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assumed above to hold for simultaneous events. We obtain neg-
lecting terms in (t—t')~,

$11&,(r,t),% I „(r',t') j+=gg(r)P, „I (t—t') B(r—r') I . (h)

The quantity in the brace is, to first order, an invariant, t having
the value zero for It —t'( ( ~r—r'~. Consider the system in which
the events (r,t) and (r', t'} transform into simultaneous events
(r, t) and (r, t). This will represent an infinitesimal Lorentz trans-
formation, since it was assumed that t and t' were nearly equal.
The expression on the left of (b) therefore takes on the trans-
formed value

)II&,(r, t) P'»„(r', i)1 =0.
The linearity property of the Lorentz transformation then per-
mits us to write in the transformed system

)II~,{r,t),4p„{r',t)] =0,

verifying covariance of this relation for infinitesimal Lorentz
transformations. Since a finite transformation can be represented
as a sequence of infinitesimal ones, the general covariance follov s.

f It is tlie small argument expansion of the invariant 0 function of Jordan
and Pauli.

The proofs of the covariance of the other relations follow similar
patterns and will not be givers. We remark only that it does not
seem possible to quantize using other commutation rules than
those assumed in the text to operate between two field quantities,
each belonging to a diferent type of field.

Charge and Current

In the absence of external electromagnetic fields we define
charge and current densities as follov s:

p~= —ie(~~—P*~*);
s"=ie(4 0~4' —4*C«A);

p &= —ie(rr pep);
s'~ = —ie{IIpcekp).

Then, by virtue of the Hamiltonian density and commutation
rules that have been assumed, we obtain the differential conserva-
tion law:

8(p"1p. )/cM+dlv(s"+s- t) =0.
Here, as ahvays,

0p jcM=i[J'Xd'x, pj.
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The correlated probabilities of lateral and angular displacements of cloud-chamber tracks, resulting from
multiple small-angle scattering, have been calculated for several cases of interest. The results are applicable to
curvatures and other measurements taken in the presence of a magnetic Geld. The usual Gaussian-type scat-
tering law has been used in the form of the fundamental correlated distribution function derived by Fermi.
One direct application of this function is to the effect of scattering on angle measurements in nuclear "stars. "

A "three-point formula" is derived, involving a correlated distribution of two successive lateral displace-
ments with the resultant angular displacement. The distribution of scattering-produced curvatures, originally
derived by Bethe, is calculated. A "four-point formula" allows a quantitative discussion of the tendency of
scattered tracks to appear circular rather than skewed or S-shaped.

Finally, a formula is derived for the distribution of the successive chord angles for a track observed at
several points, and used to discuss the best method of averaging the observations to reduce scattering-
produced curvature errors. The error produced by scattering is not appreciably diminished by taking the
best mean for an observation of the track at a large number of points, instead of a single observation of chord
and sagitta (three points).

INTRODUCTION

HE multiple scattering of charged particles is of
considerable importance for several types of

cloud-chamber experiments, and has been treated by
various authors. ' Several problems of interest involving
correlated probabilities of angular and lateral displace-
ments may, in fact, be discussed using a fundamental
distribution function due to Fermi. ' It is the purpose of
this paper to derive and discuss some of these results,
in particular, those dealing with the measurement of
track curvatures in magnetic fields.

* Research carried out at Brookhaven National Laboratory
under the auspices of the ABC.' H. A. Bethe, Phys. Rev. 70, 821 (1946);R. Richard-Foy, J. de
phys. et rad. 7, 370 (1946). Other references are quoted in these
papers.' B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).

W(y, ri
~
x)dydri =

X&3 X 3py 3y'
exp —— ti' ——+ ~, (1)

2%-X2 X X X2

which gives the probability that a particle in traversing
a distance x in a scattering material suffers a lateral dis-
placement between y and y+dy projected on a plane of
observation containing x, and a net change of direction
between q and p+dq projected on the same plane.

