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Theory of Critical Fluctuations
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A macroscopic system is subdivided into cells of identical size and shape arranged in a regular spatial
array. The method of canonical ensembles would consider one of the cells, schematizing the rest into a
"reservoir. "The present "cellular method" treats the cells on an equal footing and is appropriate to deal
with the fluctuations near the critical point for which the standard theory yields in6nite results. Earlier
theories dealing with the same problem appear as special cases of the present treatment. In particular,
the critical points are de6ned generally enough to include the so-called X-points in solids. The macroscopic
system is invariant under the group of translations which displaces one cell into another. The macroscopic
quantities (e.g. , the thermodynamic parameters) are invariants of this group.

I. INTRODUCTION

HE role of Auctuations in statistical thermody-
namics is primarily a negative one. Indeed, the

very existence of thermodynamics can be said to be
based on the fact that the fluctuations in the macro-
scopic thermodynamic variables are negligible compared
to the mean values of these variables. The proof of this
fact is essential in the statistical foundation of thermo-
dynamics. The agreement in the results obtained from
difFerent statistical representations of a physical system
is also a consequence of the negligible character of the
Auctuations. Thus, whether one uses a microcanonical
ensemble which corresponds to a completely closed
system, or a canonical ensemble which corresponds to
a system in contact with a reservoir, the results are
the same since Quctuations can be neglected.

It is therefore of fundamental interest that Quctua-
tions are not negligible at the so-called critical points of
physical systems, of which the gas-liquid critical point
is the best known case. As a matter of fact, if the
fluctuations are calculated according to standard pro-
cedures, infinite results are obtained. Experimental
results indicate that critical-point fluctuations, although
finite, are orders of magnitude larger than usual and
give rise to macroscopic phenomena, e.g. , critical
opalescence.

Several theories' ' have been proposed for treating
the problem of critical-point Quctuations, each based
on a difFerent analysis of the physical situation. There
are several reasons for our reconsidering the question.
In the first place, the relation between the above-
mentioned theories is rather obscure and none of them
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can claim general acceptance. In the second place, all
of them appear to be too specialized. (In fact, one of
the authors has recently shown~ that critical points are
of rather common occurrence, since the well-known
X-point phenomena observed in solids and some liquids
may be considered as critical points. ) The above-
mentioned theories refer only to the gas-liquid critical
points and to the critical mixing points in liquids.
Finally, these theories are often based, in part, on
rather special molecular models and do not really treat
the basic statistical problem.

In Section II we sum up the results of the conven-
tional theory of fluctuations in a form general enough
for our purposes. The di%culties arising at the critical
point are discussed in detail.

In Section III we introduce the "cellular method"
which can be considered a re6nement of the ordinary
treatment of generalized canonical ensembles. This
method allows one to treat the correlation of Quctua-
tions in difFerent volume elements, an efFect which is
of great importance at critical points and which is
ignored by the standard method. The importance of
these correlations was first pointed out by Ornstein
and Zernike, ' and our method is a development of their
idea. This development, on its formal side, leads to a
general criterion for the definition of macroscopic
variables, i.e., those variables which can be used in
discussing macroscopic phenomena.

In Section IV we present a calculation of fluctuations
and their correlations.

Section V is devoted to a discussion of the relation-
ships between our theory and those previously men-
tioned, as weH as to some clarification of the relation-
ships of these theories to each other. In particular, the
question of critical opalescence is discussed.

II. FLUCTUATIONS AND CRITICAL POINTS

The thermodynamic properties of a closed system
can be adequately described in terms of a so-called

'L. Tisza, "General theory of phase transitions, " National
Research Council Conference on Phase Transformations in Solids,
1948 (to appear in book form).
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fundamental equation

U= U(X», Xs, , X„~»),

where U is the internal energy and X~, X2, , X,+~
are the extensive variables characterizing the system.
(The X; include volume, entropy, mole numbers, etc.)
We shall assume our system to be spatially homogeneous
on a macroscopic scale so that U is a 6rst-order homo-
geneous function of its arguments. It is then most
convenient to let X,+~= V, the volume, and to define
the "densities":

metrical form as follows. Let us define:

Then:

P =exp

S =klnzo .

r

U —E QP»—(x» —x».)
k=1

where the summation now goes from l to r (including
the entropy term). We can also write:

xi I=
X,+g X„+g

(2)
where:

L4' —4 3
Pa exp

kT

The fundamental equation can then be written

fl= N(xy, xs, ' '
) x»).

