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Straggling of Electrons near the Critical Energy

I . EYGES
The University, Birns&sgham, England

(Received March 31, 1949)

The straggling of electrons caused by loss of energy by radiation and collision is discussed. The paper is
essentially in three parts. In Section EEE we have found the "straggling probability" for an electron that loses
energy only by radiation, and give curves corresponding to various approximations to the expression for the
radiative cross section. In Section EV collision loss is also taken into account and a formal expression for the
straggling probability is found in the form of a series whose terms decrease rapidly for energies not too small
and not too large thickness. No proof of the convergence is given however and, in fact, for very small en-
ergies the terms increase and some higher order terms become indnite at zero energy. In Section V some re-
marks are made on the small "showers" initiated by a particle of energy near the critical energy.

INTRODUCTION

K shall be mainly concerned in this paper with the
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behavior of an electron with energy of order of
the critical energy, when incident on matter. Such an
electron, of energy Eo, cannot itself penetrate a distance
3 greater than Eo/p, where p is the critical energy. ' For
Eo less than p, t is automatically less than one. Of

an electron can make itself felt at larger
distances than Eo/p by pair-production by its radiated
quanta, i.e., by producing a small "shower, " but at
small thicknesses and for a considerable range of energy
the main contribution to such a "shower" will be due to
the straggling of the original electron. It is the main
burden of this paper to calculate this straggling,
although some remarks on the effect of photons are
made in the last section.

It will appear that our solution can be used only fAr

thicknesses which are not too large and energies not too
far from the initial energy. The restriction on thickness
is not too serious, since we have seen that for an initial
energy equal to the critical energy, one is never inter-
ested in the original electron for thicknesses greater than
unity. Also, the restriction that the energy be close
enough to the initial energy has one redeeming feature;
for this case we can to some extent take into account the
variation of the radiation cross section with energy by
using an expression appropriate to some average of the
initial energy and the energy considered.

There has been at least one other attempt to calculate
the small showers initiated by an electron of order of
the critical energy. This is due to Bhabha and Chakra-
barty, ' who claim to have found a solution of the
general shower equations, including the effect of col-
lision loss. As a special case of their results they derive
an expression for the energy spectrum at small thick-
nesses, which purports to hold for incident particles
with energy of the order of the critical energy. Their

*U. S. AEC post-doctoral research fellow.' We measure lengths in radiation lengths, as usual, and take p,
the critical energy, to be also the (constant) energy loss per
radiation length.

~ H. J. Bhabha and S. K. Chakrabarty, Proc. Roy. Soc. A181,
267 (1943) and Phys. Rev. 74, 1352 (1948).

expression is in the form of a series in t in which terms
of order t' and higher are dropped as negligible. For
t=0.j. and some energy values, however, the term in I2

is as much as 300 times as large as the linear term the
dropping of higher order terms is thus quite suspect,
and the expressions they give for small thickness cannot
be considered as a correct solution.

The present paper is essentially in three parts. In
Section III we have discussed the "straggling prob-
ability" for electrons which lose energy only by radia-
tion, and investigated how this probability depends on
the expression for the radiative cross section. In the
next section we have extended this to the case where
electrons lose energy by constant collision loss as well.
Finally, in Section V we have considered the eGect of
photons and pair production.

II. THE DIFFUSION EQUATION

Let m(E, t)dE be the probability that an electron
which loses energy by radiation and by collision loss has
energy in the range E to E+dE at thickness t. Then
w(E, t) satisfies the well-known diffusion equation'

B~(E, t)

1 p E & a~(E, ~)

, ~
I v(s)di P — (1)

1—s (1—v ) 8E

Here p(n)dedt is the probability that in the thickness dt
the electron emits a photon which has a fraction between
t~ and @+de of the electrons energy The first .term on the
right-hand side of (1) describes the decrease in 7r(E, t)
due to electrons initially in the interval (E, dE) which
leave it by radiation, the second describes the increase
in n.(E, t) due to electrons of energy greater than E
which enter the interval (E, dE) by radiation, and the
last term takes account of collision loss.