The equation satisfied by this function may be derived

' We use the vertical bar
~

to separate given entities on the right
from entities whose distribution is under consideration on the left,
and shall in this way use the same function symbol 5' to denote
several different distribution functions.

I. THE FUNDAMENTAL SOLUTION

%e proceed to derive the fundamental distribution
function' 3
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) is a characteristic length describing the amount of
scattering, and (8')A„ is the mean square angle of scat-
tering per unit path thickness and is given by'

4 8xe4Z2Z"E 150p—= (8')A, = ln—
tÃcZ'p 2p 2

crn —'.

Ze is the charge of the scattering nucleus, and X is the
4 Bethe, Rose, and Smith, Proc. Am. Phil. Soc. 78, 573 (1938).
~ S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940),

Eq. (9); and Phys. Rev. 58, 36 (1940), Eqs. (2) and (4), for a
Thomas-Fermi atom. For a W'entzel potential the coefFicient 150 is
to be replaced by 166; to agree with Bethe, (reference 1) and
Rossi and Greisen, (reference 2), it is to be replaced by 1378,„.
Our X is the w' of reference 2, Eq. (6).

from the general Boltzmann equation, 4 but it is simpler

to eliminate consideration of time and velocity and deal

only with the de6ections resulting from scattering.
We consider the angles involved to be small, i.e.,

sin8—8 and cos8—1. We further ignore any change of
energy of the particle during its passage through the
material in question. We shall start with a three-
dimensional distribution, which is easily reduced to the
plane projection in the case of small angles.

Let W(y, z, g, f l
x)dydzdqd f denote the probability

that at x, the coordinates of the particle are (y, z) and
the projections of the tangent to the track in the yx
and sx planes make angles p and P, respectively, with
the x axis. Since the angles are small, vP+ f o=8', where

0 is the angle between tangent and x axis.

W(y, z, i1, f l x) may be derived from W(y', z', il', f'l x
—dx) by considering that if no scattering occurs in dx,
then y —y'=dy=ildx, z —z'=dz= f'dx, i1=&' and f'= t',
if a scattering occurs from (g', |') to (i1, 1), the scattering
probability is proportional to dx and transport terms
gdx and fdx are second order and may be neglected; and
the probability of more than one scattering in dx may
also be neglected. The resulting equation is

BW BW BW
+q + f' = dP F(8) sinOdO

BX 8$ BS p aj p

Xl W(y, z, q OcosP—, l OsinP—
l
x)

—W(y, z, rl, f'lx)j, (2)

where we have written rl q'= 8 —cosP, and f —f'= 8 sinP.
F(8) is the probability per unit track length and unit
solid angle of a single scattering through angle 0.

Making the usual I'okker-Planck approximation of
expanding the expression in brackets in a Taylor's series
and retaining no terms beyond the second derivatives,
we find easily (setting sinO= 8)

BlV 8$' 88' 1 828' 828'
+&i +| =— +

Bx By Bz X. Bp' Bf'
where

1/li=-'A)I O'F(8)dO=-'(8')A.
p

0
FIG. 1. Illustrating the basic distribution (1) or (10).

number of nuclei per cm'; Z'e is the charge of the scat-
tered particle, while its mass, momentum, and velocity
are denoted, respectively, by m, p, and v.

Equation (3) is ea.sily separable into two equations for
the two projections. Writing

W(y, z, n, fix)=W(y, nlx)W(z, fix), (6)
we hnd

1 O'W(y, q x)
+rI —lW(—y, vg[x) =-

& Bx By) X Bg'

We take as the boundary condition

W(y, &lO) = 8(y)B(„), (g)

corresponding to a track passing through the origin
tangent to the x axis.

