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only difference that the fifth component (9 percent of
total intensity) is in a considerably greater distance
from the fourth component, approximately equal to the
distance of the third and fourth components (200-198).
All I' and E lines reveal a similar structure.

This work was undertaken in the hope to clarify
certain minor features of the structure of the lines in the
spectrum of the mercury hydride, and to bring about
the Grst proof of the existence of hyperGne structure in
band spectra. The author believes that the second aim
was achieved in a satisfactory manner. However, the
general relations have not been clarihed by this in-

vestigation. Just on the contrary, attempts to find an
explanation of the hyperGne structure and of the devia-
tions from the normal rotational isotope eBect are
meeting serious de.culties. It seems that a clarification
of the problems brought forward can be expected from a
thorough theoretical study of hyperGne structure and
nuclear isotope shift effects in diatomic molecules.

1Vote added in proof.—The availability of concentrated
samples of the isotope Hg»& has been recently an-
nounced [C. P. Keim, Phys. Rev. 76, 1270 (1949)].A
corresponding study of the hyperGne structure of its
hydride spectrum is in preparation at this laboratory.
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This paper concerns the effect of interactions inside the spin
system in giving a 6nite line width to the energy absorption lines
in an oscillating magnetic 6eld. The principal calculations are of
absorption coefBcients at low frequencies for copper salts. These
absorption coe%cients refer in most cases to the aperiodic line
near zero frequency and not to the Larmor line. The first step is a
discussion of the general procedure for reconstructing a shape
function f(v) from its moments. The special case in which the
zeroth, second, and fourth moments are known arises in the ab-
sence of a constant magnetic 6eld, and at the Larmor frequency
in a constant magnetic 6eld perpendicular to the oscillating 6eld.
These cases are discussed and compared with experiment in
Section III; extensive calculations have already been made by
Van Vleck in the second case. The magnitude of the exchange
coupling is the decisive factor, as pointed out by Gorter and Van

Vleck; and various methods of calculating this magnitude from
experimental data are given. Low frequency absorption in a per-
pendicular 6eld is discussed on the basis of a Gaussian approxima-
tion in Section IV, and the agreement with the experiments of
Volger, Vrijer, and Gorter is good. In Section V it is shown that
quantitative calculations only emphasize the discrepancy, pointed
out by Broer, between theory and experiment for low frequency
absorption in a parallel constant 6eld. An explanation of the dis-
crepancy is given in terms of the difhculty in resolving out the
different lines in this case, due to the exchange broadening of the
Larmor line, in contrast to the exchange narrowing of the Larmor
line in a perpendicular field. In Section VI a calculation of the
isolated susceptibility of a spin system is given for strong 6elds;
it is found to be 0.80 of the thermodynamic or adiabatic sus-
ceptibility of Casimir and du Prh, even in the absence of exchange.

L INTRODUCTION

HIS paper is a condensation of the doctoral thesis
submitted by the author at Harvard University,

June, 1949. Its purpose is to discuss quantitative calcu-
lations on energy absorption by a paramagnetic salt
in a magnetic Geld; these calculations being restricted
to absorption in which the line breadth is due to inter-
actions inside the spin system. The calculations of this

paper are similar to those of Van Vleck' on the Larmor
line in a perpendicular Geld; in the following para-
graphs line shapes will be calculated for other lines of
interest.

There are three principal cases which concern us;
those in which the energy levels of the salt between
which the absorption takes place are those which exist

A. in the absence of a constant magnetic 6eld (H =0),
B. in the presence of a 6eld H =H~ perpendicular to the rela-

tively weak field Ho exp(2m'} from which energy is absorbed,
C. in the presence of a 6eld H=H, parallel to the oscillating

field H. e~(2~.t).
' J. II. Van Vleck, Phys. Rev. 74, 1168 (1948).

These three cases have been studied experimentally at
relatively low frequencies by Gorter, Broer, and others
at Leiden."Cases A, 3, and C are treated in Sections
III, IV, and V, respectively. Remarks concerning the
applicability of these methods to absorption at the
Larmor frequency in a perpendicular Geld are made at
the conclusion of Section III. Energy absorption at the
Larmor frequency and at double the Larmor frequency
in a parallel Geld is approached from the more familiar

standpoint of the so-called isolated susceptibility of the

spin system in Section VI. Absorption at high multiples
of the Larmor frequency has not been investigated ex-

perimentally. Figure 1 summarizes the investigations
made here and elsewhere on paramagnetic relaxation
phenomena.

