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Energy Levels of a Vector Meson in a
Smearel Coulomb Field

ALBERT SIMoN
University of Rochester, Rochester, New Fork

November 7, 1949

ORBEN and Schwinger' have derived the radial equations
for a vector meson in a central Geld. They show that the

states of a vector meson having a definite j {total angular mo-
mentum) and a de6nite parity fall into two groups. One is a group
for which /= j (/ is the orbital angular momentum). These states
give the ordinary scalar meson levels. The second group of states
contains linear combinations of states for which /= j—1 and
l=j+1. Corben and Schwinger have shown that solutions for
the latter group of states, in a pure Coulomb 6eld, exist only for
the special case j=0.

Since, in reality, the Coulomb field is smeared out by the finite
size of the nucleus, the states corresponding to jWO will also
exist. The interesting point is that the position of the energy levels
for a smeared Coulomb 6eld will not depend on the character of
the smearing to the first order of perturbation theory. Thus, if one
takes the equations of Corben and Schwinger and eliminates
their quantity G (related to the 4th component of the 4-vector-
Eq. {35)) by use of the subsidiary condition, then the 6rst two
equations (Eq. (41)) may be put in the form of simultaneous
eigenvalue equations for PI and Iie. Linear combinations of these
give the coupled equations for Iii and I' (Eq. (36)}.These equa-
tions have the form of Klein-Gordon operators on the left, and
small perturbing terms on the right. These equations may now
be solved by a perturbation method expanding in powers of (Za).2

The zero order terms are chosen to be the non-relativistic
Schroedinger equations. The 6rst order correction then enables
one to compute the corrections to the scalar meson levels. No
cut-o6 for the Coulomb 6eld is necessary in this order. This
would not be the case in higher orders.

The corrections to the scalar meson level for m=1, j=i,
"L"=0 (ground state) was found to be +2/3{Za)4pc2 {p is the
mass of the meson). The state n=2, j= 1, "/"=0 was found to
be shifted by the amount +1/12{Zn)4pc2, which makes this state
and the state m=2, j=2, "l"=1 {which is unshifted) coincide at
the scalar level 2P. For n =3, the j= 1, "l"=0 level again coincides
with the "l"=1 level after correction. The j=2, "1"=1, the
j=3 "l"= 2, and the j=1 "l"=2 levels are unchanged from the
corresponding scalar levels.

If this same treatment is applied to the radial equations for a
meson of arbitrary magnetic moment {1+y),it is found that a
cut-o6 would be necessary in the 6rst order for states of "/"=0.

It is interesting to note that if the m-meson were a vector meson,
the shift of its lowest energy level (compared to the scalar level)
would be of the same order of magnitude as its broadening due to
the effect of nuclear absorption s except for the case of hydrogen
where it may be larger by an order of magnitude. '

I am greatly indebted to Dr. R. K. Marshak and Dr. A. S.
Wightman for many valuable discussions.

I H. C. Corben and J. Schwinger, Phys. Rev. 58, 953 (1940).' J. A. Wheeler, Phys. Rev. 71, 320 (1947).
3 R. E. Marshak and A. S. Wightman, Phys. Rev. 76, 114 (1949).

A Precise Method of Determining the Faraday by
Magnetic Resonance

A. HIPPLE, H. SOMMER, AND H. A. THOMAS

Nat~onal Bureau of Standards, Washington, D. C.
November 4, 1949

METHOD of determining the Faraday has been developed
~ ~

~ ~

~ ~

in which the cyclotron resonance frequency of protons in a
known magnetic 6eld is measured. The ions are formed by electron
impact as in the usual mass spectrometer. They are prevented from
escaping axially by means of a d.c. electric Geld in the same way
that electrons are trapped in the Phillips ion gauge. A uniform r-f
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FIG. 1. Peak shape for protons as the frequency is varied and the magnetic

field held constant at approximately 4700 gauss.