The solution may be found in a straightforward way
by applying a Laplace transform in x, and simultane-
ously Fourier transforms in y and z to Eq. (7). A first-
order ordinary differential equation results that is easily
soluble, and all inversion integrals can be carried out.
The result is Eq. (1). That (1) is the solution of (6) is
evident on substitution. That it is normalized is evident
on integration over y and p, each from —~ to +~.
That it satisfies (8) is evident on writing

Wdydg=F(V, p)dVdp

& 43~=
l
—ldVdp expl —p"-+3pV —3I'-'l, (ga)

where Y= yXi/xl, and p = i1X&/x' are dimensionless vari-
ables. Since Ii is independent of x, the distribution in I'
and p is constant, i.e., the distribution has a constant
skye as well as area. The scale factors vary with x so as
to yield a very sharply peaked function of y and
q as x~0, approaching 8(y)8(g).

In case the original direction of the track makes an
angle gp with the x direction, we must replace p by p —

pp
and y by y cospo —x singo —y —i1ox in (1). This result is
also obtained by writing 8(g —go) for 8(g) in (g). Hence,

( Xv3)
W(y, rllx;0, 0, vlo)=

l l ezp —— (g —qo)'
E2xx2) x

3 3
(n no)(y ~ox)—+-(y—~»)' (9)—

x x2

A convenient, symmetric way of writing Eq. (1) is to
set y/x= P, the angle between the chord and the original
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or
t 3X q 3X

W(ftx;0, 0, 0)=t t
exp ——lf-', (11b)

l, 4xx) 4x

Fro. 2. Illustrating the three-point formula {15).

tangent (see Fig. 1), and 4 = rl f, th—e angle between the
tangent at (x, y) and the chord. The probability of P and

@ is thus,

()v3)
~ (0' 4'I x)"li'd4'=

t,
a2~x&

&(exp [P' —Pp—+p'—)dfd@-(10).

II. THE EFFECT OF A MAGNETIC FIELD

If a magnetic field H is added perpendicular to the
plane of observation, and if p denotes the radius of
curvature of the given particle in a vacuum, we can
readily derive the diffusion equation for the scattered
motion in the presence of a gas. In fact, in dx the par-
ticle is deflected magnetically by an angle di) =dx sect)/p—dx/p, which shifts the distribution progressively to-
ward larger values of p. The resulting equation becomes

BR'Ig BS'II 1 BWJI 1 B'lVH
+g +

Bx By p Bg X By'

Now, if we set Wzr(y, r)tx)= f(y', rl'tx), where y'=y
—(x'-/2p) and r)'= rl

—(x/p), we find readily

Bf r)f 1 8'f—+n ———
Bx By' X Bq"

which is just Eq. (7). Further, Wrr(y, rtt0)=f(y', il't0)
=f(y, iit0)=8(y)b(r)), so that f=W(y, r)lx) given by
Eq. (1).

The curve yir =x'/2p, dyrr/dx= x/p is a parabola, i.e.,
a circle within the small angle approximations, of curva-
ture 1/p, tangent to the original direction of the particle.
That is, all the results of this paper for II=0 may be
applied to the case H/0, if x is measured along the arc
of a circle of radius p, and Y and q are measured with
respect to that circle. Since curvatures in the small angle
approximations are linear functions of ordinates y, the
magnetic curvature 1/p is simply to be added to the
scattering produced curvatures.

III. CONSEQUENCES OF EQ. {1)
Inasmuch as rP —3r)/+3'=(r) —sate)s+ssP, we find

on integration over q,

3(xt+xs)3X

2wx, [x,(4x,+3x,)]' l

exp —X
.xs(4xt+3xs)

(»t+»s)(y —yi) ~
'

2xs(xt+xs) )
( gyx2

Xt q+
2xt (xi+xs)

(y yI YI I+ -I —
t (14)

4(xi+x, ) ( x, x,j

and using the relation derived from elementary proba-
bility theory that W(y, rl t x) = W(r)

~ y, x) W(y t x),

t )tq: X( 3yq'
W(rttx, y;0, 0, 0)=t —

t
exp ——

t r)
——

t
. (12)

2x)

The mean value of r) is (rl)A,
——3y/2x=3$/2, which

implies that once a displacement of angle P has oc-
curred, the particle is likely to have a direction that will

increase this displacement, making evident the corre-
lated nature of the distribution (1).

