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On the Part Played by Scalar and Longitudinal Photons in Ordinary Electro-
magnetic Fields
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YVhen electromagnetic interactions are calculated directly by second-order perturbation calculus without
preceding separation of the Coulomb field from the transverse photon field by a canonical transformation,
it is fundamentally not allowed to take a state without photons as zero-order approximation. A more correct
zero-order approximation is determined, in which scalar and longitudinal photons are present in pairs. The
probability distribution over the numbers of pairs present is given by the Schrodinger functional Eq. (20);
these numbers are not limited. No transverse photons are present. The relativistic invariance of such a
zero-order approximation is proved.

This zero-order approximation is then used for the calculation of the self-energy of a free electron at rest,
of the Mgller matrix element for electron-electron scattering and of the Breit interaction energy between
electrons in an atom. Apart from mathematical ambiguities in the derivation of the self-energy, this leads
to the same results as can also be obtained by the usual separation of the Coulomb field from the trans-
verse photon field.

INTRODUCTION

N recent days, much use is being made of a formu-
- - lation of quantum electrodynamics, in which all four
components of the quantized potential four-vector are
treated more or less on an equal footing, ' instead of the
usual elimination of all but the transverse part of its
spatial components after a preceding separation of the
Coulomb field. Some discussion of the properties of the
longitudinal and the time-like (so-called "scalar") part
of the quantized potential can be found in old papers by
Pock and Podolsky. ' Also Pais used this field. ' An
advantage of this method lies in the fact that inter-
actions between charges can now be calculated by one
single second-order perturbation calculation.

In such calculations, one starts out from a zero-order
approximation with "no 6eld present. " It is usually
assumed that this "no field present" should then be
interpreted as "no photons present. "A close look at the
theory, however, shows immediately that a state with
no photons present even in the longitudinal and in the
"scalar" 6eld can never exist, as it is not only not
relativistically invariant, but even in contradiction to
the Lorentz condition. 4 Therefore, such state cannot
serve as a zero-order approximation. One might then
think that this procedure is completely impossible.

The purpose of this paper is to show how this method
still leads to correct results, if one simply uses a dif-
ferent zero-order approximation. This zero-order ap-
proximation is determined below. In the following
chapters it is shown, by examples, how it can be used.
It then leads to results familiar from the ordinary theory,
in which the Coulomb field and the transverse photon
field are dealt with separately. However, when applied

' J. Schwinger, Phys. Rev. 74, 1439 (1948), 75, 651 (1949); also
F. J. Dyson, Phys. Rev. 75, 486 (1949},(see his Eq. (16}).

'V. A. Fock and B. Podolsky, Physik. Zeits. Sowjetunion 1,
801 (1931);2, 275 (1932).

'A. Pais, Proc. Roy. Acad. Amsterdam (Verhandelingen, 1e
Sectie) 19, 5 (1947), in particular, pp. 44-45.

4 F. J. Belinfante, Phys. Rev. 75, 337 (1949).

girXg= dx {E'+(curlA)' —S'

+2S divA —24 divE }, (3)

'N = )tdx {p4 —j ~ A },

while the total momentum of the field is

(4)

P,= dx {(4~e)-i(E ~ V,A+Sr@)+(h/i)ktV, W }. (~)

We now introduce Jordan-Klein matrices for the
electromagnetic field in the usual way. This yields (with

s F. J. Belinfante, Physica 12, 1 (1946).' F. J. Belinfante, Physica 7, 765 (1940).

to self-energy questions, its results are not free from
mathematical ambiguities. (See the small letters under-
neath Eq. (40).)

9'e may start with a Lagrangian function

I.= (4x) ' {
i F"'F

p F"'7„A,+—-', S' S'7 A"}—
+Aj " hept(~—p ueV'„)—p, (1)

where the notation is the usual one. ' In the variational
principle

b~ dh~t dxdydzL=O,

the variables Pt, f, A„, and the antisymmetric tensor
F„(= F,„) are a—ll —to be varied independently, while
j" is an abbreviation for (—e)p"vi"p This .gives the
usual held equations of Fermi's quantum electro-
dynamics. ithout difIiculty one finds the pairs of
canonically conjugate variables (the magnetic field is a
derived variable' ); the commutation relations can be
written down, and the Hamiltonian is found to be, in
the usual three-dimensional vector notation, '

X=Xj+X +'VP,
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~~
and J standing for "longitudinal" and "transverse"): we use (6e) or

+=iQtg-k(hc/k) &bk* exp(ik ~ x)+conj. ,

A[/ iQ—& gk(hc/k)&akek' exp(ik ~ x)+conj. ,

(hcy '*

A, = ——Q p
~

—
~

c, „ek&exp(ik ~ x)+conj. ,
0& k ~=1, 20k)