electric 6eld of variable frequency at right angles to the magnetic
6eld accelerates ions of a selected charge-to-mass ratio at reso-
nance until they attain a radius of 1.0 cm at which point they
strike the collector and the current is measured with an elec-
trometer tube amplifier. An ion having a different charge-to-mass
ratio cannot attain a radius of this magnitude unless the fre-
quency is tuned for ions of this type. The width of the resonance
peak depends on the number of cycles in the time required for
the ions to reach the collector. This width may be decreased by
decreasing the amplitude of the r-f voltage supplying the 6eld
and therefore the limiting resolution depends on the length of
time it is possible to trap the ion and still detect resonance. The
peak width is also limited by the uniformity of the magnetic
6eld as in nuclear resonance.

Figure 1 shows the peak shape for protons as the frequency is
varied and the magnetic 6eld held constant at approximately 4700
gauss (resonance frequency about 7 Mc). Higher resolution than
this is attainable, but this was a convenient width for the initial
experiments with the frequency control readily available. It was
found that the instrument was so sensitive that the residual gas
pressure could be used so no hydrogen was admitted to the tube.
An ion gauge on the pumping arm near the tube indicated a
pressure of 3X10 ' mm Hg. An electron current of 10 pa was used
and the peak shown in Fig. 1 corresponds to an ion current of
approximately 10 "amp.

The magnet is the same one used in the measurement of the
gyromagnetic ratio of the proton' and the resonance frequency
was measured in relation to the nuclear resonance frequency of
the proton. For this purpose the two resonance probes (cyclotron
and nuclear) could be quickly interchanged while a third nuclear
resonance probe held the field constant. Ke wish to emphasize
the fact that the value reported in this note is a preliminary one
until a more exhaustive study is made for possible systematic
errors. This preliminary result is

v, /v =0.358106+0.000010,

where v, =cyclotron frequency of the proton, and v„=nuclear
resonance frequency of the proton. The Faraday is obtained from
the relation

F=yM„fu, /v„g,

where y =gyromagnetic ratio for proton = (2.67524&0.00020)
X104 (no diamagnetic correction) sec. ' gauss ' s and N„= isotopic
weight of II+= 1.007580&0.000003.& 4

The Faraday is then

F=9652.8&0.8 e.m.u. /g (physical scale).

This is to be compared» with the value 9650.5 from the silver
voltameter and 9652.2 from the iodine voltameter. (This is dis-
cussed in reference 4.)
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The accuracy will be limited principally by the uncertainty
in the gyromagnetic ratio. Work is in progress here which should

considerably decrease the uncertainty in the gyromagnetic ratio.
The agreement of our result with that of the voltameter gives
added support to the value of e/m for the electron' ' resulting

from our value of y.
If our value of the ratio Ic/v is combined with the measure-

ment of Gardner and Purcell, 7 one obtains a value of the ratio of
the mass of the proton to the mass of the electron of greatly im-

proved accuracy. This new result is

M„/7n, = 1835.979&0.056.

Several possible applications of this instrument suggest them-

selves. In the first place, it looks very promising for the measure-

ment of packing fractions. Its simplicity, high sensitivity, and
variable resolution should make it useful in many other research

and analytical applications. Since this device measures ~, it is

suggested that it be called the omegatron.
I Thomas, Driscoll, and Hippie, Phys. Rev. 75, 902 (1949).
2 Thomas, Driscoll, and Hippie, Phys. Rev. (to be published).
s K. T. Bainbridge, "Isotopic weights of the fundamental isotopes, "

Preliminary Report No. 1, National Research Council (June, 1948).
4 J, W. M. DuMond and E. R. Cohen, Rev. Mod. Phys. 20, 82 (1948).
5 S. J. Bates and G. W. Vinal, J. Acous. Soc. Am. 36, 916 (1914); G. W.

Vinal and S. J. Bates, Bull. Bur. Stand. 10, 42S (1914); G. W. Vinal,
Comptes Rendus 3, 9S (1932).