The generalized forces conjugate to X& or xk are

P.=8U/8X, =8~/8x, . (4)

In order to obtain the fluctuations of the quantities
xk about their mean values, we shall consider our system
as a part of a large closed system, e.g. , one cm' of a gas
in a large container. AVe now have the possibility of
processes in which the quantities XI, How from the
sub-system to the remainder of the system, called a
"reservoir, " and vice versa; these processes are subject
only to the condition that, there is no change in the
value of X& for the whole closed system. The assumed
diGerence in size between the sub-system and the
reservoir implies that these processes may lead to a
noticeable change-in the state of the sub-system while
the quantities xk and Pk are essentially unchanged in
the reservoir.

It is well known' that the probability of finding the
sub-system in a state x&, x2, , x, , which may diGer
from the equilibrium state x&, ~ ~ ~, x„, is given by a
generalized canonical distribution function:

If we expand E as a function of the bxk, we obtain

~ (8E.) 1 ~ ( O'E. )E.=E.+P~ I bx,+- P ~

»=1 ( 8x» J s 2», i-i 48x»8x~) p

keeping second-order terms. Now E,= U, (8E /8x»)s
=Pk, and we can define

( O'E ) O'U
Nkl ~

E8x»8xt~ D

(13)

Then to this approximation we find

1'

Q N»)bx»bx(
k, l-i

f =E QP»x» .—
k j.

This "microscopic free energy" P will be of interest
to us subsequently.

The physical meaning of P—P is the minimum work
required to bring about the state a. Hence Eq. (9)
expresses the well-known principle of Boltzmann. Let
us introduce the notation:

6Xk= Xk —Xk.

P =c exp (14)

p =ze exp1/kT P E+QP»x»—
k 2

Here p is the probability of finding a state of the
system described by the index a, m is the statistical
weight (degeneracy) of this state, E its energy, and
xk the value of the variable xk in this state. The index
k runs from 2 to r omitting x~ which is the entropy
density. The function g is the thermodynamic potential

(b b fx)A»yx

(bx»)(bxi) p d(bx»), d(bx„)
'

where c is a normalization constant which is needed
because Eq. (14) is only an approximation to Eq. (g).

In terms of this Gaussian distribution, one can
immediately write down the fluctuations in which we
are interested:

r

tt = U —ZP»x».
k 1

(6) Jt P d(bx»), d(bx, )

We can put the expression for p into a more sym-

' K. A. Guggenheim, J. Chem. Phys. 7, 103 (1939).

= kTe»i, (15)
S is the entropy one assigns to a system known to be in a

state a of statistical weight m~.
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where the matrix )~z~i)~ is the inverse of the matrix [Nii[~.
These matrices have been called stiffness ~~Nii~ and
compliance )(zi, i~) matrices. '

The smallness of kT compared to the internal energy
of macroscopic systems assures us that the relative
fluctuations are small, hence the microcanonical and
canonical methods are essentially equivalent. Speaking
more physically, the behavior of the sub-system is the
same whether it is isolated from the rest by a real
wall. or isola, ted only in imagination.

This situation is diferent, however, at the so-called
critical point where ~~u;i ~~

is positive semidefinite

(Det~(u;i~~=0) and where the matrix elements v;q and
hence the fluctuations become infinite. ' Actually, the
experimentally observed fluctuations become extremely
high at the critical point, as manifested in the phenome-
non of critical opalescence, for example. The fluctuations
are, however, finite and our formalism must be im-
proved, so as to provide a finite result.

The weak point in the above discussion, which is
essentially the same as the standard discussion of
fluctuations, is in the use of the canonical ensemble to
represent the behavior of a sub-system of our whole
system while idealizing the remainder by treating it as
a reservoir. When the fluctuations are large, as in the
vicinity of a critical point, the microcanonical and
canonical ensembles no longer give the same results,
and it is essential to treat the system a,s a whole in a
proper manner. This mill involve a modification of the
usual canonical ensemble which mill be carried out in
the next section. At this stage, we merely need to
point out that such a modification is necessitated by
the large critical-point fluctuations which indicate a
breakdown of the usual approach discussed above.