5=0 ' Pk(hck)i(ak+bk~) exp(ik ~ x)+conj. ,

E~~='B
'

Qk(hck)'(ak+bk*)ek' exp(ik ~ x)+conj. ,

E~=D-tP Q (hck)'ck, „ek& exp(ik ~ x)+conj.
k ts=l, 2

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

divE=iQ & Pk(hck')t(ak+bk*) exp(ik ~ x)+conj. (11)

We multiply (9) and (10) by exp( —ik ~ x) and
integrate over x, thus picking out one Fourier com-
ponent. We thus find, from (9) with (6d),

(ak+bk*+a k*+b k)+0=0 (9a)

and, from (10) with (11),

(ak+ bk a—k b—k) +0—0 (10a)

Adding and subtracting, we obtain

Here, 0 is the volume of the fundamental cube; ak, bk,

ck, 1 and ck, ~ are annihilation operators and their con-
jugates are creation operators satisfying the usual com-
mutation relations such that

.Vk'= ak*ak, Xk ——bk*bk, and Xk „'——ck, ck . (7)

All have eigenvalues 0, 1, 2, 3, only. Further, ekt'

with p, =0, 1, 2 are three mutually perpendicular unit
vectors, with ek' ——k/k, where k= ~k~. Substituting the
expansions (6) into (3), one finds 3Cf=3C~+3C„with

3c~=Qk(tVk i'+.Vk, k'+ 1)hck,

3C„=pk(Vk —cVk')hck,

(8a)

(Sb)

S(x, y, s)% =0, (9)

IdivE —4np)C =0 (10)

on the Schrodinger state functional. It is well known
that these conditions cause difFiculties with the nor-
malization of the state functional + itself. ' We shall
meet these difFiculties as soon as we try to apply the
theory to specihc problems; but formally we can over-
come them there, although they sometimes lead to
ambiguity in the mathematics (compare Application 1).

The conditions (9)—(10) are also valid in interaction
representation, if 4' and S, E and p all are taken at one
and the same time.

In the applications, we shaH consider 'K of Eq. (4) as
a perturbation, and e as a small coupling constant. The
zero-order approximation 4'0 shall be an eigenfunction
of 3Cq+3C . (Here, X may or may not include some
c-number external electrostatic potential. ) The fgnction
40 shall also satisfy the conditions (9)—(10) with this
difI'erence, that in zero-order approximation we may
omit the term (—4m p) from Eq. (10). In the first term,

' F. J. Belinfante) Physica 12) 1'lt (1946).

while the part of the total momentum P depending on
the electromagnetic 6eld can be written in a similar

way with hck in Eqs. (8) replaced by hk
It is evident that the energy q-number (Sb) is not

positive dehnite. Only states of positive energy are ad-
mitted, however, if one imposes the usual auxihary
conditions

ak+0 bk +0)

bk+0= —ak*+o.

(12)

(13)

If we take the iVk and Xk' to be on diagonal form,
the Eqs. (12)—(13) give the dependence of 4'0 on these
numbers. Actually %0 can be considered as a product
of factors, each depending on the values of one pair
of numbers Sj,' and -Vk~ belonging to one wave vector
k only. Each such factor in +0 we shall expand in
simultaneous eigenfunctions y, n of .Vk and lVk'.

( ca ao

+0=
~

P P c„,„X„,„~
m=o n 0

(14)

We substitute (14) into (12)—(13),make use of (15), and
equate the coefficients of z 1, „on both sides of Kq.
(12), a,nd of x „ i in Eq. (13).This gives the following
recursion formulas for c

m'c, = —nlc i, ~ i (for m&~1, n~&0), (12a)

n&c„,„=—m'c„ i, i (for m &0, n & 1). (13a)

For m &~ 1, e & 1, both equations are valid. For m&n,
they have then only the zero solution

(16)c „=0, if m&e,

which is also correct, if m or e becomes zero. Thus,

( oo

.
) P c..x., .

~
' ) (17)

From (17) we see that 4'o is a superposition of states,
in which the numbers iVk and Xk' have the same value.
Considering (8b), we conclude that there are just as
many "longitudinal photons" with momentum kk and

Here, m and n stand for the eigenvalues of Xk' and Vk',
to which y „belongs.