6 Thomas, Driscoll, and Hippie, Phys. Rev, 75, 992 (1949).
7 J. H. Gardner and E. M. Purcell, Phys. Rev. 76, 1262 (1949).
3 F. G. Dunnington, Phys. Rev. 52, 47S (1937).

Theory of the Electric Resistivity of
Polycrystalline Graphite*

DwA IN BowEN
North American Aviation, Inc. , I.os Angeles, California

October 24, 1949

'T is possible to explain the observed temperature dependence
- - of electric resistivity in commercial polycrystalline graphite
by an extension of the theory of single crystal graphite as de-

ve1oped by Wallace. ' There are two mechanisms required. First,
one assumes that the conduction in the polycrystalline sample
takes place in the planes of cleavage of the individual crystals.
The large anisotropy (of the order of 104) prevents any appreciable
conduction across the planes. This confinement of the current to
the direction of orientation of the crystals, which will not neces-
sarily be in the direction of gross current Row, increases the re-
sistivity of the polycrystalline material over that of a single
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A Note on the Variational Method for the
Scattering Problem

SU-SHU HUANG

Yerkes Observatory, University of Chicago, Williams Bay, Wisconsin
October 20, 1949

A S we have already pointed out, ' Hulthbn's formulation of
the variational principle' has the advantage over other

formulations' in that a more flexible trial wave function can be
used. But in his practical applications he adopts a method which
leads to a very inconvenient numerical procedure. Moreover,
the manner of his application does not utilize the variational
principle in its strict form: one of the equations he uses is not logi-
cally connected with the principle. In this note we shall indicate
how we can improve Hulthen's method by making it more rigorous
and at the same time much simpler for practical purposes. We
shall illustrate the proposed method by considering S-scattering
by a potential held of the Yukawa type.

Considering for the sake of simplicity only S-scattering, we
define, following Hulthen

fg(H =k2)pdr—
where

II= —d2/Zr2+ V(r).
It can then be shown that

bP=2 f g(H k')Pdr+kbg, —

where p represents the phase shift. After obtaining this equation
Hulthen suggested a variational method in which

/=0 (4)
is used to determine g while

crystal in the plane of cleavage by a geometrical factor, s, de-
pending on the ratio of the principal dimensions of the crystals,
and their orientation with respect to gross current Bow. For
completely random orientation and a common ratio of crystal
dimensions of 10, this factor is about 7. Second, it is assumed that
the electron waves are scattered oft the crystallite boundaries.
Since these boundaries are regions of disorder, there is almost a
certainty of scattering at these regions. Thus the probability of
scattering per unit time can be estimated from the size of the
crystallites, and the velocity of the waves in the crystal. Using
estimates of crystallite size based on the width of x-ray diGraction
lines, one computes the scattering probability per second to
be 10". Furthermore, this probability should be temperature
independent since the percentage change in crystallite dimension
with temperature will be small. Adding this scattering probability
to the thermal lattice scattering probability in Wallace's formula
and multiplying by the geometrical factor s, one has

h'cs 1 1
P=

167re'kTln~ T.p Tt,
'—+—

where the 7's are the inverse scattering probabilities.
By computing 7z from the original Wallace equation, and

measurements on single crystals, a typical plot showing the
variation of resistivity with temperature for polycrystalline
graphite has been reproduced in Fig. 1,

+ This document is based on work performed under Contract No. AT-11-
1-GFN-8 for the AEC at North American Aviation, Inc.

I P. R. Wallace, Phys. Rev. 71, 622 (194?).
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FIG. 1. Typical plot showing the variation of resistivity with
temperature for polycrystalline graphite.

is used for obtaining a set of equations for the variational pararn-
eters. In this manner with a trial function of the form

p(r) =f(r) cosi7 sinkr+g(r) sing coskr, (6)

Hulthen obtains a system of equations each of which is of the
second degree in tang and solves them by a method of successive
approxImatIons.