Before going on to examine the statistical problem in
more detail, it seems convenient to simplify the defini-
tion of the critical point. As presented above, it appears
as a result of the "co-operation" of all extensive variables
xi, x2, ~, x„. Instead, we can choose Pi, P2, , P, i,
x„as independent variables, and introduce the corre-
sponding free energy

where b

1
P=Cexp~ ——Paiizizi ~,

2 ii
(19)

III. THE CELLULAR METHOD

%e generalize the concept of a canonical ensemble by
introducing what we call the cellular method. Instead
of concentrating our attention on a sub-system and
schematizing the rest into a "reservoir, " we divide the
whole system into cells which we treat on an equal
footing. We choose these cells as identical in size and
shape and arranged in a regular spatial array. If we
are dealing with a fluid system, we can choose a simple
cubic array of cubical cells. If we deal with a crystalline
system, it will be natural to let our array have the
symmetry of the crystal; the individual cells can then
consist either of single unit cells of the crystal or of
groups of contiguous unit cells. To avoid the necessity
of introducing the reciprocal lattice, we shall work
with a cubic array, but our considerations can easily
be transcribed so as to apply to the general case.

The position of any cell is then speciFied by a vector k:
&= k&ji.+k2j2+k3ja,

where ki, k2, k~ are integers between 0 and M—1 if
there are M' cells, and j&, j2, j3 are the unit vectors
defining the primitive translations of our array. (In the
rest of the paper the symbols k, 1, m, j&, j&, and j3 des-
ignate vectors, ~hereas k&, k2, k3, l&, l2, l3, mi, m2, and
mz are integers. )

In the previous section, we pointed out that if one
works with the appropriate thermodynamic potential
A(x,), the conditions for a critical point can be expressed
in terms of the one variable x„. We are now interested
in considering states of our large system specified by
the set of values x„~,where k varies over all the M' cells;
x,i is the value of x„ in the cell k. (We take the variables
Pi, P&, ~, P, i a,s fixed for our system. )

By appIying an argument similar to that used in the
preceding section, one can easily show that the proba-
bility of finding a state ( x„&I, is given by:

A (x,) =I QPixk. — (16) 1 ( O'A q 1 ( O'A q
~kl

kT (Bx„i8x,i j p kT E8zigzii 0

(20)

(A is a function of Pi, Pz, , P„ i as well as x„but
it is the latter dependence which will interest us. ) It
can be shown' that a critical point may also be defined
as follows:

O'A O'A
=0, =0, &0.

Bx„' Bx„' Bx„'

The advantage of this formulation is that it refers
explicitly to a single independent variable. Of course,
this can be chosen to be any of the xi, x2, , x,. The
various formaIisms arising are not identical, but lead
to the same conclusions,

~rc XrJc +r. (21)

In spite of the great formal similarity between Eq. (14)
and Eq. (19), one must be very careful to distinguish
between the two quadratic forms appearing in the
exponential in these two equations. The first, Eq. (14),
refers to a set of diferent thermodynamic variablesxi, x, ; the second, Eq. (19), refers to the set of
values x„~ of one thermodynamic variable x„ in the
di6'erent cells k of the whole system. Both quadratic

b It is necessary to average over all of the "internal coordinates"
of the system, e.g., thermal vibration coordinates; in other swords,
we preserve only the dependence on the set of variables zg.
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forms express the minimum work necessary to carry
the system from its equilibrium state to one deviating
from equilibrium.

VVe should point out an important restriction on the
values of the s~, the deviations of x,~ from its average
value x„; namely, we must have:

goy =0.
k

(22)

This expresses the fact that our whole system is closed~
so there can be no net Quctuation in x, if we sum over
all cells.

The eigenvalues and eigenvectors of this form are of
considerable interest, so we shall now determine them.
This is simple, if we notice that the set of coefficients
al, ~ for 6xed k, l varying over all cells, is just a permuta-
tion of the set a& & for any other 6xed O'. This expresses
the fact that the interactions (as measured by ao~) of
any cell with its neighbors of all orders are independent
of the particular cell considered. (We impose periodic
boundary conditions on our whole system, so that the
cells near the boundary "surfaces" need not be con-
sidered separately. )

The eigenvalues X„and eigenvectors g~„must satisfy

gao(6„=4,]o„,

(k, m varying over all cells, i.e., m=m&j &+m&j o+moj»
m;=0, 1, , M—1).The solutions to Eq. (23) are:

27ri
X =ciao(exp m (l—k)

M
(24)

where

1 2%i
exp — f m ,

M& 3f

PPo„$o„*——8(m —m').