We may choose the arbitrary phase factors in the
eigenfunctions )t „in such a way that the Jordan-Klein
matrices ak and bk are represented by

bkXm, n=~'*Xm, n 1)

a„*x„„=(m+1)')t~i, ; bk*X„,„=(n+1)*'X„„+i.(15b)
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c..=(—)" co, o, (19)

to= co, o Q (—)"X..
n=o

(2o)

The minus signs are due to the choice of the phase
factors in x„,„made in (15). The particular form (20)
of the Schrodinger functional, which in our zero-order
approximation (e= 0) followed directly from the Lorentz
condition (9)—(10), shows that in field free spa-ce pairs of
longitudinal and "scalar" photons certainly are present

For the rest, the wave function (20) cannot properly
be normalized, as the normalization integral reads

~co, o~' g 1 . .=divergent. (21)
n=o

As statt;d above, this fact is not surprising. v In applica-
tions of the theory, however, we shall see that, without
explicit use of the value of

~
co o~', we can always take

a factor X out of the result of our calculations and then
put this factor formally equal to unity, as if there were no
trouble with the normalization at all.

Ke thus shall assume that in zero-order approxima-
tion, in a space "with no field, " the numbers of scalar
and longitudinal photons present (as well as the relative
phases of the probability amplitudes for the diBerent
possible values of these numbers) are given by Eq. (20).
The numbers of transoerse photons we shall simply tahe as
zero in such a field free space. -

Before we proceed to the applications, it should be remarked
that the above de6nition of 6eld-free space is relativistically
invariant in our sero-order approximation (e=0). As far as the
scalar and longitudinal photons are concerned, this is obvious, as
(20) was derived in this approximation from (9)—(10), which are
equivalent with the one invariant condition

$(x, y, s, t}%'0=0 (with S=V,A") (22a)

in Heisenberg representation, or

S(x, y, o, t)4'oLo'j =4ofD(x x)j"'(x )da ' 4'ohio'j (2—2b)

in interaction representation. '

"S.T. Ma in a recent Letter to the Editor comes to similar
results. See Phys. Rev. TS, 535 (1949).

energy kck in the 6eld, as there are "scalar photons"
with momentum (—hk) and energy (—hk) and energy

(—hch). In other words, in 6eld-free space the longi-
tudinal and "scalar" photons occur in "pairs". Thus,
the value of X&1 is zero, and the M'lee of the total electro-
magnetic energy Xf becomes positive de6nite, even if
Kf is not positive definite as a q-number.

For m=n, Eqs. (12a)—(13a) give

c„,„=—c~ & „& (for n~&1),

so that

As far as the transverse photons are concerned, we have to prove
their absence in a moving coordinate system Ix'y'z't'I, if in

I xyst I no transverse photons are present, while at the same time
the Lorentz condition holds for the longitudinal and the scalar
held. It is sufIIcient to check this for an in6nitesimal Lorentz
transformation (x'=x—bx, x '=x —bx, with b= v/c).

We can consider thy total A, 4 held as a superposition of plane
waves A "(k) exp(ik„x"), with wave four-vectors k, k . The wave
equation for A" then gives' k'=&k. For such plane waves, the
Lorentz condition (22) imposed on +0 gives in zero-order ap-
proximation 8

k A+&(k)% 0=kpC( (k)0 0——&kC(+&(k)+p. (23)

Here, we denote by A„(+&(k) the part of A„(k) with "positive
frequency" k =+k {with a time factor exp(ikpx') =exp( —ikct)).
Then, its spatial components A'+'(k) contain only annihilation
operators. ' Our assumption of absence of transverse photons in
the unprimed coordinate system can therefore be expressed by' 4

Az(+&(k)%'0= 0. (24)

By A(+& =Az(+&+A& 1(+& and by (23), this gives

A(+&(k)% p ——Af1(+)(k)0 p ——kk k A(+&(k)+p= kk '4(+&(k) 4'p. (25)

In the primed coordinate system, by the infinitesimal Lorentz
transformations

A'= A —b4, k'= k—bk',

we obtain from (25) for the waves with positive frequencies,

A'(+&(k') +o=kk %(+&(k)+o—bC (+&(k)%'o= k'k '4(+) (k)+o, (25a)

where A'(+)(k'} is the coefBcient of exp{ik„'x")=exp(ik„x") in the
spatial components of the transformed potential four-vector. As
the operator in the right-hand member of (25a) is obviously
longitudinal in the new coordinate system, it follows from the
transverse part of (25a) that now

A~'(+&(k') 4'p =0,

which means that also in the moving (primed) coordinate system
no transverse photons are present.

This obviously means that our simple condition (24) in zero-
order approximation (e=O) is just as relativistically invariant as
Schwinger's condition 8,„(+&+p——0. On the other hand, our con-
dition tells a little more: While 8,„(+)4'0=0 is only a covariant
way of saying that in one particular Lorentz system (with time
axis along some given time-like unit four-vector n") no transverse
photons are present, we express here by (24)—(24a) that in zero-
order approximation in no I.orentz system at all there are transverse
photons in the field.

