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A weak force of attraction between electrons and thermal neutrons is indicated in recent experiments by
Havens, Rabi, and Rainwater, and by Fermi and Marshall. According to meson theory this would be ex-
pected, since the neutron is considered as one charge state of a nucleon {the proton is the other state} which
is coupled to a meson 6eld. The attraction is then interpreted as an electrostatic scattering of the neutron
which exists part of the time as a proton and meson. We perform a third order perturbation calculation in
the approximation of weak coupling between mesons and nucleons. Neutrons and protons are here treated
as Dirac particles which are coupled to a meson Cield of spin zero. The results indicate that the observed
interaction is suitably described in terms of the meson 6eld.

1. INTRODUCTION

'F the nuclear forces are to be accounted for wholly or
'- partly in terms of the exchange of charged mesons
between nuclear particles then it will follow that the
neutron will be subject to a deflection when passing
through an inhomogeneous electric 6eld. This is brought
about by the action of the 6eld on the proton and mesons
which exist in virtual states in the neighborhood of the
neutron. Attempts to detect such interaction were
made by Havens, Rabi, and Rainwater' and by Fermi
and Marshall, ' who studied the scattering of neutrons
in lead and in xenon, respectively. The scattering arises
predominantly from three sources:

(a) Scattering by the speci6c nuclear forces;
(b} Electric scattering of the type in question due to the nu-

clear charge;
(c) Electric scattering due to the atomic electrons.

The scattering (a) is strongly predominant. Neverthe-
less, the interference which exists between (a) and the
electric scattering makes it not unreasonable to'look
for experimental effects of the latter —effects which
would surely be far below the present limits of experi-
mental sensitivity were not (a) simultaneously present.

Scattering of slow (thermal) neutrons by nuclear
forces will be spherically symmetric and will, in general,

* The method and results of this calculation were first presented
at the November, 1948 meetings of the American Physical Society
in Chicago {Phys. Rev. 75, 341A (1949}.

' W. W. Havens, I. I. Rabi, and L. J. Rainwater, Phys. Rev.
72, 634 (194?}.' E. Fermi and L. Marshall, Phys. Rev. 72, 1139 (1947}.
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have no dependence on wave-length. On the other
hand, thermal neutrons have a wave-length comparable
with atomic dimensions, so that scattering of the type
(c) will show a marked wave-length dependence and
will not be spherically symmetric. Thus if one can ex-
tract from the observed scattering any part which
varies with wave-length and scattering angle in a
manner consistent with the atomic form factor, then
one has a measure of the effect being studied.

A theoretical estimate of the magnitude of the effect
has been given by Fermi and Marshall. ' Their calcula-
tion is not based on any specific meson theory, but
makes use of qualitative features of meson theories in
general. Their numerical result might be expected to
be in order-of-magnitude agreement with that obtained
from any particular formulation. Since the experiment
in question is such a critical test for the validity of the
meson 6eld hypothesis it was felt desirable to have at
hand theoretical values as precise as can be derived.

The present calculation is based on the assumption
that protons and neutrons (nucleons) obey the Dirac
equation and that the mesons have spin zero (scalar).
The assumption is frequently made that the massive-
ness of nucleons makes it possible to treat them as
undeviated by the acts of virtual emission and re-
absorption of mesons. Our results show that the latter
assumption would lead to a serious quantitative error
in this problem. We also find that a change in the equa-
tions of motion of the nucleon would lead to a smal. l

but appreciable change in the result.
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2. QUANTIZATION

In the presence of external electromagnetic fields the
Lagrangian density is taken as

e'[A*(»—.+taI.4*)(~VI».—ted 4)+uV*4]
+aeie p+[y (a(ax„i~,)+—u]ep+aete~+(~ (a)ax„)

+~]+x+tge(+p+4 +tv+ +x+4*+p) (I)

Henceforth k and c will be set equal to one. The com-

ponents of x are (x,y, s,it). P is the wave field of a charged
scalar meson. 4p and 4~ are the spinor wave fields of
protons and neutrons. p and M are the reciprocal
Compton wave-lengths of meson and nucleon, re-

spectively. y" are the four Dirac matrices; the first
three are p'=in"p, while y4=p. Also 4' +=i%'*p. The
constant g determines the strength of interaction, hav-

ing the dimensions of an electric charge. @„ is the ex-
ternally applied 4-vector potential, having components

(A,+), where A and p are vector and scalar potentials,
respectively.

