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The accuracy will be limited principally by the uncertainty
in the gyromagnetic ratio. Work is in progress here which should

considerably decrease the uncertainty in the gyromagnetic ratio.
The agreement of our result with that of the voltameter gives
added support to the value of e/m for the electron' ' resulting

from our value of y.
If our value of the ratio Ic/v is combined with the measure-

ment of Gardner and Purcell, 7 one obtains a value of the ratio of
the mass of the proton to the mass of the electron of greatly im-

proved accuracy. This new result is

M„/7n, = 1835.979&0.056.

Several possible applications of this instrument suggest them-

selves. In the first place, it looks very promising for the measure-

ment of packing fractions. Its simplicity, high sensitivity, and
variable resolution should make it useful in many other research

and analytical applications. Since this device measures ~, it is

suggested that it be called the omegatron.
I Thomas, Driscoll, and Hippie, Phys. Rev. 75, 902 (1949).
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Theory of the Electric Resistivity of
Polycrystalline Graphite*

DwA IN BowEN
North American Aviation, Inc. , I.os Angeles, California

October 24, 1949

'T is possible to explain the observed temperature dependence
- - of electric resistivity in commercial polycrystalline graphite
by an extension of the theory of single crystal graphite as de-

ve1oped by Wallace. ' There are two mechanisms required. First,
one assumes that the conduction in the polycrystalline sample
takes place in the planes of cleavage of the individual crystals.
The large anisotropy (of the order of 104) prevents any appreciable
conduction across the planes. This confinement of the current to
the direction of orientation of the crystals, which will not neces-
sarily be in the direction of gross current Row, increases the re-
sistivity of the polycrystalline material over that of a single

8, IO

4 6.00-
O

7 90

o 760

x 7.70a
7.60

I
0' 7.50
I-

cn 7,40

7.30

o 740

7.IO

W
7.00

6 90

6.60

A Note on the Variational Method for the
Scattering Problem

SU-SHU HUANG

Yerkes Observatory, University of Chicago, Williams Bay, Wisconsin
October 20, 1949

A S we have already pointed out, ' Hulthbn's formulation of
the variational principle' has the advantage over other

formulations' in that a more flexible trial wave function can be
used. But in his practical applications he adopts a method which
leads to a very inconvenient numerical procedure. Moreover,
the manner of his application does not utilize the variational
principle in its strict form: one of the equations he uses is not logi-
cally connected with the principle. In this note we shall indicate
how we can improve Hulthen's method by making it more rigorous
and at the same time much simpler for practical purposes. We
shall illustrate the proposed method by considering S-scattering
by a potential held of the Yukawa type.

Considering for the sake of simplicity only S-scattering, we
define, following Hulthen

fg(H =k2)pdr—
where

II= —d2/Zr2+ V(r).
It can then be shown that

bP=2 f g(H k')Pdr+kbg, —

where p represents the phase shift. After obtaining this equation
Hulthen suggested a variational method in which

/=0 (4)
is used to determine g while

crystal in the plane of cleavage by a geometrical factor, s, de-
pending on the ratio of the principal dimensions of the crystals,
and their orientation with respect to gross current Bow. For
completely random orientation and a common ratio of crystal
dimensions of 10, this factor is about 7. Second, it is assumed that
the electron waves are scattered oft the crystallite boundaries.
Since these boundaries are regions of disorder, there is almost a
certainty of scattering at these regions. Thus the probability of
scattering per unit time can be estimated from the size of the
crystallites, and the velocity of the waves in the crystal. Using
estimates of crystallite size based on the width of x-ray diGraction
lines, one computes the scattering probability per second to
be 10". Furthermore, this probability should be temperature
independent since the percentage change in crystallite dimension
with temperature will be small. Adding this scattering probability
to the thermal lattice scattering probability in Wallace's formula
and multiplying by the geometrical factor s, one has

h'cs 1 1
P=

167re'kTln~ T.p Tt,
'—+—

where the 7's are the inverse scattering probabilities.
By computing 7z from the original Wallace equation, and

measurements on single crystals, a typical plot showing the
variation of resistivity with temperature for polycrystalline
graphite has been reproduced in Fig. 1,

+ This document is based on work performed under Contract No. AT-11-
1-GFN-8 for the AEC at North American Aviation, Inc.

I P. R. Wallace, Phys. Rev. 71, 622 (194?).
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FIG. 1. Typical plot showing the variation of resistivity with
temperature for polycrystalline graphite.

is used for obtaining a set of equations for the variational pararn-
eters. In this manner with a trial function of the form

p(r) =f(r) cosi7 sinkr+g(r) sing coskr, (6)

Hulthen obtains a system of equations each of which is of the
second degree in tang and solves them by a method of successive
approxImatIons.
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(7)

Ke now assume a trial wave function of the form

&(r) =f(r) sinkr+g(r) coskr,

subject to the boundary conditions

f(0) = finite, lim f(r) = 1;
r~ Qo

g(0}=0, lim g(r}=)=tang.

For P given by (8)—(9)„ the variational integral becomes

P=f .[—f~' sin kr+gi' cos'kr+k(fg, gf~)—
+V(f sin'kr+ g' cos'kr)+(gi fi+ Vgf) sin2krgr, (10)

where fi and gi denote the derivatives of f and g.
Equation (7) then becomes

~9=k@, (11)

(9)

when 9 is computed with the wave function (9).Now we determine
) and all the parameters by the equations

aP/ac, =O, z=1, 2, "., n (12)
aIld

89/8) =k. (13)

Equations (12) express the stationary property of the phase shift,
while Eq. (13}follows from Eq, (11) directly. Now if we assume
for f(r) and g(r) the forms

f(r}=1+g P (r)e "",
n I

g(r)=(1—e )C~+2 Q (r}e ""j, (14)
n=i

where P„(r) and Q„{r}may, for example, be polynomials in r,
involving a set of coeScients ci, c2, ~ ~, c which we subject to
the variation, Eqs. (12)-(14}will then give a set of (n+1) linear
equations for ), ci, -, c . The coefBcients of this set of equations
form a symmetrical determinant, which can be readily solved.