(Remark that a total absence of any kind of photons would
have corresponded to conditions A(+&4'0=0 with 4( &4'p=0, which
obviously would not have been relativistically covariant. More-
over, A(+& and 4( & do not commute with S, so that such con-
ditions would have been incompatible with (22).}

APPLICATION I. ELECTRON SELF-ENERGY

As a hrst application, we shall consider here the cal-
culation of the self-energy of a free electron at rest
(p=p) by means of second-order perturbation calculus,
using the zero-order approximation of the previous
chapter, and using % of Eq. (4) as a perturbation.
(The self-energy of a moving electron, p&0, could be
treated similarly. )

In 'N, we expand A and C by Eqs. (6a—c), while P
and ft in the factors p and j can be expanded similarly,

In Heisenberg representation, the "zero-order" approximation
e=0 is made in the 6rst step, where we use A"=0. In interaction
representation, we make the approximation e=0 in the next step
{23) by neglecting the right-hand member of (22b).
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(27)

As by Eq. (20), the number of photon pairs in the
initial state %0 is not definite, substitution of (20) into
(27) gives a sum over all possible values of all n's in the
factor 40 in (27) and a sum over all possible values of
all n"s in the factor +o*. As the numerator of (27) con-
tains only two factors %', each allowing for a change
of only one number .V&, ~V&~, or V&', there are only the
following nine kinds of terms in (27):

C.

D K.

H, I.

First, a transverse photon (—kk) is emitted and the elec-
tron takes the recoil (+5k}; then this photon is again ab-
sorbed and the electron comes to rest.
Similarly with longitudinal photons; that is, all numbers
N but the one N i, remain constant, and for that par-
ticular N k there are transitions y„, ~xn+1, n~xn, n.
A longitudinal photon with momentum (+8k) is first ab-
sorbed, then reappears: xn, n~xn i, n~x„,„.
Similarly with negative energy scalar photons:
~x, ,~1~x, . Here, it is N&' that increases by 1 in case D,
and N g' that decreases by 1 in case E, if the recoil is
always to be +hk.
First, a longitudinal photon with momentum (-Ak} is
emitted then a scalar photon with momentum (+hk) is
emitted while the electron comes again to rest: g, ~xn+&, n

~xn+1, n+l.
Similarly with absorptions of, first, a longitudinal photon.
+5k and, later, of a scalar photon (—hk}: xn, n~gn —i, n

~Xn 1, n—1.
These processes can also take place in the opposite order of
sequence, with the opposite momenta of the photons:
Xn, n gn, n +i~xn +1,n +l.

All these effects are to be taken into account. They all
have in common that the number of photons LVf,

' and
X~~ for only one value of k are affected; in cases A, 8,
E, F, I this k is opposite to the recoil of the electron
in units k, while in cases C, D, G, H this k
is equal to the momentum of the electron in the inter-
mediate state in units h. (These signs are important,
as they enter into the matrix elements through the
vectors e&' in Eq. (6b).) Therefore, we may consider the
summation over all numbers n and n' belonging to
other k as having been performed tacitly by putting the
corresponding normalization integrals X equal to 1
(compare Eq. (21)), and only a summation over one
set of values of n and of n' is left:

using Jordan-Wigner matrices for them. The matrix
elements of W' for emission or absorption of photons
under simultaneous transition of the electron to a
state of diBerent momentum then follow directly from
(15) and similar equations for the matrices c~ „and
c„„occurring in Eq. (6c). These matrix elements
should be used in the numerator of an expression of the
type

to one single term (re= @'=0), as +o is a state wit, bout
transverse photons. In the other terms, it reduces to a
single summation over n, with n'=n in cases 8, C, D
and E, with n'=n+1 in cases F and H, and with
n'=n —1 in cases G and I.

Not only the electron originally at rest can jump to
some intermediate positive energy state, but also a
negative energy electron can jump to any positive
energy state with exception of the one occupied. (This
corresponds to virtual creation of pairs. ) According to
Weisskopf, ' we subtract the self-energy of empty space.
This overcompensates the jumps from negative energy
states, as we now also subtract jumps from negative
energy states into the state of an electron at rest.
Therefore, we replace (28) by

W(p )PIP, (p )
W.,)g=g Q c ~c

n' n

~(gn ) i~i(gn)

j, l E;—E
(29)

(32)

Here, c stands now for c., „.In the first sum, (On} represents a
state with an electron with energy +mc'(p=O) and with n
photons (or pairs of photons) of the type that are emitted or
absorbed in the transitions. By i, we understand an intermediate
state with an odd number of photons present and with the electron
in some positive energy state. We may sum over both spin orien-
tations of the electron in this intermediate positive energy state
by Casimir's method, "using the operator A+ given by

A+=-,' I1~20 '(xP+0. k) I, (3o)
with

2o =+(K'+k') &. (31)
This A+ is to be written in the numerator between the two fac-
tors VP.