Canonically conjugate variables are

«= P* ie~*—, IIp = i%'p*,
«*=/+i~, Ilv i4'z *——

The Hamiltonian density is

X= («*«+grad/* grag+tiQ*P)
—i%p*(a grad+imp)+p iIfv*(a—grad
+&itfP)+v+g(+p'P+v0++x*P+pP*)
+i ep(«*&* mp)+ieA (P—*grad& &grad/*)—

+e'(tf ~P)A'+e%'p" ( aA+P—)4' p

This expression is conveniently split as follows:

w= 'x+~w+ m.

(2)

"X represents the first three terms of (2). 'X, the fourth
term, gives the meson-nucleon coupling. 'X, the last
four terms, gives the coupling of the charges with the
electromagnetic field.

We wish to quantize the fields so that the meson
field satisfies Bose statistics, the nucleon fields satisfy
Fermi statistics. To achieve this it is necessary that
the following commutation relations be maintained
for fields measured simultaneously at two points r
and r':

[«(r),P(r')] = [«*(r)pP*(r')] = —ib(r —r'), (4)

whereas all other pairs of the meson functions commute.

The work is divided into the following sections:

2. Choice of interaction function, and quantization of the
theory.

3. Display of transition schemes and of scattering matrix
element.

4. Calculation of the change in neutron scattering due to the
electron-neutron interaction,

5. Comparison with experiment,
6. Calculation of neutron scattering ~vith spin flip due to the

electron-neu tron in teraction.
7. Discussion.

Likewise

[IIp (r),4' p, (r')]+ = [II&,(r),+v, (r')]+——ig(r —r')tt. , (5)

The subscripts 0. and 7 refer to particular components
of the Dirac spinors. The (+) subscript indicates the
anti-commutator. All other pairs of proton functions
have vanishing anti-commutators, as do all other pairs
of neutron wave functions.

So far the requirements are the usual ones. But now
we also demand that all meson field quantities commute
with all proton as well as all neutron field quantities;
and finally that all proton field quantities ulticommnte
with all those for the neutron field. The appearance of
the coupling terms in the canonical equations of motion
makes these requirements non-trivial.

The possibility of quantizing the theory in a manner
consistent with the above assumed commutation rela-
tions depends on the possibility of expressing them in
relativistically covariant form. That is, the values of
the various commutators and anticommutators corre-
sponding to simultaneous events in one Lorentz frame
should imply the same values for simultaneous events
in another. This covariance property of the com-
mutator relations may be demonstrated by the method
of Heisenberg and Pauli. " (We indicate this in the
appendix) .

Symmetric Theory

In our formulation of the interaction between scalar
and spinor fields we have thus far limited our discussion
to a charge-bearing meson field. Charge independence
of nuclear forces requires a symmetric theory of the
meson field4 with both electrically charged and neutral
mesons. The development of this section remains essen-
tially unaltered if the meson field is modified in order
to satisfy the charge-independence requirement. We in-
troduce a real wave field, y, for the neutral mesons,
which commutes with all other wave fields of the
nucleons and charged mesons and which satisfies com-
mutator relation (4) with its own conjugate momen-

tum, g= j.'
[it(r), te(r')] = —ib(r —r').

For a symmetric theory the meson-nucleon coupling
term in the Hamiltonian density (2) is modified to

" X=,g'( 2+p~P%'vP+V24'v*P+pf*
+4'p p%'p(p 4'v p%p y) (6)— -.

Neutral mesons are not coupled with the electromag-
netic field, so that 'X remains unchanged as in (2).

3. TRANSITION SCHEMES

We wish to calculate the cross section for an incident
thermal neutron with momentum Ko to be scattered

' W. Heisenberg and W. Pauli, Zeits. f. Physik 56, 1 (1929).
4 N. Kemmer, Proc. Camb. Phil. Soc. 34, 354 (1938).
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elastically t.o a final state of momentum KI (with

~
Kf

~

=
~

Ko
~ ) in the field of a static, scalar potential

The interaction terms of the Hamiltonian density in

Eqs. (2) and (3) reduce to

'& =gL+p*P+W++~*P+A*],
JC '= ~e@('7r*g* 7r—g i—+p*+p),

for a charged meson theory.
The calculations are carried out using a weak coupling

approximation, i.e., with the assumption that '3C may
be treated as a perturbation. The validity of such an

assumption depends on the smallness of the parameter
(g'/4w). Arguments based on the strength of nuclear
forces would set this parameter at 0.3 (although it is

questionable whether the scalar coupling assumed here
could adequately describe nuclear forces). Such a mag-
nitude for the coupling parameter would give rise to
errors of the order of 30 percent if just the leading
terms in a perturbation theory calculation are kept.

