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The theory of multiple scattering of charged particles has been
extended in the small-angle approximation valid for thin foils and
fast particles. The extension consists of an exact solution of the
integral diffusion equation for the correlated probabilities of lateral
and angular displacements, and the numerical integration of the
resulting expression for the angular distribution. The projection of
the scattering on a plane has been used for simplicity. The results
are expressed in terms of dimensionless variables g/go and z/X
representing respectively the deflection angle in terms of a small
unit determined by the screening, and the foil thickness in terms

of the mean free path for scattering. Numerical calculations for
values of z/P from 100 to 84,000, and for an adequate range of
g/go, have been carried out, and tables have been made available.
Curves are presented for a few values of z/X. The matching is
shown between the approximately Gaussian result for small angles
and the Rutherford single scattering result valid for large angles.
The deviations of the new results from each of these limiting values
is quite large over a wide range of angle. An explicit asymptotic
formula for large g is given, showing correction terms to the single
scattering formula.

1. INTRODUCTION

'HE theory of the multiple scattering of charged
particles has been treated by several authors. ' In

the present paper the work of these authors has been
extended in certain directions at the expense of sim-

plifying assumptions. The major simplifying assumption
is that the scattering angle is small; this assumption
limits the validity of the results obtained to high energy
particles and thin scattering foils, and entails the com-

plete disregard of back scattering and re-entrant par-
ticles. The second simplifying assumption is that the
scattering cross section is given by the Born approxima-
tion for a potential 6eld of the form V= (zz /r)exp( —r/a),
the exponential factor representing the screening eBect.
Energy loss by the particles is neglected. The calcula-
tions also have been simplified by taking the projection
of the scattering distribution on a fixed plane.

The main objective of this investigation was to de-
termine precisely the manner in which the large angle
Rutherford scattering fits on to the small angle highly
multiple scattering. We have as a by-product of this
investigation obtained accurate angular distributions
for the scattered particles for a large number of foil
thicknesses. In addition, for large scattering angles an
approximate expression was found for the scattering
distribution which gives good results when the actual
distribution divers from the Rutherford distribution by
less than 20 percent.

2. THE DIFFUSION EQUATION

represent the probability that a particle initially
traveling along the s-axis at x=0, pass through the area
dxdy at the point (x, y, z), traveling in a direction de-
termined by q to g+dg and e to &+de. q and e are re-
spectively the angles made with the s-axis by the pro-
jections of the track in the xs and ys planes. This
function satisfies a well-known diGusion equation,
written here with the small angle approximation 2
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where 8= ((q —q')'+ (z—z')')& signifies an angle of single
scattering, o (8) is the single scattering cross section per
unit solid angle and V is the density of scattering centers.

Forming

W(g~ xI z) = dzdgW(gi z~ x~ yl z)
J „

we find that
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Since Rutherford scattering is predominantly forward,
we assume that the incident direction of the particle is
the s-direction, that the foil is perpendicular to the
s-axis, and that the total angular deviation of the scat-
tered particle is sufIiciently small so that we may approxi-
mate cos8 by 1 and sin8 by 8.Let W(g, z, x, y I z)dgdzdxdy

where

X {W(g', x
I z) —W(g, x

I
z) }dg' (3)

~"..(n)= " ~((n'+")')«

The function W(g, x}z) is the distribution function for
the projection of the scattering on the xs plane. Equa-*Work done at the Brookhaven National Laboratory under

contract with AEC.**Now at Smith College, Northampton, Massachusetts.' E. J. Williams, Proc. Roy. Soc. 169, S31 (1939);S. Goudsmi
and J. L, Saunderson, Phys. Rev. 57, 24 {1940);58, 36 {1940).