In the second sum in (29), the initial state (j n) is one with an
electron originally in some negative energy state j, say with
momentum k. Also n photons be present of the type that is of
interest. This type now has a momentum opposite to what it was
in the previous discussion of cases A to I. The intermediate state
l is one with the electron now in the positive energy state p=O,
but with an odd number of photons present. Again we use Casi-
mir's method, now for the summation over the spins in the states j .
This time, A should operate from the left on the first factor%
and from the right on the second factor'N. This is equivalent to
interchanging the factors% as far as their Dirac matrices are
concerned, and putting A in between afterwards.

In the denominators, E0—E;=kcI~—z —qkI and E;—Ef=
—kcIz+ft+qkI, where g=+1 in case of creation of a vector
photon or absorption of a scalar photon in the first transition
(cases A, B, K, F, and I), while g= —1 in the other cases (D, C,
G, and H).

With due care for th.|:plus and minus signs, we thus
finally obtain, replacing fl ' Pz by (2n.) 'J'dk:

VV" „P@;nPPge', '*c.,
s n n'

(28)

In the terms A, this summation over n and n' reduces

'V. F. Weisskopf, Phys. Rev. 56, 72 (1939), and A. Pais
(reference 3'), in particular, p. 25.

'0 H. B. G. Casimir, Helv. Phys. Acta 6, 287 (1933}, or
W. Heitler, The Quantum Theory of Eacbation (Clarendon Press,
Oxford, 1936) in particular, pp. 84—87 and pp. 149—153.
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with the following contributions to f(k) from the various

processes A-I:

(a ~ e &A)A+(a ~ e &~)

fA(k)= Q
I7,=1, 2

(a ~ e,A) A (»-~ e,A)

+ (33A)
K+'N+ k Av

integration over k in (32), we may replace:

by
(a ~ e)A+(a ~ e) by

A+(a ~ ep') = —A+(a ~ e &') by
(a ~ ez )A+= —(a ~ e z )A+ by

—,
' ~ A/2w,

'

g W A/2w,
(34)+k/2w,

'

After these substitutions, we put k= K sinhs, m = K coshS,
w& k = A exp(& s), and

00 (a ~ e .)A+(a ~ e ")
fs(k) = Q c„~c„(n+1)

n=o

dk/4s-"kw = (A/x. )) sinhzds.

As the resulting integral over s diverges, we cut it oR'

+
'e" ' "

] (&&B)
at some maximum value M for s. By s=inj(k+w)/x},
we may call

(a ~ eA') A+(a ~ eA")
f,(k) = g c„*c.n

n=l

(a e-k')A (a'e-")1
+ (33C)

p+ po
M=ln

tsc

where P is the maximum momentum and CP' is the
maximum energy of the electron or of the positon in
the intermediate state. Thus, one finds easily for the
transverse self-energy derived from f~(k):

fn(k) = P c„*c„(n+1)
n=o

$+ A g2~ ~C2 fI72 P+ PO+, (33D) W„=—(M ——,'+-', e—"-")~—' — ln
K—Z+k K+Z —k Av 2x 2~ hc mc

(36)

fE(k) = Q c„~c„n
n 1

+—
K—'N —k K+R'+ k

and for the static self-energy derived from the other
(33E) terms B to I:

e K

Qo A+(a ~ e g')
fp(k) = Q c„+,*c.(n,+1)—

0 K —w —k

(a ~ ek0),&+- —''—~, (33F)
K+K+I Av

W.A

———Q ~
c„~ '-(n+1) (-', e'"'+4M —1+-',e--'"')

4x

+ P }c„}'n(-',e'"' —4M —1+-,'e "')
n=l

fo(k)= Q c, ,*c„n
n=l

, (33G)
K+R' —k Av

A+(a ~ ek") (a ~ e g')A-—+
K —'N+ k

„c)*+(c+nI)+ P c„(*c„n
n=o n~l

2e™—]+—e—'-'" (37)
00 (a ~ ekn) h+

fn(k) = P c„+i*c„(n+I)
n=o K —to+k

A
—(a ~ e ),')

+— —,(33H)
K+Zo —k

(a ~ e k')A+ A (a ~ eg')
f)(k) = g c„,*c„n —— +- (331)

n= 1 K—c8 k K+K'+ k Av

Into these expressions we substitute (30) for A+. In
the state 0 of the electron at rest, we take the expecta-
tion value j }A, of the products of Dirac matrices thus
appearing in the above expressions. %e may use here

j a}A 0 j a aj»A}A 0, jP}A,= 1. Thus, by e&" ~ e~"'
=8»', j k&(e~')=0, and omitting terms odd in