Electrostatic scattering occurs in three steps. The
matrix element describing a transition from an initial
state i to a final state f is

(E, E, )(E—; E„,)—.
'l'; 'V,„,„~l:„„+~V&"V ~ 0V„„+ V&„,'l' „,'l'„, ,

M.E
rrr, m'P i

where V„„,= J'3C „d'x is the spatial integral of the inter-
action term in the Hamiltonian density describing a
transition from state i to state m, E; is the total energy
of state i, and the double sum is carried over all inter-
mediate states ns and m, exclusive of the initial state i.
Two steps in this process involve the interaction be-
tween nucleon and meson 6elds, treated in the weak
coupling approximation. The total momentum of the
mesons and nucleons is conserved in these steps. Mo-
mentum A = Kf—Kp is exchanged with the applied
6eld in the third step. Although the momenta of the
virtual intermediate states are arbitrarily large, the
momentum exchange with the static 6eld is quite small,
of magnitude

~
A~ =2EO sin8/2 for scattering angle 8.

In calculating the cross section for electric scattering of
thermal neutrons by atomic electrons bound to heavy
nuclei we are thus justi6ed in treating the neutron as
interacting with a fixed static field. The matrix element
will be proportional to the square of the coupling pa-
rameter, g, times the fine structure constant, n.

We list below (Table I) transition schemes for this
scattering problem in terms of the virtual intermediate
states. The schemes divide conveniently into three
classes, as indicated in Eq. (8), according as the inter-
action, 'X, with the electric field occurs in the first,
second, or third step. %e label these classes of transi-
tions as type a, b, and c, respectively. ' %e denote a
proton by I', a proton hole by I'*, a neutron by X, a
meson of positive electric charge by p+, and a meson of
negative electric charge by p, . The values in paren-
theses for the propagation vectors are dictated by
conservation of momentum for the nucleon-meson
coupling and by specification of the final state mo-
mentum, Kf =Kp+dL. A proton, neutron, or positively
charged meson, represented by a plane wave with
propagation vector K, behaves as a particle with mo-
mentum +K; a proton hole, neutron hole, or nega-
tively charged meson, as one with momentum —K.

' Renormalization terms, which are usually present in a third-
order perturbation calculation, will contribute nothing in this one
due to the fact that the neutron (core) itself has no interaction
with an electrostatic old,

Propagation vector k assumes all values in the sum
over the intermediate particle states.

In order to evaluate matrix element (8), we perform
a spatial fourier resolution of the canonical field opera-
tors of the meson and Dirac fields. %e obtain a discrete
momentum spectrum for each field function by quan-
tizing in a box of side I. with periodic boundary
conditions.

The analysis of the proton 6eld takes the form

+=I- '2 fxse'"'&x,
K, 8

I—,',- Q f oe—(K r~

K, 8
(9)

(2L') 'P ~~ '(a~+bk*)e",
k

(2L')—l P &uk l(ak*+ by) e

i(2L,') *' Q cvk+'(ok* bg)e '"', —
k

—t(2I.')—l Q cog+*(ag —bk*)e'"'
k

(10)

where uk* and ak are creation and annihilation opera-
tors, respectively, for positively charged mesons, bk*

and bk correspondingly for mesons bearing negative
charge, and coq=(k'+p')&. The operators in (9) and
(10) obey commutation and anticommutation rules
obtained directly from (4) and (5).

Upon introducing (7), (9), and (10) into (8) and
summing over all of the intermediate states indicated
in Table I, we get the following expression for the
matrix elemen. t between the specified initial and 6nal

where the vK ~ and vK q* are the four component Dirac
plane wave spinors and the sums extend over the entire
range of positive and negative momentum values, with
two spin orientations, S, and two signs of energy for
each value of K. The fK q" and fx. s are creation and
annihilation operators for the proton field. fKis* either,
creates a proton in a positive energy state, or 6lls a
proton hole in the negative energy range, with the four
quantum numbers (K, S).

Ke write for the meson field
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TABLE I. Transition schemes for the electrostatic scattering of neutrons according to a charged meson theory.

Scheme

Icz

II,
III
IV
If,

IIb
III',
IVf,

Ic
IIC

III,
IV,

X(Kp)
E{Kp}
X(Ko}
E(Kp}
&(Kp)
E(Ko)
E{Kp)
E(Kp)
cV(Kp)

1V{Kp)

Ã(Kp)
X(K,)

States

&(Ko) e+(k) w (k &)
g(Ko), P(K~+k}, P*(Kp+k)
X(K,), P(K&+1 ), P*(K.+k)
E(Ko), +(k), (k—4 )
P(Ko+k), p {k)
P(Kp+k), p, (k)
N(Ko), N(Ky}, P*(Kg+k), p+{k)
Ã(Kp), E(Kg), P*(Kp+k), p+(k —4)
P(Kp+k), p (k)
P(Ko+k), p (k)
V(Kp), X(Kg), P*(K)+k), p+(k)
X(Kp) E(Ky), P*(Kp+k), p+(k —4)

ml

P(Kp+k), p, (k—6,)
P(Kg+k), p, (k)
Ã(Ko), E(Kg), P*{Kp+k),p+{k)
N(Kp), 1V(Kg), P*(Kp+k), p+(k)
P(Kg+k), p (k)
P(Kp+k), p. (k—LL)