(25)

(26)

Since a«depends only on l—k, X is actually inde-
pendent of k as it must be.

The eigenvalues can be written in a simpler form if
we note that it is sufhcient to take only two distinct
values of the a«..

2%
X„=ao+2aip cos m;; (m=—my jr+mojo+mojo). (28)

aoo=ao, ao&0 (a,ll k),
~I &=@& (k, f nearest neighbors), (27)
a«=0 (otherwise).

The first of these conditions states that all cells are
equivalent. The second condition, nearest-neighbor
"interactions" only, is not necessary for most of the
following work but simplifies the form of the equations
to some extent.

The eigenvalues are now:

The eigenvector corresponding to Xo(ho ——X~&;,+,,+,,&

=ao+6a~) is of especial significance. It is

go= (1, 1, , 1).
M&

becomes positive semidefinite, i.e., one of its eigen-
values must vanish. It is not difBcult to see that the
eigenvalue which vanishes (the others remaining posi-
tive) is Xo. Thus, at the critical point,

Xo=ao+6ag=0. (29)

This result is, of course, to be expected in the light
of the above discussion, but it can be proved directly
and, therefore, is an example in support of the argu-
ments advanced.

This is the only eigenvector which does not involve
phase di8erences between the diBerent cells. Now,
while the eigenvalues X depend on the properties of
the quadratic form of Eq. (19), the eigenvectors really
furnish an appropriate and Qexible coordinate system,
as it were, for describing our physical system.

%e may use the unique character of the eigenvector
(o to suggest a characterization of those variables of
our system which can be handled in a macroscopic
discussion; namely, only variables which transform
like go, i.e., which are the invariants of the translation
group, can qualify as macrovariables, since all others
involve unobservable phase differences as one goes from
cell to cell.

The variables which satisfy this criterion are of two
rather different kinds. In the first class, we have
thermodynamic variables such as magnetic moment per
unit volume, average particle density, etc. The addi-
tional characteristic feature of these variables is that
their conjugate "forces" exist and, consequently, the
values of these variables are subject to the control of
the experimenter. In the second class are variables
which might be called quasi-thermodynamic ones, such
as the atomic coordinates in a crystal and the long-range
order in alloys, etc. Here there are no conjugate forces,
so the variables in question cannot be controlled freely.
Nevertheless, they are of a macronature in the sense
described above and, correspondingly, are subject to
measurement —by their coherent x-ray scattering, for
example.

The variables which do not behave like go are perhaps
typified by the thermal vibrations or phonons which
essentially involve phase differences between. cells and
must always be averaged over in macroscopic treat-
ments.

I.et us 6nally apply our study of the eigenvalues to
the case of the critical point. This is now redefined as
the point where:
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In fact, we notice that if ap+6u~=0, all other X are
positive; but if X„=O, m/0, then some X (0, contra-
dicting our requirement that the quadratic form be
positive semidefinite. In the absence of correlations
a&=0 and Eq. (29) reduces to the previous deanition
of critical points.

21 si, exp —. —Pgppps~ dT
2k, &

(sa»)A. =——
1

t exp Qop~zps~ d7'
2k, ~

(30)

where d7' means that we integrate over the M' —1
dimensional space of the sk, subject to the restriction
of Eq. (22).

In order to take into account this restriction in the
simplest way, we go over to the coordinate system
determined by the eigenvectors of the matrix ()up&((.

The calculation is given in the Appendix; we quote
only the result here:

1 cos(2pr/M) p (k—I)

X„
~k~L Av

M' n
(31)

The primed summation means that we sum over all p
except p= 0, i.e. , that the eigenvalue Xp does not appear
in the sum. This follows immediately from the restric-
tion of Eq. (22), as is shown in the Appendix.