g This was pointed out to me by Professor H. A. Bethe. See
Table IX, p. 299 in the first paper of reference 2.' See B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 {1941).
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If we apply the Mellin transform

M(s, t) = E ~(E, t)dE
0

with the inverse transform

(2)

diferent energy ranges. They are:

(oi(r) = I/p, (12a)

yp(o) = —b[(1—p)'/ln(1 —i))], (12b)

pop(") (4/3) (1 ")/p. (12c)

~5+iso

n. (E, t)=- —

! E '+')M(s, t)ds
2m' ~g;„

to (1), we are led to the equation

BM(s, t)/Bt= —A(s)M(s, t) PsM(—s 1, t), —(4)

In (op(o) the constants a and b are to be considered as
parameters which can be chosen to 6t the correct
functions at various energies. In Fig. l are plotted the
approximate expressions given above, along with the
correct expressions for various energies in air.

The expressions for the functions A(s) corresponding
to the three cases (12) are:

where
I

A (s) = )I [1—(1—i))"](o(p)d().
0

(5)

A i(s) =+(s)+C, (13a)

A p(s) =b lnt1+(s/1+a)], (13b)

A (e) = —(4/3)+(4/3)(+(e+ 1)+C), (13c)
The contour in (3) should lie to the right of all singu-
larities of the integrand.

III. STRAGGLING WITHOUT COLLISION LOSS

We wil1. 6rst consider an electron that loses energy
only by radiation, and add a subscript zero to the
function or(E, t) to denote this. Then n p(E, t) satisies
Eq. (1) with P set equal to zero, and the corresponding
equation for the transform M(s, t) is

where 4'(s) is the logarithmic derivative of the factorial
functions i.e.,

%(s)= d/ds(lns!),

and C=0.5772 is the Euler-Mascheroni constant.
Bethe and Heitler have shown' by other reasoning

that the straggling function corresponding to the ex-
pression for y~ given above, and in particular for the
special case a=0, is

dE Dn(Ep/E)]" '
orpp(Ep, E, t)dE=

Ep (bt —1)!

BM(s, t)/(tt= —A(s)M(s, t).
(14)

The solution of (6) which corresponds to the boundary
condition of one electron of energy Eo incident at t =0 is

Mls, t3 =Ep'e=")'.
It is easy to derive this result. If we use Eqs. (9) and

(7) (13b) we get

The straggling function is then given by: (I+(4)b( dE go+(ao ey(s+))

orpp(Eo, E, t)dE= (15)
27'' Eo "4; (S+(4+1)"

oro(Ep, E, t)dE=
~

—
(

e "'"ds.
Ep2ort &4;„(E &

Completing the contour in (15) by an infinite semi-circle
in the left half plane and evaluating the residue at the
singularity s= —(1+a) givesThe integral probability IIp(E, t) i.e., the probability

that the electron has energy greater than E at t is dE t Ep 4 Dn(Eo/E)]" '
prop(Eo, E, t)dE= —(I+a)"

~

—
( (16)

Eo ) Eo& (bt 1)!—4+ioo ~E q
s e—.4 (s) (

IIp(Ep, E, t)=
i
—

I
ds.

2~i ~4;„EE& s

dye
—C f, ~5+ior)

so)(y, t)e "dy=
2' Z g—ioo

(17a)eel&
—&+(s) .dS )e—y ~5+ice

oro(y, t)e "dy= dy—
27!$

eye—A (a) ties
7

dp&

)rop(y t)e ody — e(i ) ver (pu (4ip)+(*)&de-
2o

(17b)+~i') eya —A(e) t

II,(y, t) = — dsi
2m.s ~g;„s

We have changed the variable of integration from s+1
to s in the last integral. The integrals in these two ex-%e will carry out calculations for three dia'erent ex-

pressions for oo(i)), which are good approximations in ~ H. Bethe and W. Heitler, Proc. Roy. Soc. A146, 83 (1934).

which for a=0 is just the Bethe-Heitler result.
The expressions for orpi and prop are got from (10) and

It is convenient to introduce the new variable (13) and are,
y=ln(Ep/E) and write:
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small t, the integral spectrum defined by (11b) is quite
accurate for all t. We have

/0
1 p'+'"

11.(y, t) =
2m.

exp[sy —;1(s)t —lns].