Similarly, we may integrate over y and 6nd

W(r) t x; 0, 0& 0) = ()t/4wx)' exp( —XrP/4x). (13)

This is essentially the Gaussian scattering formula of
Williams. s It yields the result that (rP)A, =2x/X. Of
course (f')A, is identical, so that (rP)s„+(f')A, =4x/X in
agreement with (4). It is to be noted that the distribu-
tion in displacement f=y/x is sharper by a factor W3

than the distribution in deflection g.
Equation (10) may be interpreted as the combined

probability of a direction P at (0, 0) and a direction 4 at
(x, 0), if the particle is known to pass through those two
points. Integrated over either P or p, it yields the form
(11b), which may thus be interpreted as the likelihood
of a scat tering-produced error in measuring the direction
of emergence of a nuclear reaction product observed in a
cloud chamber or photographic emulsion. * The mean
square error is 2x/3X; if, in addition, there is an experi-
mental root-mean-square error of e in the location of
each end of the track, we have by the usual rule to add
2(e/x)'. The minimum value of (2x/3)t)+2(e'/x') occurs
for x'=6Xe'

IV. THREE-POINT FORMULAS

For consideration of tracks observed at three points,
we calculate the probability that the particle pass
through (xt+xs, y) in direction t7 if it is known to pass
through (0, 0) and (xi, yi), using (9) or (11b):

W(y, r) txt+xs, xi, yi, 0, 0)
~00

dr)'W(ri'
t
xi, yi, 0, 0)W(y, rt t

xi+ xs, xi, yi, r)')

( 3X p&
t

3Xy'
W(y I x; 0, 0, 0) =

t t exp
~4 x] I 4x

(11a)
' E. J. Williams, Proc. Roy. Soc. A168, 531 {1939).
~ I.e., W(P~ x; 0, 0, 0) may be written as W(f ~ x, 0; 0 0, ). A

formula for W(it
~
x, y; 0, 0) is also easily obtainable.
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If we set y&//x&= pf), and then let x& and y& approach zero,
we get in the limit W(y. , 'slx2, 0, 0, q'). If, however,
Xj X2 X,"AP

&V(y, "
~

2x; x, y, ; 0, 0)

simplici ty.

W(i~xi+x2, y; x1, 0;0, 0) =
3X(xi+ x2)

. 7IX2(4X1+3X2).

3X
I

X 6( 1y~ 5y —VI)-'
exp' ———

I n+
2 I'(7)' l x 7t 4x

—3X(xi+x2} ( 2xi+3x2
Xexp — —

l & y l (18)
x2(4xi+3X2) ( 2x, (x,+x,) )

The mean value is

(14a) y I'2xi+3X2) X2
8& x xi

x, E2X,+2X2) 2(x,+x2)

. 4wx2'(xi+ x2)
Xexp

l

——'
I

4(xi+x2) E X2 xi)

Integrating (14) over g, we obtain

lV(ylxi+x2, xi, y1, 0, 0)

(15)

= (-',x.+-', xi)c. (19)

A circular track through the three points would have a
slope p, = (x2+-', xi) c at (xi+x2, y). We see then that once
a track has been "curved" by scattering, it is likely to
maintain this same direction of curvature, but of a lesser
amount (Fig. 3). Further discussion is postponed to the
next section.

If wc wlltc yl/xi=pl (y yl)/x2=$2 tllc parenthesis
in the exponent is p2 $1, or —u, the angle between the
track chords. (See Fig. 2.) Now, the curvature c of a
circle through the three points is sina/AC, which in our
approximation of small angles is c= a/(xi+x2). Hence,
from (15) we may find the probability of observing a
curvature c to c+dc by measuring the coordinates of
three points on a track:

P(c)dc = L3X(xi+x2)/16m]l
Xexp {—3X(xi+x2)c2/16 }dc, (16)

which is the result of Bethe, ' and is independent of the
ratio x2/xi of the two parts of the track.