2 W. T. Scott, Phys. Rev. 75, 212 {1949)and references 2, 3, and
4 of that paper. Note the different notation in this paper.
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tion (3) can also be written
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3. THE CROSS SECTION AND q(s)

If we use the potential of the form V=(ze'/r)
Xexp( —r/a) we find that the differential scattering
cross section per unit solid angle becomes

S2S"e4
)W(g', x!z)—W(g, x!z)!p(g —g')dg' (5) a(g)=

p'c'(E 1/E—)'[sin'S/2+(go/2)']'-

where p(p)dq is the probability that a particle will be
scattered in a single scattering into a range between q
and q+dq, and ) is the mean free path for scattering
with'

f
oo

—=S o„.; (q)d. g, and p(q)=SXo„,.;.(g). (6)

in which
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The solution of Eq. (5) corresponding to the boundary
condition that

W(q, x)z)=8(x)8(g), when z=o

In the above equations E is the total energy of the
charged particle, measured in units of its rest mass, p, is
its rest mass, and s'e is its charge. The constant a, the
screening radius, may be given its conventional value

1s
(12)a=ao/z&= 'h/m 'e&zt'00 00

W(g, x!z) =- ds dt
4~' "

h(s+tz) h(s)—
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p'c4(E 1/E)'goo— (13)
in which

in which up is the Bohr radius of hydrogen.
Using the value of a(8) given by (10) we find for X the

value
7

and

h(s) = [1—q(s) jds
40

q(s)=)l e'~'p(g)dg.

(8)

Thus

$0
p(n) =

2(n'+no')'

and for the projected scattering probability

(14)

This solution was obtained by applying a Laplace
transform in s and Fourier transforms in x and q to
Eq. (5), solving the resulting first-order ordinary difier-
ential equation, and then evaluating the inverse Laplace
transform. Equation (7) is easily checked by substitu-
tion into (5).

Integrating (8) with respect to x we obtain the angu-
lar distribution

W(~)z)=~I W(&, x)z)dx
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' This use of the symbol X must not be confused with that in the
paper of reference 2.
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By observing the form of (15) and of (9) one sees that

W(g! z) is a function of q/go and z/X so that measuring

4 atson, Besse/ Functions (1945), pp. 80, &&2.

In Eq. (15) Ei is the modified Bessel function of the
first kind. ' The power series expansion for q(s) —1 is

)
(sSo)')

q(s) —1= in! —!+0.0772157
!

(sgo) f sgo t+- in] —
!-O.6727843".
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IO Using the value of q(s) —1 given by the first term of (16)
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Fro. 1. Plot of W(y~800') and ~W{y/2~200) to show the e8ect of
changing the screening radius by a factor two. p represents the
angle in units of q0.

s in units of X, and g in units of gp, then the functions
W(if Is) have a universal form in which s becomes the
average number of collisions which the particle under-
goes in passing through the foil. This result amounts to
setting X=op=1 in the various formulas, which will be
done in the rest of this paper. It should be noted that a
change in rfs requires a renormalization of W(r)

I
s).

W(r)
I
s) = s/2tf'[1+6s/tf'(1nrf —0.8840)

+45s'-'/rf'I (lnif+0. 616)-'

—3.852(lnt)+0. 616)+3.334I+ . 7. (21)

4. AN APPROXIMATION FOR W(n~z)

It has been pointed out many times that for suS.-
ciently large angles the distribution function in the case
of Rutherford scattering should approach the single
scattering law multiplied by the average number of
times the particle has been scattered. That is,

2
Z=IOO

IO

l Za 84000
5

W(r)
I s)—s/2tf', for large tf. (17)

%e resow verify this result, and in addition obtain cor-
rection terms to (17).Deforming the path of integration
in Eq. (9) to the imaginary axis we may write
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FIG. 2. Semi-logarithmic graphs of W(q ~
z) for z = j.00 and 84000.