Evaluation by the saddle point method gives

Frc. 1. The apl)roximate expressions for the radiative cross
section given hy Eqs. (12) are plotted as dotted lines and the
correct expressions for various energies in air as solid lines.

pressions are of exactly the same form and since for all

y)0 and t&0, sy 4(s)t h—as a more or less sharp
minimum on the real axis they can be evaluated by the
saddle point method. One gets

(5+&co

J 8—ioc

t&
s09 & + (&0)

(18)

where sp is de6ned by

[d+(s)/ds] ~.=..= yj
't.

Curves for various t are plotted in Fig. 2.' Before dis-
cussing them we will discuss briefly the accuracy of the
sadd1e-point method.

There are two indirect checks on this accuracy. If
one evaluates 7r»(y, t) by the saddle-point method it is
easy to show that the result is equivalent to replacing
(bt 1)! in th—e exact expression (14) by the first term
in its Stirling approximation, i.e, , by the expression
(2m)&e ~'(bt)'* ~' For bt=2, .1, 0.5, 0.25, the Stirling
approximation gives too low a value by 4, 8, 16, 31.
percent, respectively. Thus the saddle-point method
fails for small t, which is not surprizing, since for 1=0
there is no saddle-point at all. Since the behavior of the
integrand in all three expressions for ~o(y, t) is rather
similar, although the exact functional form is different,
one would suspect that if the saddle-point method is
adequate for F02(y, t) it will be adequate for the other
expressions. Moreover, one should have from the nor-
malization condition

IIo(y, 0) =e/(27r)l=1. 08. (20)

Thus there is only 8 percent inaccuracy even for 1=0.
For larger t the saddle-point method should be even
more accurate, for the reasons given above in connection
with the differential spectrum.

I et us now consider the differential spectrum plotted
in Fig. 2. We see that for small y, i.e., energies close
enough to the initial energy, xp3 is considerably greater
than xp~ or %pe. This is simply a reAection of the fact
that q»(v) drops off much more quickly for large v than
&ei(v) or &e2(v) and hence gives more weight to small

energy losses. For large y, e "mp is always small, of
course; moreover the values given by the three ex-
pressions differ widely from one another. This is because
large y corresponds to an electron which has low energy
and therefore probably emitted a quantum containing
an appreciable fraction of its energy. But we see from
Fig. 1 that for this case, i.e., for v close to unity, the
expressions for the radiation probability differ widely,
hence it is not surprising that the expressions in Fig. 2

should also differ widely for large y. The integral strag-
gling function is plotted in Fig. 3.

IV. STRAGGLING WITH COLLISION LOSS

In this section we will consider the straggling of an
electron which loses energy both by radiation and
ionization. We denote by 7&e(E, t) and IIe(E, t) the dif-
ferential and integral straggling functions. sre(E, t),
and its Mellin transform, which we call Me(s, t), satisfy
Eqs. (1) and (2). The boundary condition for one
electron of energy Ep at 3=0 is:

1 exp[spy —A(so)t lllspj
IIo(y, t) =

(2 )-: (-A "(")t+(1/")-'):

where y A'(so—)t (1/so)—=0.
We should have IIO(y, 0) =1. Putting t=0 in these

equations one gets

e "no(y, t)dy=1
Me(s, 0) =ED'.

If we make t.he substitution

(21)

and for the larger values of t this can be seen to be true
to a few percent from Fig. 2.

Even though for given y, the saddle-point method for
the differential spectrum becomes less accurate for

6 For making these calculations a useful table of the factorial
function and its derivatives is: Tracts for Computers Xo.
Eleanor Pairman, Tables of Eke Digamma and Trigamma I'unctions
((."ambridge University Press, London, 1919).