E(Kp), 1V(Kg), P*(Kp+k}, p,+(k)
X(Ko), X(K,), P*(K,+k), &+{k)

&(K~), ~ (k), u'(k —&)
E(Ky), P{Kp+k)I P*(Ky+k)
X(K,), P(K.+k), P*(K,+k)
E(Kg), p. (k), p+(k —5,}

E(Kg}
E(K&)
X(Kg)
X(K,)
X(Ky}
%(Kg)
E(Kg)
X(KJ)
N(Kg)
%{Kg)
X(K&)
V{Kg)

states:
CPk —k —

Cdk

M.E,.= (g'elk/41. P) g
( CPkCPk —p (Cdk+ CPk —p ) I

(pA+k+ICpp) (pA+k+Kpp)
xi

k EI +Ko+&I,—EKO Ek+Ko+&I, a —EKO

(pA k+Kcp) (pA k+Kpp)
+

Ek+Kp+(0k+ EKI Ek+ICp+ pik cc+EKI)

2 q r(pA k+KIA+k+Kpp)

ccpk(Ek+Kp+Ek+KI) ) ( Ek+Kp+cok EICp—
(pA k+KIA+k+Kpp) (pA+k+KIA k+Kpp)

+ +
EI"+Ky+MIc+ EKI Ek+KI+MA, —EK0

(pA+k+KIA k+IC pp) q+ /+]
Ek +Kp+ cpk+ EKI I E c(pEk+kpK+ cpkEKp) )

r 2(pA.+k+IcIA k+Kpp)
xi

Ek +KI+ cpk EKp—
(cpk+cpk k)(pA+k+Kpp)

cpk p (Ek+Kp+cpk k —EIcp) I

r2(pA k+KIA kyKpp)
+I

tcdk(Ek+Kp+cLtk+EKI)) ( Ek+KI+cdk+EKI

(cpk+cpk k)(pA k+Kpp)

cpk k (Ek+ICp+cpk k+ EKI))

where A.i+ are the positive and negative energy projec-
tion operators,

A i+ = -,'(1a (e.1+pM)/Ei),

(Q) denotes the product of a matrix Q with initial and
final state spinors,

(Q) = (pK,'I QI pK.),

It is between the part of the neutron wave scattered
by the atomic electrons without spin Rip and the wave
isotropically scattered by the speci6c nuclear forces
that interference exists. %e compute here the magni-
tude of this eGect.

For neutrons of thermal velocity, (Ep/p) and (Ep/M)
are both extremely small relative to one, so that we
expand (11) in a power series of terms (5/cpk) and
(A/Ek). The contribution from terms proportional to
the zeroth and 6rst powers of 6 vanishes upon taking
the sum over intermediate momenta k. The lowest non-
vanishing contribution is of order LV:

r1+M/Ekq
M.E.= (g'eck A'/8l. ') P

~kDP i
X (1/2cpk —1/cdkD, —k'/3cdkc+ 2k /3cpk Di —2kP/3cpk'DiP

+k'/3Ekcpk'Di —k'/EkcpkD p—k'/3Ek'Di' —k'/6Ek')

+ (—1/Ek'ppkDi'+1/Eg'cvkDi+ k'/3Ek'cpkDi'

—k'/6Ek'cpkD, )+ (Mk'/Ek'cdkD, ') (1/3cdkDi —1/6cpk'

Same term with M replaced
+1/3EkD, ) +

by —M and D& by D2
(12)

(n,P) are the usual 4X4 Dirac matrices,
=J'e 'A'pcpx, the integration being carried over the
volume I' of the box in which the wave fields are quan-
tized, EK= (E."+M')& for nucleons of rest mass M, and
cpk= (k'+p, ')&, for mesons of rest mass kc. The first four
terms are contributed by transition schemes I, I„IV,
IV„ in which the scalar potential serves as a source for
creation or annihilation of a meson pair. The second
set of four terms is contributed by schemes II„ II„
III„ III„ in which the static 6eld serves to create or
annihilate a proton pair. The last four terms come from
the type b processes in which scattering of charged
particles occurs in the electric 6eld.