The mean square curvature is thus (c')A„=8/3X(xi+ x2).
If, as before, an r.m. s. error e in measurement is made at
each point, we may calculate the resulting curvature
"error. " Using a Gaussian error curve for the meas-
urements and integrating over the "true" ordinates at
each point, we get a distribution in c yielding

w(y, p l
x,+x,+x,, ; x,+x2, y'; x„0;0, 0)

W2(x,+x,)
~ exp

4x2X22(A —xix2 —x2x2) . 4X2(h —xix2 —x.x, )

X S
——(5+2xix2+2x2x2)+ —(2xix2+3x.x2)

3X(xi+X2) 2X]+3x2
A —6

2(xi+ X2)
(20)

V. FOUR-POINT FORMULAS

In a similar fashion to the derivation of Eq. (14), that
expression along with (1) may be combined to find a
distribution in y and p at x= x&+x&+xa, when the track
is known to pass through (0, 0), (xi, 0), and (x2, y'). For
simplicity, write y'/x2 ——$2 and (y —y')/x2= $2, and let 6
signify 4(xi+x2)(x2+x2) —x2'. The result is

W(y l
x,+ x,+x, ; x,+x„y;x„O;0, 0)

+
l

+ + )l (I &)
We then find readily8 Se' (

3X(xl+X2) (Xl+X2) E Xl XIX2 X2

Equation (16) may be written as the probability of
finding a sagitta I at XI, when the chord of the track has
length xi+xi, since c=2u/xix2:

3X(x,+X2) l —3) (xi+x2)
exp

m x3'6

3X(xi+X2) &

P(u)du = exp
4+x''x2-' 4Xr'x, '

—3X(xi+X2)u'l

I

du. '
$2(2X1+3x2) '

2(XI+X2)
(21)

%e may now derive, in a similar manner as for Eq.
(12), the distribution of track directions at point C when
a given y or curvature c is observed. %e set y&=0 for

' See R. Richard-Foy (reference 1}.

G

Y

B

Xl Xp

FIG. 3. Illustrating the continuation of a "curvature" once started.
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This formula yields Eq. (14) when $3——p and x:l—+0. One
sees immediately that ($3)A„ is the same as (n)A, for the
three-point formula (Eq. (19)),as it evidently should be.
An expression for the distribution in g when the track is
observed to pass through four points is given by the
ratio of (20) to (21).

Equation (21) is more useful if curvatures are used
instead of $3 and $2 Let c. o=2$2/(xi+@2) be the curva-
ture for points xi BC (Fig. 4) and c3——2(P3—$2)/(X2+X3)
be the curvature for points BCD. Then we have the
distribution in cb when c, is given,

3k(xi+X2) l
P(cAIC; xl X2 x3)dch (X2+x3)

—3X(x,+x,) (x,+x,)'

X &Cps

dc3. (22)
2(x2+x3)

We see that (c3)All X2c,/2(X2+X3); if x2 ——X3, (c )3,A= c, /4,

which bears out the assertion at the end of Section III.
If, further, x2=x3 —xl x ([cb (c./4)])All 5XX/4, or
just slightly less than the value 4hx/3 for Eq. (16).

%e may calculate the probability that cb&0, and so
obtain the probability that the track be of C-type rather
than S-type' for a given value of c,. For xI =x.=x3= x,
we have

~2Xxp ' "
p
—2Xxc'-q

P, =
] / ) exp( ]dc
&5 )~-..i & 5

( ca
= 2+«f ] [. (23)