Me(s, t)=e «"'Y(s, t),

Eq. (4) becomes:

&)&V(s, t)
e &'&' —= —PstV(s —1, t),

(22)

where D(s) =;1(s—1)—A(s). The expressions for the
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functions D(s) corresponding to the expressions (13) for
the functions A(s) are:

Di(s) = —1/s, (24a)

Dp(s) =b ln(s+ a/s+ a+ 1), (24b)

Dp(s) = —4/3(s+1). (24c)

P(s, t)=g c (s)t",
n=p

(26)

in which we must have cp(s) = 1 to satisfy the boundary
condition. If we put (25) into (23) we get for P(s, t)

(Ep i BP(s, t)
——sP(s, t) = sP(s 1, t—)e '"— (27. )

Ep ) ag

If we now put (26) into (27) and successively equate the
coefficients of powers of t on either side of (27), we get
for coeKcients up to c4(s)

ci($) =0,

c,(s) = (P/2Ep)sD(s),

cp(s) = (P'/Eo'3') Us+2)D(s) —(s—1)D(s—1)j

(28a)

(28b)

We will be interested mainly in not very large t, as was
stated in the introduction. Now if we put I,=o in the
exponent of (23), the solution of the resulting equation,
remembering the boundary condition, which now reads
.V(s, 0) =Ep', is just (Ep—Pt)'. For non-vanishing t we
therefore look for a solution of (23) in the form

$(s, t) = (Ep pt)'P(—s, t), (25)

where P(s, t) is a power series in t with coefficients func-
tions of s, i.e.,

c (s) = —P/2Ep,

cp(s) = —(P'/3Ep') —(P/3!Eps),

(30a)

(30b)

cp(s) = — +
4EO' 12EO'-

Eo, under these conditions the term in 6 is small. If we
now compare (29) with (8) and remember that cp(s) = 1,
we see that the Grst and dominant term for pro(E, t) is
just the spectrum for straggling without collision loss in
which Ep is rePlaced by Ep Pt —Also. , the next term is of
order t' since ci(s) is zero. This result holds for any q (p).

In calculating higher order terms the coefBcients
c„(s) depend of course on the expression y(p) chosen for
the radiation cross section. Because of the rather
simpler form of D(s) for the functions ppi(p) and ppp(p),

the coefficients c (s) for these two functions are also
simpler than for the function ppp(p), and we shall confine
our attention from now on to the two former functions.
For thicknesses and energies for which the higher order
terms are not only small, but also negligible, the strag-
gling function corresponding to ppp(p) may be quite
useful, however, since it is an explicit formula, and the
two adjustable coefficients in ppp(p) enable one to 6t the
correct cross sections fairly well over a considerable
range of energies.

From Fig. 1 we see that ppi(p) is a rough approxima-
tion to the correct expressions for the radiation cross
section near the critical energy in the lightest elements,
i.e., around 10' ev and ppp(p) a fair approximation near
the critical energy in the heaviest elements, i.e., around
10' ev. The 6rst few coeKcients are, remembering
cp(s) = 1 and c,(s) =0

—(P/Ep3!) sD'(s) (28c)

p s+3 p s(D'(s)
c4(s) =— cp(s)+—-I +D(s)cp(s 1)-

Ep 4 EO4E, 3~

p' ( s 3l p+
I

--
I
— . (30c)

4!Eps Ls —1 s) 4!Eps'-

—.,(s—1) ~, (28d)

In the last equation we have, for simplicity, expressed
c4(s) in terms of cp(s) instead of expressing it directly
in terms of D(s)

If we reassemble Ms(s, t) using (22) and (25) we get
the general expression for mp

r

I
I

7rp(Ep, F, t)dE=
dE j. t'+'"

g
—A(s}t

Ep Pt 2Jlp4 p-pe''

f Ep Pti-
Xj —

[ ) P c.(s)t" )ds. (29)
I E )' E -O j

I
I I

I
t I
S l
I

0 l

We will see later that the series under the integral sign
converges quite well for small t and E close enough to