Let us first analyze this result for the case k=l.
Introducing the explicit expressions for the eigenvalues,
we have

X
ap+2a&C cos(2pr/M)pq+cos(2'/M)p, cos(2pr/M) p,j

(32)

Now, far from the critical point, where the interactions
between ceHs should not be important, this reduces to
the conventional result. For, in this case, it follows
from Eq. (29) that

sp33—6@j, (33)

IV. FLUCTUATIONS WITH CORRELATIONS

%e can now turn to the calculations of the mean-
square fluctuation in the value of x„ in cell 0 and the
correlations of the fluctuations in diGerent cells. %e
shall use the approach of the preceding section.

We have already written in Eq. (19) the expression
for the probability of finding a state of the system
characterized by a given set of values of the x„k. It has
also been pointed out that there is a restriction, Eq.
(22), on the values of the set of variables sp, because
our system is closed. %e now want to calculate

and, therefore,

Xp~Gp)

~k Av—
gp (8 A/Bx )Py . . ., P

(35)

which is the result obtained by the method of Section
II in this particular case (one variable).

Closer to the critical point, we can transform the sum
in Eq. (32) into an integral, since M is as large as we
please;

~k Av-
ap (2pr)'"p ~p

d gd 2d 3

X (36a)
t 1+(2ag/ap) [cosq&+ cosqp+ cosqp] }

Equation (36a) shows that the fluctuations become
larger as we approach the critical point. At the critical
point, where (2u~/ap) = —p, the integral still converges'
and can even be evaluated exactly. Thus

1 3 t' I' f dq dq dq
~k Av

ap pr ~p ~p "p 3—(cosqz+cosqp+cosqp)

p2K, q
'

=—(18+12V2—10V3—7(6)~)
( (, (36b)

Cp
)'

where K2 is the complete elliptic integral of modulus
(2—v3) (V3—v2). Numerically:

(sp')av = 1.5164/ap, (36c)

at the critical point.
Let us now analyze the physical meaning of our

results. In the first place we know that at the critical
point up= —6u~/0. Since thermodynamics assures us
that ap) 0, it follows that a~&0 at and near the critical
point. This means that a fluctuation in any cell increases
the probability of a fluctuation of like sign in the
neighboring cells. This is most readily seen from Eq.
(40) below.

Secondly, we see that the Quctuations are kept finite
by the physical requirement that the entire system be
closed with respect to the thermodynamic variable x,
whose fluctuations we are considering. This entered
our formalism in the restriction of Eq. (22) which
automatically led to the omission of the term in ) p from
the sum of Eq. (32). Thus the convergence of the
integral in Eq. (36b) and the closure of our whole
system lead to finite critical fluctuations,

Considering now the case kN/, i.e., the correlation of
the Quctuations in diferent cells, we may make several
remarks. In the first place, it is clear that, in the limit
of vanishing interaction between cells, all (sps~),„are

'The proof of convergence and the more difIIcult evaluation
of the integral are due to G. N. Watson, Quart. J. Math. (Oxford)
10, 266 (1939).

We should like to express our sincere thanks to Dr. Klliott
Montroll for informing us of this reference.
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~a~l Av

gat
=-

((Z~')A (Zl )A )'
(3&)

Instead of using the expressions given above for these
quantities, it is more convenient to evaluate them in
terms of the minors of the determinant of ~~ay~~~. Let A
be the determinant of ~[a~~~~ and A~~ be the co-factor
(with its appropriate sign) of a~~ in A. Then'

(ZkZ l)Av

~zpz~ exp ——QGy~zgz~ dr
2k, L

f
P

exp ——Pa~)zkz( dr

~as
(38)

A

Since Aaa=A~~ for all k, l as a result of the properties
of [/eygff, we have

(39)gai=Az~/Au
Let us define

f~t= —A&/oaI (40)

The quantity f&& is the average of zz when z&= 1 and all
other variables are zero (linear regression coeKcient). '
We see that f~~ is a direct index of the "energetic"
interaction between cells k and l, and vanishes under
our assumptions unless k and l are nearest neighbors.
Using Eqs. (39) and (40), one can easily show' that

gai=f~i+ E f~g i (k«) (41)
m&k, t

"The cancellation is not complete and (zazf}A~= (—1jao}(i/M'}
because we do not sum over the eigenvalue ) 0. This term is, of
course, negligible for large M.

~H. Crammer, Mathematical, Methods of Statistics (Princeton
University Press, Princeton, 1946).