Broer' has shown that energy absorption due to
spin-spin interaction is characterized completely by the

I L. J. F. Broer and J. Kemperman, Physica 13, 465 (1947).
Volger, de Vrijer, and Gorter, Physica 13, 62 (1947).' L. J. F. Broer, thesis, Amsterdam, 1945.
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shape function f(v) defmed by

v+6 v/2

f(v)av = P ~
Mgi~'

with M~~ being a matrix element of the total magnetic
moment of the salt between two states k and 3 of the
spin system. All matrix elements are included in the
right-hand sum for which the frequency djt6erence

v~&=(EI, E~)/—0 of the two states k and f falls in the
range v —&v/2& v~, ~( v+Av/2. The increment hv must
be small from a macroscopic standpoint, yet large
enough so that a good many pairs of discrete states
k, l are included in the sum. Experimental results are
expressed in terms of f(v); the following sections deal
with methods of approximating to this shape function.

The Hamiltonian of the spin system, whose wave
functions are those between which the matrix elements
III', t in Eq. (1) are to be calculated, is taken to be

3'= gpss g 5—„+Pg'p'r;, 'LS; S,
s s&j

—3(S,"(r/r);, ) (S," (r/r);, )5

+P g'P'r;, -'A;, S,'S,=3C,+K, (2)
s&i

with Xo and X& defined by

3cp= gpB Q 5„.+Q—g'p'r g '[B„;5„-5„
i s)g

+C;,S; S;5++ g'P'r;, —'A;, S; S,, (3)
s&j

~i= Z g'p'&v 'LD'O''+5~++De*5'-5~-
i&j

+E;,(5;+5.,+5„5,+)+Ev*(5; 5.,+5.,5, )5. (4)

ceptibility is given theoretically by

yo ——C/T = (—')Sg'p'5(5+ 1)/k T,

with P the Bohr magneton, k Boltzmann's constant, and
X the number of paramagnetic atoms per cubic centime-
ter. The effective gyromagnetic ratio g as here defined is
given by twice the square root of the ratio of the ex-
perimental to the theoretical susceptibility.

B. There is no crystalline potential term in the
Hamiltonian. This is equivalent to assuming, as far as
calculations of the line shape are concerned, that
S=-'„or else that for some reason the crystalline
splitting is negligibly small. For S=~, according to
Kramer's theorem, ' the twofold degenerate level of an
atom cannot be split by any electric field, no matter
what its strength or asymmetry. Comparison with ex-
periment will be limited in the following to copper salts
for which S is indeed ~. Calculations in Section VI are
not concerned with line shape and hold for any S.

The unperturbed Hamiltonian is Xo, the perturbing
energy X~ enters in the calculations of Sections IV
and V. The four terms in Ki as given in (4) will be
called Xi&'&, X&&'&, X~('&, and Xi&'&, respectively, and
are conveniently separated by this breakup for use in
the perturbation processes of Sections IV, V, and VI.

f fv)
(H&0)

The coeKcients 8;j, C;;, D;;, and E;; are defined by

&V= fr i(tx' fPi)'
where a... P;, , y;; are the direction cosines of (r/r);;
with respect to the x, y, and s axes, respectively; these
axes being chosen so that B, the constant magnetic
field, is along the z axis. The first term in (2),

gPH+, 5„,is the Zeem—an energy; the expression

g g'P'r;, 'LS; S,—3(S; (r/r);, )(S,"(r/r);, )5

is the magnetic dipole interaction energy;

p E';,S;.S;=p A,,g'p'r;, —'S;.S,

is the exchange energy. It is supposed, in using (2), that
A. The orbital contribution to the magnetic moment

of a paramagnetic atom is quenched completely out
by the interaction of the surrounding crystalline electric
fields. A first-order correction to this approximation is
made by using, not g=2, but g as derived from static
susceptibility measurements. (The spin only sus-

f(A
(H&He'll

"~M/~5 M/i5
FjG. i. The function f(~) for no constant magnetic Geld (H =0);

for a constant magnetic Geld perpendicular to the oscillating
field (H=HD), and for a constant magnetic Geld parallel to the
oscillating Geld (H=H, ). The dotted lines are for negligible ex-
change; the solid lines show the effect of exchange. The various
lines are discussed in the following places: Curve I; Broer, refer-
ences 4, 7. Curve II; Section III of this paper. Curves III, IV;
Section IV of this paper. Curves V, VI; Van Vleck, reference 1;
see also end of Section II. Curves VII, VIII; Section V of this
paper. Shaded Area IX; Section VI of this paper.

~ H. A. Kramers, Proc. Phys. Soc., Amsterdam 33, 959 (1930).
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In the so-called strong 6eld limit, in which H is sup-
posed very much larger than 6elds characterizing the
dipolar and exchange energies, the unperturbed energy
levels of XQ are just

EM gp——HM— ' (6)

with M' the s component of the magnetic moment and
a true quantum number for this system. Here the ab-
sorption, according to the simple Larmor precession
picture, is at the Larmor frequency in a perpendicular
field (or at zero frequency in no Geld). The usefulness
of the form (4) for the perturbing energy results from
the fact that in the strong field limit non-vanishing
matrix elements for a given term of (4) are obtained
only between wave functions diGering in their associated
energy values by one specific multiple of hvL, , vt. being
the Larmor frequency gPP/h. Thus, in the strong field
limit the perturbing energy introduces additional ab-
sorption only at other multiples of the Larmor fre-

quency; absorption bands appear near frequencies 0,
2vL, , 3vt. , and in high order perturbation processes at
still higher multiples of the Larmor frequency.