Pro. 2. Differential straggling functions for an electron that
loses energy by radiation only. The numbers attached to the
curves are thickness in radiation units. y=ln(E0/E).
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c2(s) = (2—P/3EO) (s/s+1),

2P'( s ) 8P s
~~(~)= ———

I 1+
9E(P ( s+I J 27 Eo (s+1)'

(31a)

(31b)

pi2 p2/3
~

Ilgwu(z, Eo, t) = lloyd(z, t)
2EO 3E02)

(Sp ~z
II„(z, ~)dz. (33)

31@0go

The integral in the last term in (33) is just an alternate
way of writing

1 p~'" expLzs —2 (s)t$
GS.

2&1 +$

Let us consider p~(z). Denoting the integral straggling
function for this case by IIs&(EO, E, t), introducing the
new variable s,

z = ln(Eg —pt/E),

and using the expressions (30) we see that up to terms
in t' we have:

meaning to this expression. Similarly, c4(s) contains a
term 1/(s —1) so that M(1, t) is also inhnite, and in
general the higher moments will diverge due to singu-
larities in the higher coeKcients c„(s). From the argu-
ment above we see, however, that these divergences
really come from energies near zero, so that if we use our
distribution function for energies sufFiciently greater
than zero, it converges and is probably correct. We
would like to emphasize, however, that we have not
provided a formal proof of this.

To illustrate the above points we have plotted in
Fig. 4 the effect of contributions of various powers of t
to the total function for t = 1 and E0=2P. One can see
that for large s the higher order terms become increas-
ingly important. There is however a considerable range
of energy of physical interest for which the terms up to
t' or even P give a good approximation to the total
result.

The remarks made above concerning the function
IIp& apply equally to the function IIp3 corresponding to
the radiation cross section p3(n). The integrals involved
can all be evaluated by the saddle-point method. Since
one can see directly the essential difference in the
numerical results for IIp& and IIp& by comparing their

Since a particle can be found at thickness 3 only if
Eo)pt, we see that the terms in parentheses in (33)
decrease quite rapidly for t not too large. It is the
integral in the last term in (33) (and similar integrals in
the expressions for the higher order c„(s)) that, as
stated previously, limit our solution to energies not too
far from the initial energy. This can be seen if we
remember that for large z, i.e., small E, IIO~(z, t) is

constant, so that the integral diverges. For values of E
for which the integral is small compared with the
dominant term, we assume that (33) is a correct ap-
proximate expression.

This limitation on the solution can be seen in another
way. From Eq. (2) we see that M(s, i) is the s'th
energy moment of the straggling function, i.e., M(1, t)
is the mean energy, M(2, t) the mean square energy,
etc. M(0, r) is the number of particles, i.e., the total
probability for a particle of any energy to be present at f.
Even for I (EO/P this will be less than one since a par-
ticle can e.g. , lose a large fraction of its energy in
emitting a hard quantum, and the remaining small
fraction by collision loss after a short distance, and so
disappear.

If we put s=p into the expression for M(s, t), we

get for terms up to P

pi2 (3 p2 p(3
M(0, t)=1-

2EO 3 E(l' 6EOS, (l

The last term is in6nite so that one can attach no

,S
/

I
I

~ 0

r /y /
I
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I

/ /
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I J

Fzo. 3. Integral straggling functions for an electron that loses
energy by radiation only. The numbers attached to the curves are
thicknesses in radiation units. y =ln(Eo/E).