The restriction of Eq. (22) has not been imposed here. It can
be shown LM. J. Klein, Ph.D. thesis in physics, M.I.T. (1948)j
that this restriction plays no important role in these considera-
tions.

e For

famgzrzl =
m~I, «aaA«

1 ~a~~i —aaaA af —aafA ii
aaaA« ~
Aha)

+ga~ —fbi= gai —fN as k/Laalu

zero (k/I). For, in this case, X~=ao and the phase
factors cancel out. ~ Second, as ~k —

l~ increases the
cancellation between successive terms increases and
(z~z~)A, becomes small.

This point can be brought out more clearly by
another method which we now discuss. This method is
of interest in itself and it establishes the connection
between our work and that of Ornstein and Zernike'
(see Section V). The essential point is to derive an
equation relating the correlation coeS.cient of the
fluctuations in different cells to the basic coefficients
aa~ which are derivatives of the free energy and thus
express the forces within our system.

The correlation coefficient ga~ is defined' by

Equation (41) has a simple interpretation: it states
that the correlation coeKcient gl, ~ (which measures the
statistical effect of cell I on cell k) is equal to the sum
of two terms T. he 6rst is the direct interaction fq~,
present only for nearest neighbors; the second is the
sum giving the eBect g ~ of cell l on all other cells m
which have a non-vanishing interaction fq with cell k.

We need consider the set of Eqs. (41) only for some
definite value of l, since the set ga~ for this l value is the
same, except for permutation, as any other set gI

Hence we shall fix l and, with this understanding,
drop it from our notation. Ke then have, as our final
result,

g~=f~+ Q f~gm (42)

V. DISCVSSION

In this section, we shall point out the connections
between the theory presented in this paper and the
earlier work done on this problem, particularly with
respect to the theory of critical opalescence.

It was shown in Section II that the customary
statistical treatment of fluctuations leads to infinite
critical-point Quctuations. The physical reason for this
was that the minimum work necessary to produce such
a Quctuation vanishes at the critical point in the usual
approximation. It is clear from the nature of the
problem that any additional contribution to the work,
usually neglected, will limit the Quctuations to finite
values at the critical point. A number of theories have
been advanced which have this result, and it is our
purpose to point out the nature of the additional term
in each case and to discuss the interrelations of these
theories in the light of our own.

In the first place, it should be said that virtually all
previous work on the subject has been concerned with
the ordinary gas-liquid critical point of a pure substance
or with the critical mixing point of a binary mixture of
liquids. Our theory has been set up in such a manner
as to be applicable to X-points as well as critical points
in the ordinary sense. For this reason, we shall be
interested in discussing only those other theories which
are capable, in principle, of such generalization. Hence
we have not considered the mechanism proposed by
Yvon, 4 who has pointed out that infinite Quctuations
are avoided if one considers the effect of gravity.
Sriefly, near the ordinary critical point the compressi-
bility is large and the gravitational field of the earth
gives rise to a non-uniformity of density, "thickening"
the gas-liquid interface into a layer. Although this
eGect undoubtedly exists, it seems to be special, insofar
as it cannot be of importance in X-points in solids, for
example.

The original suggestion for obtaining finite critical-
point fluctuations is due to Smoluchowski. ' His pro-
posal was to continue the expansion of the free energy
to the next non-vanishing term (quartic term), at the
critical point (see Eq. (12)). This insures a non-zero
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minimum work and gives 6nite results. This method
cannot be considered satisfactory because it is based
on the consideration of one volume element with the
remainder treated as a reservoir, and when the fluctua-
tions are large (though finite) the difference of the states
of neighboring volume elements and their correlations
must be taken into account.

The first major attempt to give a more adequate
treatment of critical-point fluctuations considering cor-
relations is due to Ornstein and Zernike. ' We have
already mentioned that their papers served as a
stimulus to the present work. Their chief contributions
were the introduction of the idea of correlations and the
development of an integral equation for determining
the correlation coeKcient in terms of the intermolecular
forces. This integral equation, which they derived by
other methods, follows from our Eq. (42) if one redefines

fI, and gL by dividing by the volume of one cell. Going
over to the continuum, one then obtains

term proportional to the Laplacian of x„, thus giving
rise to a corresponding term in the minimum work.
This latter term does not vanish at the critical point
and, thus, finite fluctuations are obtained.