}
ek")&ek"'], which will vanish anyhow after the later

The two summations from 1 to ~ can now be changed
into summations from 0 to ~ because of the factor n.
Thus, we may write

8K
W„,=—M P }c„~"-

7r n=o

+—sinh'M Q j } c. j
'-(2n+ I)

2x n=o

+c +g*c.(n+ I)+c„,*c„n}. (38)

Cn+1 Cn Cn —1 Cn Cn
~

(39)

In the last expression, we shall now make use of
Eq. (18), by putting
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Thus, the last sum in Eq. (38) vanishes, and a quadratic
divergence (proportional to P') is avoided. Also putting
the sum in the 6rst term of (38) formally equal to unity
(compare Eq. (21)), we find the well-known result'

mc' e' P+P'
% lf

——Kt,+W, t,
=——.— 3 ln

2x' Ac SK
(40)

e-K—.{e2M—8M —2)
8m.

(42)

ivould have been added to the static self-energy.
If both {41)and (42) would be added to (38)-(40), one would find

Wst' ——0; W if'=Wt, . (43)

All this shows that calculations based on perturbation theory
~vithout a preceding separation of Coulomb field and photon field
are rather dangerous, if the auxiliary condition is taken seriously
as a condition imposed on the state-vector %.

When we compare the above calculation with the usual type
of perturbation calculations, then we remark mainly the following
differences:

(I) The zero-order approximation is here no longer one with
Cn =~no.

(II) There are many more intermediate states to be taken into
account, and there are processes F, G, H, I, in which a
pair of photons is created or annihilated.

(III) The scalar photons in the intermediate states have nega-
tive energy, and enter with such energy in the resonance
denominators.

If incorrectly 4 0 would have been taken to be a state without
photons, so that no use would have been made of (I) and (II),
then the calculation would lead to an erroneous result, in which
the static and the total self-energy would become quadratically
divergent.

If at the same time the scalar photons are taken with the wrong
energy sign in the resonance denominators, then the static self-
energy becomes again logarithmically divergent, but one ~vould

wrongly find (e'~/2n)( —M —~~+pe~") for it. Added to (36), this
would give a finite total self-energy.

An interesting result is obtained, if beside these two mistakes
ve make a third error in the derivation of the self-energy, by
taking the contributions from the processes D with the wrong
sign. These three combined mistakes would change f(k) into

(a a+a —A+ a.t a —A g
I. K

—w —0 s+w+k )av

This all seems quite satisfactory, but it should be pointed out
that the mathematical method used is ambiguous because of the
divergence of the summations over n. Indeed, one might well

have preferred to call the summation index n in the processes G
and I rather (n+1), with the new n summed at once from 0 to ~
without need of adding a zero term. This would make fG and fI
nicely the conjugates of fH and fF. It would have changed the
c„ i*c„n in the last term of (38) into c„*c„+1(n+1).Then, after
application of (39), we would find that a term

ex . ex mc e P+P' 'l——sir h2M~ —(2—e») =—.— 2— (41)
2m 8m 8x kc mc J

would have been added to the self-energy, thus making the latter
negative and quadratically divergent.

Similarly, we could have written (n+1) for n in the processes
C and E. This would change ~c„~'tt into ~c„+q~'(n +)tin Eq.
{37).For this, we could have written ~c„~'(n+1) again by Eq.
(18), so that we would find that this time a positive and quad-
ratically divergent term

Thus, the self-energy would become

dk, a"4+0.y e"A n)t
self

4m k a—m —k ~+Mi+k Av
(45)

This expression, which leads again exactly to (40), was guessed
in a recent paper by Feynman" as a relativistic generalization of
the expression for the transverse self-energy. {Compare (44} with
(33A).) It was derived by French and Weisskopf directly from
a calculation of the self-energy, in which Coulomb field and
photon field were treated independently, so that their zero-order
approximation (without transverse photons) was correct anyhow.
It would be interesting to know, on ground of what symmetry
properties of the theory the above three errors here compensate
each other completely.

APPLICATION 2. ELECTRON-ELECTRON
SCATTERING

As a second application, we shall calculate the matrix
element for scattering of free electrons by free electrons.
Let Ski and kk2 be the original momenta of two col-
liding electrons, and hki' and kk2' their momenta after
scattering. The matrix element for this process is then
given by

(kt'k, 'e'(w
~

kt'k, i)(kt'k, s
~

m
(
ktk, n)

Z 2 2 c"*c.
s n n'

+Sym —Exch. (46)

Here, Sym means the terms obtained by complete
interchanging of the two electrons, while Exch stands
for the exchange terms, " in which the k1 and k2 are
interchanged, but not the k1' and k~'. Because of the
conservation of energy, Eo is the Anal as well as the
initial energy. Denoting the energies of the single
electrons by hce, we have in the terms written out in

(46),
Ep E,=hc(et e—i' —iik), —

where g has the same meaning as in the text between
Eqs. (31) and (32), while Iik is the magnitude of the
momentum of the photon involved.