&( 3):0, c., )

the track. Let us, however, study the distribution in
r=cA/c, . If r) 0, the curve is C-type: r&0 yields an
S-type curve. The curvature increases or decreases ac-
cordingly as r) 1 or r& 1. Using c, and r as independent
variables, we can integrate over c, and And

dr d 2(x2+x3) ( X2

p(.)d.=——tan-l
~

r— —
( . (25)

x dr a' ( 2(x+x2) &

(r)A„=x2/2(xl+x2) which becomes -„' if x2=X3. The
probability that r&0 is

p, =-',+ (1/x) tan-'(x, /a'); (26)

if xl ——x2=x3, P, =0.58. The probability that r)1 is
—,
' —(1/x) tan '(3/+15) =-,'p. =0.29. That is, 58 percent
of tracks curved by scattering are of C-type, and are
equally divided between increasing and decreasing
curvatures.

Another symmetric way of writing (24) is to use
c = (c,+cb)/2 and D= c3—c, as independent variables.
The bracket in the exponent becomes

(xl+x2+x3)c~' +Dc~(XA -x,)+ ', (x—,+3x.+-x,)D',

and it is evident that if x~ =x3, or the track is divided
symmetrically, the distributions in c and D are mutu-
ally independent. In fact, (24) may be written, setting
x~ =x3, as the product of two normalized probabilities:

P(c, D)dc„dD=Pl(c )dc P2(D)dD,

3X
Pl(c ) =-'2(xl+x2)i .x(2xl+3x2)

—3k(,x+x )2-'c '
Xexp

4(2xl+3x.) (27)

The result is most easily expressed as a function of
c,/c, , where c, ..=4XX/3 is the root-mean-square
curvature for three points, from Eq. (16), and is

generally readily available. Figure 5 gives the resulting
graph.

Using (22) and (16), we can find the combined proba-
bility of c and cb,

P(c., c3~ xl) x2, x,) = P(cA
~

c„xl, x„x3)P(c,
~

x, , x,)

3X(xi+X2) (X2+x3)

—3X(xi+x2) (x2+x3)
exp

P2(D) = -', (x,+x2)
vr(2xl+X2)

—X3( x+lX)22D2
Xexp

16(2xl+ x2)

An important consequence is that selection of tracks
according to a criterion of symmetry, with other factors
being equa/ —i.e., with D smaller than some limit de-
termined by the errors of measurements —results in no
narrowing of the distribution of scattering produced cu-rva

tures over that obtained in including unsymmetrical tracks.
This does not preclude the use of a symmetry criterion

&([(xi+@.)c '—X2c,c3+(x2+X3)c32] . (24)

The symmetry of this expression shows that large
curvatures are equally likely to occur at either end of

Xp

FIG. 4. Illustrating the four-point formula (20).
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as a test for freedom from turbulence or conwction errors
in a cloud chamber, nor of the use of a mean skewness of
a whole set of tracks as a measure of the amount of
scattering (see below).

P1(c„) in (27) yields the distribution of scattering-
produced curvature when the track is observed at four
points and the two curvatures are weighted equally.
If xi=xi=x, we 6nd

(c„')A,= 5/6Ãx = 5/2Xt, (28)

75

5
05 10 50

where l=3x is the total track length. The three-point
formula (16) yields (c2)A„=8/3)1t, so that the mean

square curvature for four points is smaller by only —,'6.
This result partially justifies the common experimental
practice of measuring curvatures by means of a chord
and sagitta, rather than by observation of the coordi-
nates of more than three points. At least, that part of
the error due to multiple scattering is not materially re-
duced by more measurements. (See also Section VI
below. )

P2(D) yields a distribution in c3—c„which is inde-

pendent of any magnetic curvature (Section II). Hence,
measurements of D in the presence of a magnetic 6eld
for a sufhcient number of monoenergetic particles should

yield a useful check on the mean scattering (i.e., on the
value of 7) and may serve to distinguish scattering-
produced skewness from turbulence and convection
eGects.