4. CALCULATION FOR NO SPIN-FLIP

A. Dirac Nucleons
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where

Dg —~ EQ Cgk j D2 — M EQ GOQe

The k sum in (12) can be performed by taking the
sum to an integral,

Q —+(L'/2'') k-'dk

0.06

004

Og
~~a02

Ãz
C

SCHR50IWKR- PAULI
NUGLKOHS

X~ TAhl

0.2 0.4 0.6 0.8 L 1.6
We insert M = 1835m, for *the nucleon mass and
p=300m, for the meson mass, introduce a new inde-

pendent variable x= tan '(k/p, ), and integrate nu-

merically over the finite range (Op./2) of x. The inte-

grand is reproduced as the solid line in Fig. 1. We see
that most of the contribution to the matrix element
comes from low momentum values, k & p, , for the inter-
mediate particles.

The value obtained is

&02-

FIG. 1. Graph of the integrand in the matrix element for electro-
static scattering of neutrons without spin flip. The solid line is
the result for the case in which nucleons obey Dirac's equation;
the dashed line is for the case in which they obey the non-rela-
tivistic wave equation.

M.E.„=(I/25. 3)(g'/47r)(~o/orL')(6'/ib "). (13)-

This is the matrix element for electrostatic scattering
of neutrons which have the same spin orientation before
and after scattering. The numerical factor is a slowly
varying function of the meson and nucleon masses,
here assumed to be 300 and 1835 electron masses,
respectively.

B. Schrodinger-Pauli Nucleons

Most of the contribution to the matrix element (12)
comes from the non-relativistic energy range, k&M, of
the intermediate nucleons. We may thus hope to obtain
a good approximation to it if we neglect the small
components of the nucleon wave functions —that is, if
we treat neutrons and protons as Schrodinger-Pauli
particles. Since we no longer have the filled negative
energy levels of the hole theory, only transition schemes
I, I~, IIt„and I„will contribute. This means that all
spin terms in Eq. (11) that contain negative energy
projection operators, A, vanish, whereas A+ is replaced
by unity. The result is plotted as the dashed line in
Fig. 1.The matrix element for S—I' nucleons is greater
than (13) calculated for Dirac particles by 29 percent.
Most of the discrepancy arises from the upper end of
the momentum spectrum where small components of
the intermediate virtual nucleons are significant.

Only a minor contribution is lost from the matrix
element by neglecting, say, scheme III' relative to I~.
This is because the energy denominator of IIIb, (Ei +If
+~v+EKf)(E&+Ko+coa+EK~), is considerably larger
than th« of Ib (E&+Kf+oii,—EKo)(Ek+Kp+tdb, —EKo),
in the important k region. The disagreement will in-
crease as the pair terms become more important. This
will happen for a type of coupling between the nucleon-
meson fields which stresses larger momentum values,
or, in other words, binds the meson cloud more corn-

pactly about the nucleons.

C. No Recoil

We can evaluate the e6ect of neglecting recoil of the
nucleons by going to the limit M—+op in Eq. (12). Thus
Di~ —~g, Ek~M, and

M E = (g'ego, A'/SL') p (3—10k2/3cpk')/cob'

=(—:,)(g/4-)(~. /-L)(~/'-).

This approximation is seen to increase the matrix ele-
ment by a factor two relative to its correct value (12).

D. Symmetric Theory

The presence of the neutral meson wave field in the
coupling term (6) of the Hamiltonian density intro-
duces six new transition schemes for the scattering
.V(Kp)~V(Kf). Each of these involves a pair creation
or annihilation of protons in the potential field. We find
that these additional processes do not contribute to
the electrostatic neutron scattering cross section. Coup-
ling parameters g and g' in (6) and (7) both have the
same value to account for the deuteron binding energy.
This equality follows from calculation of the neutron-
proton interaction in the approximation of no nucleon
recoil. We see then from (6) and (7) that matrix ele-
ments (13) and (14) will be multiplied by a factor of
two for a calculation based on a symmetric meson
theory.

5. COMPARISON VTITH EXPERIMENT

The total matrix element for the scattering of thermal
neutrons by an atom with zero magnetic moment can
be written as the sum of two parts. The dominant part,
3f.E.„, gives the contribution to spherically symmetric
scattering as a result of specific nuclear forces and of
the charge on the nucleus. The possibility of observing
electrostatic scattering of neutrons arises from inter-
ference between M.E.„and the matrix element, M.E ...
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with theoretical results. Havens, Rabi, and Rainwater
give points' for the change in the total cross section as
a function of the wave-length of the incident neutron
for scattering by lead. Fermi and Marshall give the
asymmetry in the differential cross section for scatter-
ing by xenon atoms as

8 EXPERIIIENYAI. IIOIMTS.

FIG. 2. The curves give the calculated change in the neutron
elastic scattering cross section as a function of incident neutron
wave-length according to a charged and a symmetric scalar
meson theory for g'jr=0.30. The experimental points were
obtained by Havens, Rabi, and Rainwater for scattering from lead.