We shall now show how our theory can be made to
give results of this form. The effective force P„& (or
simply P&) in the cell k is given by

1
P~ =——ga& &s& st =Zausi&

BZIe 2k»
(46)

since the quadratic form expresses the minimum work.
Applying the nearest-neighbor approximation of Eq.
(27) we obtain:

P~ aos~+——a~(sl +&,+su &,+—su y~, +sI —
&,+su+&,

+u —
&,) (ao+6a&)s(k)+a&Ps(k), (47)

where we have gone over to a continuous position
vector k and we have approximated

g(r) =f(r)+ "f(r'—r)g(r')dr'. (43)
8's(k)

s(k+j&)+s(k —j&)—2s(k) by, etc.
Bx

They have shown that if f(r) is a short-range isotropic
function, one can transform Eq. (43) into a differential
equation whose asymptotic solution is

where
g(r) e "/r, (44)

2(1-F) p 1 cs'-=; I'= I f(r)dr, P.=
~

r'f(r)dr. (45)
J '

3J

This solution is instructive, since it shows that for
s)0 (above the critical point) g(r), the correlation
coefIicient of the fluctuations, drops to zero exponen-
tially as the distance increases. At the critical point
where ~=0, ' g(r)~1/r, a long-range function, so that
fluctuations make their influence felt over long dis-

tances.
Having indicated how the equations of Ornstein and

Zernike follow from our work, under suitable approxi-
mations, we now turn to another important develop-
ment, the theory of Rocard. ' Rocard's starting point
is the observation that the thermodynamic variable in

question, our x„(the density in his case), is actually a
function of position in the system, due to the fact
that fluctuations occur locally rather than over the
system as a whole. Although this remark is in agree-
ment with the theories given here and by Ornstein and
Zernike, Rocard's method of working out its conse-
quences is different. Since Rocard himself has stressed
this difference, it is of interest that his equations also
can be made to follow from our theory if certain
approximations are made.

Rocard's method is to consider the modi6cation in
the effective "force," P, (pressure in his case), due to
the spatial variation of x„.I'„ is modified by an additive

P=2» f»„»
———6a1//a0, hence F= 1 at the critical point and a =0.

lt is seen that Eq. (47) is essentially equivalent to
Rocard's assumptions, since the first term gives rise to
a vanishing work at the critical point where ao+6ay=0,
and the second term is Rocard's additional term, It is
worth pointing out that Rocard's approach does not
take full account of the correlation effects since, after
setting up an equivalent to Eq. (47), he considers only
one cell and not its interactions with its neighbors.

The last theory to be considered is that of Yvon. 4

His fundamental approach is essentially similar to ours,
but his method of treating the system as a whole is
based on a rather different viewpoint. Our theory is
based on treating the system as an assembly of inter-
acting cells whose basic properties we do not compute
but in terms of which we work. Yvon attempts a
completely molecular description of the system (liquid
in his case); he works in terms of an Ursell development
but, due to the complexity of his method, he is able to
handle only the terms corresponding to "binary clus-
ters" of molecules when it comes to making explicit
calculations. Since there is no reason to believe that
this limitation is plausible in the neighborhood of the
critical point, we do not think this method is fruitful
in practice although it is probably correct in principle.

Let us conclude by comparing the predictions of the
various theories discussed so far as critical opales-
cence~" is concerned. We have not made here an
explicit calculation of our own, but we have indicated
that both the Ornstein-Zernike and the Rocard theories
are, in a sense, special cases of ours.

9H. A. Stuart and H. G. Trieschmann, "Lichtzerstreuung, "
Hand und Jahrbuch d. Chem. Phys. Bd. 8, Abschn. II {Leipzig,
1936).

'0 J. Cabannes and Y. Rocard, La Diglsiol Moleculaire de la
Lumiere {Les Presses Universitaires de France, Paris, 1929)."G. Oster, Chem. Rev. 43, 319 {1948).
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Our interest is only in the dependence on wave-length
and the angular distribution.

The Smoluchowski theory predicts

I/Is ~ 1/X4(1+cos'8)P, (48a)

I/Is ~ 1/)t4(1+cos'8) (y)&. (48b)

Here I/Ie is the ratio of scattered to incident intensity
of light of wave-length X observed in the direction 8;
P is the compressibility,

P= 1/V (8V—/8P) r,
and &=8'V/8Ps. The expression (48a) is valid away
from the critical point, and (48b) at the critical point,
in this theory.