In the terms written out in (46), we shall put

k= k1' —k1= kg —k2'.

(In the exchange terms, therefore, k=ki' —ks.) The
contributions of the various processes A—I to (46) give
now:

27re' (e i," ~ ap)(e „~ ~ a,)
(A) Q — —+Sym

Qk ~=1, '-'
1

61 &1

—Exch. (47)

"R.P. Feynman, Phys. Rev. 74, 1430 (1948); Eq. (3).
'2 J. B. French and V. F. Keisskopf, Phys. Rev. 75, 1240 (1949).
"Compare J. R. Oppenheimer, Phys. Rev. 32, 361 (1928) and

N. F. Mott, Proc. Roy. Soc. A125, 222 (1929). These exchange
terms result from the fact that the two steps of the process may
be just as well transitions ko~kl' and kl~k2'. The minus sign
comes in through the rules of second quantization {meaning of
the Jordan-signer matrices as operators),

Here, e1 means the matrix element of e between the
spin factors of the plane waves corresponding. g to k1
and ki', respectively. (In the exchange terms this
would be between ks and ki'. )
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(B) and (C)
2x'e (n+1)(e g' ~ n2)(e g' ~ ni)

Crt Crt

(n+ 1)IgIi nIgIi
c.*c + —+Sym

&1 61 +k &1 61

—Exch. (49)

Qk 6i—6y —k

n, (ek' ~ n2) (eg' ~ n, )+ +Sym —Exch. (48)
61 6l, +k

(D) and (E)
2X'8

62 =Ey 6]=say &.
I (5o)

(In the exchange terms, therefore, e= ei' —e&.) Taking
the "Sym"-terms together with the others, we obtain

Here, Ij stands for the matrix elements of the unit
operator between the spin functions.

The processes F, 6, H, I here lead to terms odd in
the vector k, and therefore vanish by integration of k
over angles.

The terms "Sym" are difI'erent from the ones written
down by the sign of the energy difference e—e' in the
denominators, as by the conservation of energy

L P (e ~" ~ n~)(e ~" ~ ni)++le„l'}(e k' ~ n2)(e ~' ~ ni) —I,I, }7
—Exch. (51)

For the dependency of the situation function on the
numbers of photons, we have used up to here Eq. (17)
only. By the normalization prescription P„lc„l'=1
alone, and without any use of Eqs. (18)—(20), this time
we can conclude that the matrix element for scattering
is given by

4m-t'. 0;2 ~ eg —IgIg —Exch, (52)

which is exactly Manlier's expression for this matrix
element '4

The above considerations are easily generalized to
the case of a collision between one free electron and one
electron bound in an atom. From this matrix element,
M jller" and Bethe" have calculated cross sections for
electron scattering, which were verified experimentally
by Champion. "

"C. Mgller, Zeits. f. Physik 70, 786 (1931)."C. Mgller, Ann. d. Physik 14, 531 (1932).See also W. Heisen-
berg, Ann. d. Physik 13, 430 (1932) for a correction to Mufller's
erst paper (reference 14)."H. Bethe, Zeits. f. Physik 76, 293 (1932).

'~ F. C. Champion, Proc. Roy. Soc. A137, 688 (1932).

APPLICATION 3. BREIT INTERACTION ENERGY

As a third application, we shall calculate the inter-
action energy of two electrons in two stationary states
a and b in an atom. For this purpose we perform a
second-order perturbation calculation with & from
Eq. (4), and subtract first the second-order perturbation
energy for empty space. Indicating by (ilnl j) a con-
tribution to the perturbation energy for a transition, in
which an electron jumps from a state j into a state i, we
obtain in this way, in symbolic notation (omitting
resonance denominators and summation signs and not
yet specifying numbers of photons),

(olnl a)(blnlb)+(blnl &)(o Inl o)
+(olnl p~)(»lnlo)+(&ln p.)(p. lnlb)

+(Nlnl p.~)(p.~f nl N) —(N nlP)(Plnl N) (53)

Here, the second factor of each product refers to the
first transition; P and N denote arbitrary states of
positive and negative energy, respectively, over which
we later will have to sum; subscripts a or b mean states
to be excluded from such summations.