for electric scattering by the atomic electrons, which
introduces an asymmetry into the scattering. Ke can
write a cross section by summing over final neutron
states and dividing by the incident Aux. For a scatter-
ing source containing various isotopes, labelled with
subscripts i, present in proportions p, ,

(rdQ= Q p;~ (M E.„),+M.E.„~-'dQ.
4m'

Writing (M.E.„); in terms of a scattering length'
a, =(ML3/2m)(M. E.„);, and keeping only the linear
term, we get for the change in cross section because of
electric scattering,

6(rdQ= (cr—o'„)dQ
= (1/25 3)(g'/4.n)(eggs'/7r')(aM/p')df1,

(charged meson theory)
= (2/25. 3)(g"/4~) (eggs'/vr"-) (aM/y') d 0,

(symmetric meson theory)

where a is an average scattering length, p~a~+p~a2
+ . +p a, for all isotopes. The 6th fourier com-
ponent of the scattering potential, pz, is conveniently
written in terms of the form factor, f, for an atom with
Z electrons of charge —e, distributed in space with a
density p(r').

@q
———Ze e '~'dr

i
dr'p(r')/

~

r—r'
~

= —(4lrZe/5' ')f. -

%e have then for the change in cross section

Bod Q = —0.632Zu(g'/47r) (aM/y') (f/47r) d 0
(charged meson theory)

= —1 26Za(g"-/4~) (aM/p'. ) (f/4x) dO
(symmetric meson theory). (15)

The functional dependence exhibited in (15) follows
from (14). The numerical coeKcient depends weakly
on the mass ratio (M/p). The above value is for
M/p =6.12.

The experiments performed at Columbia and at.
Chicago provide us with two quantities to compare

6%e use the definition and sign convention of F.. Fermi an&1
I . Marshall, Phys. Rev. 71, 666 (1947).

0 (135')—0.(45')
=0.0005+0.0085.

0 (135')
(16)

To compare with the Columbia result we introduce a
scattering length a=9.06&(10 " cm for lead. ' An ex-
pression for the integrated form factor as a function
of incident neutron wave-length is obtained from the
graph on page 148 of Compton and Allison. ' The theo-
retical curves, for g'/4s =0.30, and g"/4n. =0.30, ap-
pear in Fig. 2 together with the experimental points.
The calculated formula is consistent with experiment
in indicating an attraction between neutrons and elec-
trons and in displaying a wave-length variation char-
acteristic of the atomic form factor.

Xo estimate of error is supplied in the report of this
experiment; the experimental points were obtained only
after application of large corrections which were prob-
ably valid but which could not be independently
checked. In view of this, and of the theoretical uncer-
tainties associated with this calculation, the order of
agreement indicated in Fig. 2 must be considered
satisfactory.

To compare with the Chicago experiment, we obtain
an asymmetry

where we have taken from the paper of Fermi and
MarshalP f(45')=0 776 and f(1.35')=0 515 as form.

factors for Xe, and 4.4 barns as its cross section. These
results are larger than the observed asymmetry, but
well within the limits of experimental uncertainty.

6. SPIN-FLIP CROSS SECTION

We calculate the value of matrix element (11) for
the case in which the scattered neutron has its spin
flipped. Again, as in (12), the leading order terms are
proportional to the square of the neutron momentum.
Contributions from schemes I, IV, II~, IVb, I„and
IV„according to which the static field creates, scatters,
or annihilates mesons, are neglected as higher order in
(Eo/M). This follows from (6) where the P-matrix,

' See reference 1, p. 635.' This is the value obtained in the most recent determination
by Shull and Wollan (unpublished). It corresponds to a coherent
scattering cross section of 10.3b for lead,' A. H. Compton and S. K. Allison, X-rays in Theory and I."x-
periment (D. Van Nostrand and Company, Inc. , New York, 1938).

~(135')—0 (45')
=0.00206, (charged meson theory)

0 (135')
=0.00412, (symmetric meson theory),

(17)
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through which the neutrons and protons are coupled,
does not contribute in leading order to a spin-Aip prnc-
ess. The electric scattering cross section with spin Aip
for a charged meson theory is evaluated numerically
for M/p, = 6.12:

IT f ]
'
) d fl = 5 .06(g2/4ir) '@~ft o'

I
(n 0 Xn,)Xn" I

'«
10 ~ cm'.

no and ny are unit vectors in the direction of initial and
scattered neutron momentum, respectively, and n,~ is
a unit vector along the spin axis. We have p~ ——4me/6'-

for scattering by a point charge e. If we put g'/47r =0.30,
we obtain a total cross section of less than 2)&10—' barn
for transversely polarized neutrons which are detected
by an experimental arrangement in which the neutron
counter has an aperture of one minute of arc. (The
answer is four times as large according to a symmetric
meson theory since transitions schemes involving neu-
tral mesons do not contribute. ) This effect is much too
small to be detected with present techniques.