P1(c„) and P2(D) may be used jointly to decide the
likelihood of error in meson mass-measurements from
curvature determinations of apparently perfectly circu-
lar tracks of knock-on-electrons. '

A modification of the four-point formula is the "in-
ternal" probability of observing y' at x&+x2 when the
particle is known to pass through (0, 0), (x1, 0), and

(x1+x2+x3, y). The result is best expressed in terms of
the curvature c' for points 8, C, D (Fig. 4) when c is the
(known) curvature for 3, 8, D.

-3X(x1+x2+x3) &

P;„,(c')dc'= -', (x2+x3)

—371(x1+x2+x3)

divided into Ã equal segments x, and only the suc-
cessive chord angles n1, n2, nN 1 are considered (see
Fig. 6), an explicit probability distribution may be
written down.

We shall start with Eq. (10) for U(P, P
~
x), written as

a double Fourier transform,

U(P, P~x)=, dt ds
(22r)2 ~ „

Xexp it/ 2srtA —(t2+—s—t+—$2) . (30)
3X

This formula is then applied to each of the X sections.
%e set

41 n1 42j 42 n2 4'3j ' ' '4N —1 nN —1 /K'

and integrate the product of .V U's over p1, p2 pN, and
p&. All these integrations may be readily carried out by
use of the fundamental Fourier integral theorem,
yielding

dSydsI
~ ~ ~

—00 2~ —00

l'V(n1, n2, ' ' nN) =

x
Xexp —2(slnl+' ' '+SN lnN 1) (2s1'+s1s2

3X

Co /Crms.

FIG. 5. The probability of C-type tracks as a function of the
curvature c, for the 6rst two-thirds of the track. c,. , is the root-
mean-square curvature for the same track length.

exp
166 +2$2 +$2$3+2$3 + ' ' '+SN 2SV 1+2SN 1 —)—

X t 2(x +x )cl (x +2x )c]2 (29) A general and well-known theorem on generalized
Gaussian functions' states that

We have (c')A~= (x2+2x3)c/(2x2+2x3) =3c/4 if x2 ——x3.
This is another indication of the extent to which tracks
will appear circular as a result of multiple scattering.

VL. A FORMULA FOR ANY NUMBER OF POINTS

For more than four points on a track, the probability
formulas are quite unwieldly. However, if the track is

Leprince-Ringuet, Gorodetzky, Nageotte, and Richard-Foy,
Phys. Rev. 59, 460 (1941);L. Leprince-Ringuet and M. Lheritier,
J. de phys. et rad. 7, 66 (1946).

ds1' '

J
ds~ expL —tAA23stsA —2$2n1$

(xl n(2

t det[ A, A
~ g~ exp

t, t i
—A~~ 'nizam

where det( A;3 ( is the determinant of the matrix ~)A, „));
' See, e.g., M. C. %ang and G. E. Uhlenbeck, Rev. Mod. Phys.

17, 323 (1945), Section 6a and Appendix I.
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Let us calculate the probability distribution of

FIG. 6. Illustrating the many-point formula (31}.

is the matrix reciprocal to ~~A, t~~, and the
summation convention for double indices is used.

Ke find, thus,

( q), ) (x—t)t

lV(nt n;, ) =
~ I

Z.v t-t

[
—3)

Xexp — A t„'n tn I, (31)
2x

where ~~~~A;t l~~is the (X—1)th order matrix:

X—1 ] .V
r, = Q b,c,= Q—b,n. , with Q b, = l.

We shall use the Fourier representation of the
Dirac b-function b[c —P b, n p'x], and integrate
W(nt nv t) over all the n's

( 3) ) tx —1)/z

zo,v(c )=—
i i i

dt
2zr(hv t)i t. 2zr.rJ

&(exp(ztc,„) I dnt I dna t'"J„J„
Xexp [

—(3)At, 'n&n„+2itb;n, ) '2x)

4 1 0 0
1 4 1 0
0 1 4 1

Io O

~ 0
~ 0'
~ 0
~ 0

(32)

1 t'-'

dt exp etc„,——3pbjbI,
2m~ „ 6Xx

I

4

so that

3)x
exp

2m~4 jI, bjbj,

3)xc„,"-

(36)
2&1,7,.b, b j.

and D~ 1 is its determinant. To evaluate A,~, note first
that

(33)

1
(c ')s. = A, tb, b

3Xx

c1 d4 jgbjbj;

3zt

second that

sinh'Vzz= 2 coshzz sinh(X —1)zz —sinh(X —2) zz;

and third that if cosh@=2,

61=sinh2njsinhg and 6:= sinh3u jsinhu.

