperature approaches
absolute zero, the resistivity of a conductor should approach zero
or at most become temperature independent due to (b) and (c).

In view of all this, the observation made by de Haas, de Boer,
and van den Berg' ' some years ago that the resistivity of pure
gold increased as the temperature was lowered below about 3'K
seems exceedingly strange. While all their measurements were
made with polycrystalline specimens, even their purest sample
(impurity 10 4 percent, mainly Cu and Ag) showed a definite
minimum in the resistance-temperature curve, although it is true
that less pure material gave a more pronounced effect. The