+s /2 [q(if)) —11i+si/6 Iq(it) —I I i+ 71 . (18) (z in units of the mean free path for scattering) (z)&W is plotted as
a function of &=y/(z)&.
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TAsLK I. W(q~z) as a function. of g for. =100.
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FIG. 3. I.inear graphs of z(W)& against ( for z= 100,
1500, and 84,000.

numerical integrations. The values of W(g~s) for other
values of s were computed by means of the formula

1V(g~sl+s.)=Jt W(r/~si)w(r) g'~s—g)dg'. (23)

200
105
210
125

120
125
130
135

63.92
53.78
45.96
39.60

34.38
30.04
26.42
23.36

20.76

250
260
270
280

290
300
310
320

330

3.349
2.968
2.643
2.364

2.123
1.913
1.731
1.571

1.430

In Eq. (21) we have neglected terms of order 1/s as
compared to unity as we used only the 6rst term in
series (16).Comparison of the results given by (21) with
values obtained by the numerical integra, tion of Eq. (9)
shows that (21) gives accurate results provided

Once one has obtained a table of values of W(g
~
s) for a

particular s=si, then W(q~ s) may be computed for
s=2si, 3si, 4si. with about one-thirtieth of the labor
that is required in the use of Eq. (9). The distribution
functions as given in the tables should be accurate to
better than 1 percent. The major uncertainty in the
values arises from the fact that with repeated applica-
tion of (23) the errors accumulate. The above estimate
of the accuracy is supported by the fact that the areas

foo

under the curves, J W(q~s)dg, as computed numer-

ically, were in all cases in error by less than 1 percent.

TAsI.E II. W(g
~
z) as a function of g for z=1500.

6s/iP(lng —0.8840) (0.2. (22)

However, when the expression (22) is larger than 0.3 the
errors in (21) are quite large.

S. NUMERICAL CALCULATIONS

The values of W(g j s) were calculated for small values
of g by numerical integration of Eq. (9). The power
series for q(s) —1 given by Eq. (16) was used for its
calculation. For large values of g the approximate
formula (21) was used. The numerical integration of (9)
to give W(g~s) was done for s=100, 1500, 3000 and
9000. The major difhculty with the use of (9) for
numerical work is that the factor cos(gs) oscillates very
rapidly for large values of p with the consequence that
very high accuracy is required for the integrand in order
that reasonable accuracy is obtained in the 6nal results.
In fact q(s) —1 had to be computed up to ten significant
figures in order that the value of W(g, s) would be accu-
rate to three significant figures at the place where the
approximate formula (21) overlapped the results of the
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TABLE III. Witt
~
z} as a function of tt for z = 84,000.

S'(g
~
84,000) )& 106

523.0
504.4
45).7
374.7

800
1000
1200
1400

289.9
210.5
144.1
93.23

1600
1800
2000
2200

58.03
35.33
21.36
13.05

6. EFFECTS OF CHANGE IN SCREENING RADIUS

The precise value which should be used for the screen-
ing radius, a, is not known, although it may be estimated
by using Eq. (12). The value of the screening radius as
given by (12) should be accurate to within ten percent.
In addition, the precise manner in which Rutherford
cross section should be cut ofF at small angles is not
known. In Fig. 1 we show some results of changing the
screening radius by a factor of two, thus changing po by
two and It by four. The dashed curve is -', WL(rf/2)

~
200]

and the solid curve is W(tf
~
800). The dashed curve thus

shows the angular distribution for the same physical
angles, the same particle energy and foil thickness but
with one quarter the total cross section of the solid
curve. For g= 0 the difFerence between these functions is

only seven percent. The maximum diGerence is about
thirty percent. At greater foil thickness the difFerence
between these functions would have been even smaller.
Since the total cross section as determined by (12) may
be reasonably assumed to be in error by less than 20
percent we felt quite confident that the functions
W(rf

~
z) as computed by this method are, for z) 100, in

error by less than two percent as a result of uncertainties
in the screening efFect.
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FIG. 4. Logarithmic graphs of z(W)& against z for
eight values of ~~= q/(z)&.