*It may be however that the quadratic term is correct, since
one can derive it independently in the following way, due to
Professor Peierls. If we integrate Eq. (19) with respect to E from
0 to Ep one gets (using q1(v)),

arrq&(0, t)/at = —P~qI(0, t).
Now for small t we can get ~pI(0, t) by putting the value for t =0,
i.e., B(Eo—E), in the right-hand side of {19).This gives

B~pI(E t) p 1 E dv 1

Bt ~o1—v
'

1—v v Eo-E'
Therefore, xpI(0, t) =tjEp. Thus, using the first equation

ZIP I(0, t) =1—(Pt2j2EP).
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dominant terms (see Figs. 2 and 3) we have not com-

puted IIpa numericaHy any further.
[+=gp i

t' =I

V. DISCUSSION

The straggling function derived in the last section
does not describe completely what happens when a low

energy electron falls on matter, since it neglects the
electron pairs produced by the radiated photons, as well

as the Compton electrons. Ke shall not treat the latter
here, but discuss brie6y the e8ect of pair-production.

One can, of course, supplement the di8usion equation
(1) by terms that describe pair-production, thus getting
the ordinary shower equations, and again apply Mellin
transforms, but then a solution for the transformed
equations of the form found in the last section does not
seem possible. This form is

M (s, $) =e "&'&'(Eo—pt)'P(s, t),

where I'(s, t) is a power series in t It is a. mathematical
consequence of (34) that at thickness t a particle cannot
have energy greater than Eo Pt, and —that there can
be no electrons at thicknesses greater than Eo/p. These
statements are obviously correct physically when one
does not consider pair production, but not otherwise.
Kith pair production, electrons of any energy can in

principle be created at any thickness, since photons, of
course, do not suGer collision loss.

It seems clear that for small thicknesses, and for
energies E less than E0 pt, where —there is an appreci-
able probability for the original electron to be present,
the relative e6ect of pair production will be small,
except perhaps for very low energies where the strag-
gling function of the preceding section breaks down

anyway. This is made plausible, e.g., by the results of
Bhabha and Heitler. ' These authors consider the
solution of the general cascade equations when collision
loss is neglected. Their solution is written in the form
of a series, the terms of which contain integrals over
the straggling function. The nth term of their series
has the physical meaning that it corresponds to an
electron produced by n photon intermediaries. If one
looks at their graphs one sees, e.g. , that for 1=0.7,
E=Eoe ' the e8ect of photons is to increase the prob-
ability that a particle of energy greater than E is present
by about 30 percent. It is also true that the main eGect
from photons in Bhabha and Heitler's theory comes
from n= 1, a result we would also expect when collision
loss is taken into account.

Finally, some remarks on the evaluation of the
integrals in the higher order terms of the straggling
function may be helpful in practical computations.

~ H. J. Shabha and %.Heitler, Proc. Roy, Soc. 159, 432 (1937).

0
0 I8 Z LO 2 f'

FxG. 4. Illustrating the effect of including higher powers of t in
the integral straggling function IIp(EO, E, t), for ED=2', t = 1 and
y(e) =y1(v). The curve marked 0 corresponds to taking only the
constant term co(s) in the series (26), that marked P corresponds
to taking co(s)+cI(s)t', etc. Z=—ln(EO —pt/E). For E0=2p, t=1,
Z= lnP/E.

7(n+1, m, y, t)= ) I(n, m, y', t)dy',
0

I(n, m+1, y, f) = ~ e"'I(n, m, y', f)dy'
0

It is also possible to break the integrand in (36) into
partial fractions and evaluate each of the resulting
integrals separately. For a considerable range of values
of y and t however, it will be found possible to consider
s"(1+s) slowly varying and take it out from under the
integral sign, particularly since great accuracy is not
required in the higher order terms. With a few simple
considerations like these the evaluation of the higher
order terms can be effected quite quickly.

It is a pleasure to thank Professor R. E; Peierls for
several stimulating discussions and the United States
AEC for a post-doctoral research fellowship during the
tenure of which this work was done.

Integrals of the form

1 ~'+'" exp[ys —A (s)t]
ds= E(n, m, -y, t)—(35)

2si &g; s"(1+s)"

occur, where n and m are small integers. These can be
evaluated by the saddle-point method directly, but it is
often convenient to use the relations