The method derived in the foregoing paragraph differs from
Hulthen's in that by using Eq. (13) instead of Eq. (4) we have
made the method more rigorous by conforming to the variational
principle, Eq. (11);also by introducing the X-formulation (as we
may call it) we have essentially facilitated the actual calculations.

As an illustration of the foregoing method we shall consider
the scattering by the potential

V(r) =le /r,

where E is a constant. In conformity with Eqs. (1.4) we write

f(r}= 1+(ci+c2r)e

g(r}= (1—e-")L) +(c +c r}e-j. {16)

(15}

After some elementary calculations, a set of linear equations in
), ci, . , c4 are finally obtained. The coe%cients in these equations
can best be expressed in terms of certain standard functions of k.4

In order to compare our results with Hulthen's, we have com-
puted the phase shift for two values of / and k, namely t= —1.5,

Now Eq. (4) is not essential in the formulation of variational
principle for the free slate, because it can be satished even if P is
not an exact solution of the wave equation. Moreover in deriving
Eq. (3) the condition 9=0 is nowhere used. In fact, instead of
using Kq. {4), we might with equal justification have used any
integral involving (H —ks)P as the equation for tang. The use of
0 =0 would therefore seem to be arbitrary and not &nherent for the
variational principle derived from Eq. (3). The fact that Hulthbn
6nds by his method two solutions for tang is a consequence of
this ambiguity resulting from the use of the condition 9=0;
he actually rejects one of the two solutions as not "good" though
there is no way of deciding as to which of the two solutions is
"good, " except by comparison with results obtained by other
methods. A rigorous method for computing the wave function
for the continuous spectrum should, therefore, be based solely on
Eq. (3) or its equivalent:

Sg=kc~.

Tahar. z I. The phase shifts and the constants for the expansion of
the eave function at Ic—0.8.

—L Approx. X Cl C~ C3 Ca '9

(ci, c2, c3, ca) 1.11469 0.02278 0.01492
(ci, C3, ca) 1.11524 0.05205

1.5 (cy, cg, cg) 1.11188 0.59566 —0.28842
(ci, c2) 1.10430 0.03493

Hul thorn

0.92077 —0.06414 0.83958
0.89689 —0.06512 0.83982
0.44184 . . . . . . 0.83832
0.90190 . . . . . . 0.83492

0.83708

(ci, cq, c3, ca) 3.31023 0.61034 0.02359 3.48932 —0.49419 1.27742
(ci, ca, ca) 3.31111 0.65660 . . . 3.45157 —0.49574 1.27749

2.1 (ci, c~, ca) 3.2S028 4.86017 —2.2278S —0.08688 . . . . . . 1.27489
(ci, c2) 3.22313 0.5283? . . . . . . 3.47190 . . . . . . 1.26996

Hulthhn 1.27515

k=0.8 and l = —2.1, k =0.8 respectively. The results are tabulated
below together with Hulthbn's best values of the phase shift.
In Table I in addition to the results for the 4-parameter {ci,c2, c3, c4)
trial wave functions (Eqs. {16))we have also included the results
derived for 3-parameter (ci, c3, c4} and (ci, c2, c3) and 2-parameter
(ci, c~) trial functions.

The present method can be extended to electron scattering by
the hydrogen atom, and to allow also for exchange effects. The
calculations relating to these extensions are now in progress.

Finally, I should like to express my sincere thanks to Pro-
fessor S. Chandrasekhar for his interest in this problem and also
for his valuable discussions.
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Photo-Disintegration of the Deuteron at
Intermediate Energies
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N the photo-disintegration process, all but a small fraction of
the p-ray energy appears as relative energy of neutron and

proton, while in N-P scattering half of the incident neutron energy
appears as kinetic energy of the center of mass of the N-P system,
Consequently, for energies well above the threshold, photo-
disintegration experiments should yield as much information
about the N-P interaction as N-P scattering experiments per-
formed at twice the energy. Therefore, energies up to 20 Mev,
which are of particular interest because of the large number of
electrostatic generators and betatrons operating in this range,
are of considerable theoretical importance. (A copy of a letter
by Fuller describing preliminary photo-disintegration experi-
ments in this energy region arrived when this report was in
preparation. )

In this energy range computations are relatively simple. Only a
small number of multipoles are involved (electric dipole, magnetic
dipole, and electric quadrupole). For well radii below 2.8&10 "
cm, range-corrected Bethe-Peierls formulas are essentially correct,
and the total electric cross section is given by:

8~ e' $' WI&(4v —Wi)& sin'(kgrg) exp{2nrt)
3 M M (A.~)' {1+~rt)

where W& is the binding energy of the deuteron. (The photo-
magnetic contribution can be neglected except for very low
energies. ) For a 50-50 mixture for which the outgoing nucleons
may be treated as free, expression (1) is only slightly modified
by the inclusion of tensor forces. The total cross section i@eluding
tensor forces is given by (we use the approximation' in which
contributions from inside the well are neglected. This approxi-
mation gives the right order of magnitude for our case, the