The spin Rip cross section vanishes for approximate
ca1culations which treat nucleons as Schrodinger-Pauli
particles or as infinitely heavy sources (no recoil).

7. DISCUSSION

The interaction of neutrons with electrons has been
calculated. The neutron is regarded as one state of a
Dirac nucleon which is coupled to a scalar meson field.
The mechanism of the interaction is assumed to be the
electrostatic coupling between the Coulomb field of the
electrons and the virtual protons, pairs, and mesons
which, according to field theory, exist in virtual inter-
mediate states of the neutron. Scalar meson fields with
charged particles only, and with a symmetric mixture
of charged and neutral mesons have been considered.
For both cases, qualitative agreement with experiment
is established.

The greatest uncertainty in the assignment of a
number to our formula for comparison with experiment
arises from the choice of 0.30 as the value for the meson-
nucleon coupling constant, g'/4~. This is the approxi-
mate value indicated for a static interaction between
two nucleons of the form of the Yukawa potential as
derived from the scalar meson theory. We know, how-
ever, that the scalar theory used here does not correctly
describe the deuteron, particularly as regards the spin
dependence of the interaction. In fact there is no satis-
factory theory of the deuteron as yet based on any
assumed coupling. This is probably because the nucleon
recoils have not been taken adequately into account in
such calculations and important modifications, even of a
qualitative nature, may be expected when account of
such recoil is taken.

The static interactions derived from a pseudoscalar
meson theory have spin dependences which seem sug-
gestive of the types that may operate in the deuteron.
It is therefore worth while to repeat the calculation of
this paper for pseudoscalar mesons, although the diK-

culty of adjusting the coupling constant will be just as
serious as for the scalar case.

To transform our calculations to a corresponding one
in which pseudoscalar mesons are coupled to the nucleon
field with pseudoscalar coupling, we simply replace It,

by —~F5, where p&=»»&3&4 is a Dirac matrix ap-
pearing between the spinor functions of the neutron
and proton fields, in Eqs. 1 and 2. The quantization
procedure is unaltered. The result corresponding to
(13) is

~ E = (I/28&)(G'/4~) (&4~/«') (~'/~') (18)

Following Villars, " Dyson, " and Luttinger, " we take
G'/4~r=36, and obtain a change in cross section, do,
10.6 times as large as those given in Eq. (15) for the
scalar theory.

We note from Eqs. (16) and (17) that the above re-
sult (18) for pseudoscalar mesons exceeds, by a factor
of 2.5, the upper limit for this effect placed by Fermi
and Marshall. ' This would appear to argue against the
pseudoscalar theory, but for the reasons noted above
definite conclusions cannot be drawn until the situation
regarding the two nucleon problem is clarified.

Note added in proof: The value G'/4+=4 suggested
by Bethe at the Spring 1949 meetings in Washington,
D. C. (B.A.P.S., vol. 24, no. 4) resolves the discrepancy
between (18) and (16) and indicates approximately the
same change in cross section on the basis of a pseudo-
scalar calculation as that given by the scalar theory.

APPENDIX

We indicate briefly the covariance of our formalism for de-
scribing the interaction of quantized meson and Dirac nucleon
fields. A charge-current conservation equation is exhibited. Ke
consider here a charged scalar meson field.

In the absence of external electromagnetic fields, the Lagrangian
density, canonically conjugate variables, and Hamiltonian density
are those given in Section 2 of the text (Eqs. (1) and (2)) with
A„=O. The canonical equations of motion take the form

p*—x'

~

=(~-~')o*-a(~ *m~);
*=(~-~')a-g(~ *m ); (a)

4p= —(0. g ad+M p)~p —zg~~;
rip ———(gradIIp e—iMII pp) —gO~*pp*;

with equations analogous to the last two for +& and II&. Com-
mutation relations (4) and (5) are introduced in order that the
meson field satisfy Bose statistics and the nucleon fields satisfy
Fermi statistics. Ke wish to demonstrate that these commutator
relations are of covariant form. That is, the values of the various
commutators and anticommutators corresponding to simultaneous
events in one Lorentz frame should imply the same values for
simultaneous events in an other. To study this question, we use
the method of Heisenberg and Pauli. ' We consider, for example,
the quantity

%~a(r t)8'p, (r' t )J+
which has been assumed zero for t =t'