Hence, it follows that

if / is the total track length. The best choice of the b's is
thus that which will minimize 5 .4jf,bjbl, subject to

We shall thus minimize S'= A;tb, bt- tz P» bt , w—here.
p is an undetermined multiplier.

BS'/Bbt =0= 2A, tb, —tz.

Multiplying by b& and summing, we find that p=2S.
Av=sinh(X+1)zz/sinhzz with st=cosh '2. (34)

TABLE I. The quantities S=Ztp Agtrbjbk and b, needed for the

(33) f g b d t "hest" way of measuring a mean scattering produc-ed curvature
from N track segments (see Section VI), and the ratio of the

show readily that resulting mean square curvature (c '}A, for N segments to the
value 8/3' for 2 segments.

At,„'——A„,t
' ——(—1)'+ 6z th.g tt'kv t, t&m (35).

4 5 6 10
A~ ' is, of course, a rational fraction, and may be
readily evaluated for any.V, using b, 1=4, 6:=15, and
the recursion formula (33).

We shall use Kq. (31) here only to calculate the best
method of measuring a curvature when X segments of
track are taken, and to find the resulting mean square
scattering-produced curvature. "Any method of curva-
ture measurement is equivalent to a weighted mean
value of the X—1 curvatures for adjacent segments.

b;:j=1
j=2

5/2

1/2
1/2

7/4 19ji4 52/47 724 /1137

3/8 4/14 11/47 153/1137
2/8 3/14 8/47 112/1137

3/8 3/14 9/47 123/1137
4/14 8/47 120/1137

11/47 121/1137
120/1137

etc.

"Eq. (31) is used by the author for the distribution of Tnt„.2,

in Phys. Rev. 7S, 1763 (1949).

3&/8{c.'}A, 1.00 0.938 0.875 0.848 0.830
NS /8

0.796
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Hence, S=if,ib;. This system of equations may be with the aid of two formulas derived from (33)
solved, yieMing h~=AA~; —6; gAy; g, 0& &X (39)

bl, =.S Q (37)

Summing over k, we find also

1/S=+.4(,„, '.
k, m

'l'he sums in (37) and (38) may be readily carried out

Equation (39) reduces to (33) when j= 1 or.V—1, and
is easily proved for other values of j by induction. .

Equation (40) results from summing (33).
We find finally from (38) and (37), respectively,

(41)

(42)

Table I gives some values of S and bf, for a few values
of X. For large X,

1/S~X/6 —&3/18= X/6 —0.0962. (43)

We have, therefore,

(c„')&„2/)d[1—(0.577/X) j '. (44)

Comparing with (17), we see that the greatest improve-
ment possible in reduction of scattering-produced curva-
ture errors by taking more measurements on a single
track is a reduction of 25 percent in (c~')~,. For .V= 10,
the improvement over (17) is by a factor 0.796. Table I
includes some values of 3Xl/8(c„')A, .

Another method of reducing (c„')~, would be to use

Pi(c„) in (27), with the most favorable ratio of x to x&.

This turns out to be zero, for which case (27) yields
(c„')A~= 2/Xl, the same as for (44) with iV +~. We h—ave
the surprising result that the same r.m. s. error as for a
large number of track divisions would be obtained if the
directions of the tangents at the two ends of the track
could be accurately measured.

The writer wishes to acknowledge the invaluable
assistance of Dr. Hartland S. Snyder of the Brookhaven
National Laboratory in connection with these cal-
culations.