From (53) we must subtract the self-energies of the
two single electrons in states a and b, respectively
(compare Eq. (29)):

(alnlp)(p fnl a) —(Nlnl o)(olnl N)

+(&lnlp)(plnl&) —(Nlnlb)(&lnlN) (54)

The difference between (53) and (54) gives the actual
interaction energy:

(o lnl a) (& I nl b)+(t I nl b)(ol nl ~)
—(olnlb)(blnl o)—(&lnl a)(olnl t'), (55)

which includes ordinary as well as exchange interaction"
and can be written as the expectation value in the
unperturbed state

0'~b(1& 2) =2 Iq, (1)q g(2) —@p(1)@,(2) } (56)

of an operator of the type

~(1,2) =n(1)n(2)+n(2)n(1) (57)

in the symbolic notation used in (53)—(55). ln order to
calculate here the exact meaning of the symbol n(1)n(2),
we have to make use of the proper matrix elements for
the various photon processes A to I accompanying the
transitions of the electron, and to write the corre-
sponding energy differences in the denominators.

Whatever these photon processes are, we shy, ll first
write out here only contributions from electron proc-
esses that in the above symbolic notation would have
been written as

(finla)(glnl&)+(glnl&)(jlnl o),
' The above derivation of the interaction between two electrons

was also suggested by Feynman (reference 11). It is dificult to
obtain the exchange interaction by a procedure similar to that
used by us in the previous chapter, as intermediate states with
both electrons in the same state are naturally excluded.
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where f and g stand for a and k or for 7) and u. By n~

we shall denote here the matrix element

(g {
ee+'*{b) = dxyr~e+ *e@b,

and by nx we denote (f{ae +'*~ a). Similarly, I& stands
for (g{e' *{5),etc. Further, we write e,' —e) or e for
the energy difference E,—E~=E.—Ef in units kc.
Kith this notation, the contributions from the various
photon processes with one given k are given exactly by
(47)—(49), where Sym interchanges the subscripts 1
and 2 (with ex —xx'=e according to Eq. (50)), and
where "—Exch" reminds of the fact that the terms with
f= b, g= a are to be subtracted from the terms with
f=u, g=b (Th. e processes F, G, H, I again give con-
tributions odd in k and therefore may be omitted. )
Hence, we may proceed at once to Eqs. (51)—(52) with
the new meaning of the sepmlos. %e still have to sum
this over k.

From here we follow the usual procedure. "The Dirac
equations for @& and @, give i div(@, —ag&) = @,Pb,
similarly for p, and pf. Thence,

cg= cly
&

k 0!g= 6Fg. (58)

Substituting e x'= —k/k and (58) into (51), equating
the "normalization integral" (21) to unity, and sum-

ming over h, we get for the interaction energy

T (ex& ~ ng)(ex" ~ a))

W=—' I'dk
"="

2~& J

—Exch. (59)

This corresponds to the expression (55), and therefore
is equal to the expectation value in the state (56) of the
operator

e' p d.k
~(1 2) — ef1K lx(1) —x(2) )

2~» k~

&& {1—2 (ex" ' e(2))(ex" e(n) } (60)
p,=l, 2

corresponding to (57). Here, we made use of the defini-
tions of 0.~, 0.~, I~, I~. %e also have replaced here e' —k'

"H. Bethe and E. Fermi, Zeits. f. Physik 77, 296 (1932}.

in the first denominator of (59) by the slightly different

(—k'), thus neglecting the retardation in the transverse
interaction. (In the other terms, it was properly taken
into account. ) We shall further write x~ for x(1), e. for
e(2), etc. Also, we put x~—xx ——r. By

and

]{dkk ' exp(fk ~ r) =2m'/r (61)

= —(e, ~ ~) (a& ~ ~)(—x'r), (62)

we can write (60) then in the form

W(1, 2) =
I (e'/r) (1—a) ~ ex)+ (e'/2) (e~ ~ p) (ex ~ ~)r }

= (e'/r) {1——',e) ~ ax ——',r-'(e) ~ r) (ex ~ r) }, (63)

which is familiar as Breit's expression for the electron
interaction energy. '

DISCUSSION

e notice that in Applications 2 and 3, where the
terms corresponding to creation or annihilation of
photon pairs dropped out for reasons of symmetry, we
finally made use of only the properties (16)—(17) of 4'o.
This explains how one can get the correct M5)ilier and
Breit interactions even when wrongly assuming that in
zero-order approximation no longitudinal or scalar
photons would be present.

In the first application, however, we found that a
wrong zero-order approximation definitely leads to an
incorrect result, unless one makes two more "mistakes"
in order to compensate this first one. On the other hand,
with use of the "correct" zero-order approximation
consistent with this kind of quantum electrodynamics,
the "correct" infinite result for the electromagnetic
self-energy of an electron is obtained only as one pos-
sible result among many other possibilities, since the
procedure of iInposing an auxiliary condition on the
situation functional leads, through the method of
"normalization" of such situation functional, to mathe-
matical ambiguities.

~ G. Breit, Phys. Rev. 34, 553 (1929};36, 383 (1930);39, 616
(1932}.