Ornstein and Zernike's theory predicts

l 1—~ —(1+cos'8) (49)
Io X4 I 1/P+0'[sin(8/2)/)t]'I

The constant d' is a measure of the radius of the
intermolecular forces and is proportional to E de6ned
in Eq. (45). The additional term in the denominator
arises from the correlation of Quctuations in different
volume elements giving rise to a 1/)t' dependence and
an enhancement of the forward scattering at the critical
point. The result is not quite complete as it stands,
since it makes I/Is infinite for 8=0 at the critical
point. Placzek" has shown that taking the 6nite volume
of the scattering medium into account introduces a
factor preserving the 6niteness without modifying the
result for experimentally realizable situations.

Rocard's theory predicts

I 1—~—(1+cos'8)
[(1/)8)+ij

where c is a constant arising from the additional term
in the pressure (cc Pp).

The predictions of the Ornstein-Zernike and Rocard
theories diBer in two ways: the wave-length dependence,
which becomes 1/)t' at the critical point in the former

theory, and the angular distribution, which is prefer-
entially forward at the critical point in this theory.
The two sects must go together here, as can be seen
from the derivation of Eq. (49). (The theory of Yvon
gives a wave-length dependence A) —'—BX ' where

A, 8 are positive. We discuss this no further for reasons
given above. )

Experimental work on critical opalescence has not
settled the question in any clear fashion. The results
of Andant" and Battacharya" show a change in wave-

length dependence in the immediate vicinity of the
critical point. Both find a dependence on 1/Xs at the
critical point and Andant has studied the change in

exponent in ()t ") quite carefully. On the other hand,

~ G. Placzek, Physik Zeits. 31, 1052 {1930}.
"A. Andant, J. de phys. et rad. 5, 193 (1924).
"D. K. Battacharya, Proc. Ind. Assoc. Cultiv. Sci. 8, 277

(1923).

1
z&r exP ——Z IJIIZIzt fg~

k, l2.
(Z~f)Av=

~

~

exp ——g uf, fez~ dr'
2k, l

Let us introduce the (real) eigenvectors of ((oa&((:

cos —k l+-; l&0.

(Ai)

(A2)

The eigenvalues are given in Eq. (24). Ke use real eigenvectors
to avoid complex integration.

Let
za=Zgfiyi; yi=Zgu 'zk=ZgkfzI, '

k

(since []eat[[ is orthogonal).
The restriction of Eq. (22) is now simple:

Zzj = Z gI fyi= ZyiZyI &=M'"yo=O.
k, l g

(A3)

(A4)

Hence, all we need to do to observe the restriction is to set ye=0
and drop this variable.

Z ~I pkzr=Z~ayI .
k, L k

1
~Z &Im'firn ymyn eXP —-5 4yI," d~

(zan)A = '

exp —-Z'ykyI, 2 g7'
2 4

(AS)

(A6)

5gpmp&s ym eXp ——p XIsyfs dV'
m 2k

(ZkZ&)A =
exp ——g') I„.yI,

2 dg'
2k

The integrals are now simple and we obtain:7

(A7)

(Z«) =Z' (A8)

Let us put this expression into a simple explicit form by intro-
ducing the values of the qI from Eq. (A2).

2,cosp(2m/M)k m+(~ /2)(m1+m2+m3 /3M) j
(ZkS f)Av =—8+M' ke

Xcosf(2x/M)l m+(m/2)(m1+m2+m3/3M) j. (A9)

Expanding the cosines and making use of the fact that
),m=Z~(~;+q, +q, ) ~, we obtaini,cos(2x/3f)(k —t) m("Z)"=—,r, '

M'

which is the result given in the text, Eq. (31).

(Aio)

» A. Rousset, Ann. de physique 5, 5 (1936).

Roussetrs working with fluid mixtures (for which the
theoretical predictions are essentially the same), finds

no such de6nite results. For several types of fluids,
the )t~-law and the angular symmetry (forward and
backward) are preserved up to the critical point. In
other cases, the exponent n decreases to a value of
about 3 and, at the same time, an asymmetry between
forward and backward scattering appears.

Summing up, it seems safe to say that there are
experimental indications that the correlation eBects are
real and observable, although not in all cases.

APPENDIX

We wish to evaluate