7. TABLES AND GRAPHS

1/7 =9 86X 10 ."V(mt/f)z zz'/(E I/E)'t—ftt cm '

The tables and graphs make use of the following
measures of angle and thickness:

1. The angle q which is the angle of scattering pro-
jected on a plane containing the incident direction is
measured in units tfs. From Eqs. (11) and (12) we have
tfs=(m/tu)zf/137(E' —1)& radians. In this formula m is
the mass of the electron, p, the mass of the incident
particle, z the charge of the scattering nucleus and E the
energy of this incident particle, including its rest energy,
in units pc'.

2. The thickness z of the scattering foil is measured
in units of the mean free path It given by Eq. (13):

2400
2600
2800
3000

8.228
5.433
3.765
2.725

.03

3200
3400
3600
3800

2.053
1.599
1.278
1.039 foo)

4000
4200
4400
4600

0.8611
0.7221
0.6132
0.5245

0.4544
0.3965
0.3482
0.3075

iOI

OO

&fBAUSSIAN

50 75

0.2730 FIG. 5. Linear graphs of W(q~ 100) and the Gaussian curve
W= (1/1151~)&exp( —P/1151) as functions of g.
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F)G. 6. Semi-logarithmic graphs of W(q~ 100), the Gaussian curve of Fig. 5, and the single scattering
approximation W 50/g', as functions of g.

Here .V is the number of atoms per cc in the scattering
foil and z'e the charge of the incident particle.

We give in Tables I to III values of W(i»
~
s) for three

sample values of z: 100, 1500, 84000. Figure 2 gives
logarithmic graphs for s= 100 and s=84000; (s)»W is
here plotted as a function of g=r»/(s)» to show the
similarity between the two curves with this method of
plotting. ' This similarity is of course already revealed in
Fig. 1. Figure 3 shows the upper part of the curves for
the three values of z above, on a linear scale, with the
same variables plotted. Neither method of plotting is
useful for interpolation. Ke give in Fig. 4 graphs of
(s)»W against s for eight values of $= i»/(s)», which are
more practicable for interpolation. These curves also
serve to indicate the accuracy of the calculations, since
they are smooth to within 2 percent or better. Complete
tables for twenty-nine values of z from 100 to 84000 are
available elsewhere. '

The relation of the new results to the Gaussian ap-
proximation is shown in Figs. 5 and 6, for z=100. For
the Gaussian curve, we have used reference 2, Eqs. (5)
and (13). The logarithm involved is evaluated for a 2
Mev electron in aluminum. It is clear that although the

~ This method of plotting yields identical curves for different z
in the Gaussian approximation.' The tables may be obtained for a charge of ten cents from the
Information and Publications Division, Brookhaven National
Laboratory, Upton, Long Island, New York.

Gaussian curve is a reasonable approximation for small

angles, the deviation at large angles is of a large order.
In our example, go—0.0035 radians —0.2 degree. For
q = 100 or an angle of —20', the Gaussian result is 0.044
of our value.

The deviations from the single scattering result are
also shown in Fig. 6, which includes a graph of W= 50

~

i»'

(Eq. (17) for s= 100). It is especially noteworthy to ob-
serve how slowly our distributions approach this result;
even for small thicknesses z, one has to go to large angles
g. For example, for z= 100 the first correction term in

Eq. (21) still amounts to 5 percent for i» = 230, where the
scattered intensity is only 0.02 percent of the central
maximum. For z= 600 this occurs at g =640 where the
intensity is reduced to 0.015 percent. Choosing as an
actual example the scattering of electrons of about 2

Mev kinetic energy by an aluminum foil of about 0.0001
inch thickness, we find i»0—0.0035 radians, 1/X—3.6
X10' cm ', z—90. In this case the deviation from single
scattering is down to 5 percent for g = 210, corresponding
to a scattering angle of over 40 degrees. This is beyond
the small angle approximation used in the present
treatment but shows nevertheless that single scattering
is reached only for very large angles.
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