~ If we now assume that t
and t' are nearly equal, we can calculate the value of this anti-
commutator bracket to first order in (t—t') by the use of the
equations of motion (a) plus the various commutation relations

'4 F. Villars, Helv. Phys. Acta XX, 476 (f947)."F.J. Dyson, Phys. Rev. 73, 929 (1948)."J.M. Luttinger, Helv. Phys. Acta XXI, 483, (1948).
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assumed above to hold for simultaneous events. We obtain neg-
lecting terms in (t—t')~,

$11&,(r,t),% I „(r',t') j+=gg(r)P, „I (t—t') B(r—r') I . (h)

The quantity in the brace is, to first order, an invariant, t having
the value zero for It —t'( ( ~r—r'~. Consider the system in which
the events (r,t) and (r', t'} transform into simultaneous events
(r, t) and (r, t). This will represent an infinitesimal Lorentz trans-
formation, since it was assumed that t and t' were nearly equal.
The expression on the left of (b) therefore takes on the trans-
formed value

)II&,(r, t) P'»„(r', i)1 =0.
The linearity property of the Lorentz transformation then per-
mits us to write in the transformed system

)II~,{r,t),4p„{r',t)] =0,

verifying covariance of this relation for infinitesimal Lorentz
transformations. Since a finite transformation can be represented
as a sequence of infinitesimal ones, the general covariance follov s.

f It is tlie small argument expansion of the invariant 0 function of Jordan
and Pauli.

The proofs of the covariance of the other relations follow similar
patterns and will not be givers. We remark only that it does not
seem possible to quantize using other commutation rules than
those assumed in the text to operate between two field quantities,
each belonging to a diferent type of field.

Charge and Current

In the absence of external electromagnetic fields we define
charge and current densities as follov s:

p~= —ie(~~—P*~*);
s"=ie(4 0~4' —4*C«A);

p &= —ie(rr pep);
s'~ = —ie{IIpcekp).

Then, by virtue of the Hamiltonian density and commutation
rules that have been assumed, we obtain the differential conserva-
tion law:

8(p"1p. )/cM+dlv(s"+s- t) =0.
Here, as ahvays,

0p jcM=i[J'Xd'x, pj.
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Correlated Probabilities in Multiple Scattering*
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The correlated probabilities of lateral and angular displacements of cloud-chamber tracks, resulting from
multiple small-angle scattering, have been calculated for several cases of interest. The results are applicable to
curvatures and other measurements taken in the presence of a magnetic Geld. The usual Gaussian-type scat-
tering law has been used in the form of the fundamental correlated distribution function derived by Fermi.
One direct application of this function is to the effect of scattering on angle measurements in nuclear "stars. "

A "three-point formula" is derived, involving a correlated distribution of two successive lateral displace-
ments with the resultant angular displacement. The distribution of scattering-produced curvatures, originally
derived by Bethe, is calculated. A "four-point formula" allows a quantitative discussion of the tendency of
scattered tracks to appear circular rather than skewed or S-shaped.

Finally, a formula is derived for the distribution of the successive chord angles for a track observed at
several points, and used to discuss the best method of averaging the observations to reduce scattering-
produced curvature errors. The error produced by scattering is not appreciably diminished by taking the
best mean for an observation of the track at a large number of points, instead of a single observation of chord
and sagitta (three points).

INTRODUCTION

HE multiple scattering of charged particles is of
considerable importance for several types of

cloud-chamber experiments, and has been treated by
various authors. ' Several problems of interest involving
correlated probabilities of angular and lateral displace-
ments may, in fact, be discussed using a fundamental
distribution function due to Fermi. ' It is the purpose of
this paper to derive and discuss some of these results,
in particular, those dealing with the measurement of
track curvatures in magnetic fields.

* Research carried out at Brookhaven National Laboratory
under the auspices of the ABC.' H. A. Bethe, Phys. Rev. 70, 821 (1946);R. Richard-Foy, J. de
phys. et rad. 7, 370 (1946). Other references are quoted in these
papers.' B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).

W(y, ri
~
x)dydri =

X&3 X 3py 3y'
exp —— ti' ——+ ~, (1)

2%-X2 X X X2

which gives the probability that a particle in traversing
a distance x in a scattering material suffers a lateral dis-
placement between y and y+dy projected on a plane of
observation containing x, and a net change of direction
between q and p+dq projected on the same plane.

The equation satisfied by this function may be derived

' We use the vertical bar
~

to separate given entities on the right
from entities whose distribution is under consideration on the left,
and shall in this way use the same function symbol 5' to denote
several different distribution functions.

I. THE FUNDAMENTAL SOLUTION

%e proceed to derive the fundamental distribution
function' 3