f(v)dv= 2 IMkiI'=SpurIM'I
~o k~l

II. THE METHOD OF MOMENTS*

Because of the large number of energy levels of the
spin system it is not feasible to compute wave func-
tions, matrix elements Mkk, and thus f(v) from (2), (3),
and (4) in a straightforward way. The only method of
procedure that has proved useful up to the present
time is the method of moments in which the following
quantities are calculated:

matrix multiplication. For a single absorption band the
relevant matrix elements Mk, 2 (where k and l are such
that (Ek—E~)/h is approximately the energy difference
corresponding to the particular band under considera-
tion) may be either those of the operator gPP;S„, or
gPP;5;, in a zeroth approximation, or those obtained
from these operators by perturbation calculations with
the perturbing energies (4). The energy U consists of
all the Hamiltonian with eigenvalues small compared
to the Larmor energy hvL, . If H=O, U consists of the
complete Hamiltonian (2); if H+0, U is just Ko.

It is simpler to consider the problem of calculating

f(v) from its moments for a single absorption band,
rather than for all such bands at once. Once these
moments (7) are known, the function f(v) can in prin-
ciple be reconstructed in the following way. Suppose
f2(v) is defined by

f2(v) (v )All(2/2r(v')A, )& exp( v'(—2(p')A„) (8)

with (v')A, = J'2"f(v)dv Then .f2(v) Gts the zeroth and
second moments. Let fk(v) be a function Gtting the
moments (v')A» (v')A„, ~, (v )A, . Then a function

fk+2(v) fitting the mOmentS (v')A„, (v )A, and alSO

v Av is

fk+2(V) =fk(V)+ (P )Av

F00

v"+'fk(v)dv (k+2) ' (dldv)"+'f2(P), (9)

since if the second term of (9) is multiplied by any
power of v up to and including v~, and integrated from
0 to ao, the result is zero; however, for v~+' the result is

(Vk+2) „)I Vk+2f (P)dP

From this fact it follows that

J~ vifk+2(v)dv= t v'fk(v)dv=(v')A» (1=0,~,k)
0 0= h ' Spun(22; $2 Mp& /2M. (7——a)—

v'f(v)dv=Q vkk2IMk(I'
~0 k, l

= —h 'Spun/i'!k =(MU UM)—
,

~ v'f(v) dv =p vk2' I Mk2 I

2

JQ k, l

The quantities on the left in Eqs. (7a) are the moments
of f(v), by definition. In the following paragraphs
average symbols for these moments will be used, as
given in Eqs. (7b):

f(p) dv = (v')A„,
I

p"f(v)dv I
. (v'),„=(v')„„. (7b)

i

The equivalence of the moments in this case to the
right-hand members of Eqs. (7a) has been shown by
Wa1ler' and Broer' according to the general laws of

"E.T. %hittaker and G. Robinson, The Calcukls of Observa-
tions (Blackie R Son, Ltd. , London, 1937), Chapter 8.' I. &aller, Zeits. f. Physik 79, 370 (j.932).

'L. J. F. Sroer, Physica 10, 80j. (1943).

J
V fk+2(V)dV=(V )Av

0

The properties of the second term can be seen by inte-
grating by parts; j of the k+2 derivatives of (9) can
be used to get rid of v&, one of the remaining derivatives
can be used to integrate, and the result is proportional
to (d/dv)'"+'f2(v), But the operator (d/dv)' +' just
multiplies f2(v) by a polynomial of odd orderwhic, h
vanishes at the origin, and f2(v) vanishes at ~. If j is

4+2, however, all k+2 of the derivatives must be used
to act on v™and replace it simply by a factorial
(k+2)! This (k+2)! just cancels the (k+2)! in the de-
nominator of (9); J'2"f2(v)dv remains, and this integral
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p (0)= (rr/2(v')a. )'= (rr/2)'(k/gPH ) (lg)

Table I summarizes (18) versus experimental values for
certain copper salts. The quantity C, given in the last
column of Table I, is the empirical correction factor to
the theory based on the zeroth and second moments
only. The following paragraphs attempt to estimate t

as it differs from unity.
In order to take into account the e6ects of exchange

which are responsible" for the discrepancies indicated
in Table I, it is necessary at least to calculate the fourth
moment, as this is the first moment to depend on A,
the exchange constant. The appropriate formula is

III. ABSORPTION VUTH NO CONSTANT MAGNETIC
FIELD PRESENT

The present section is concerned with calculating the
moments (7), for H=O, substituting these moments
into the appropriate formula (9), and comparing the
approximate shape function thus obtained with the
experimental results. There is only one absorption band
to be considered here centered about zero frequency.
The relevant magnetic moment is

is one. Thus, fa+a(v) fits all moments up to and in- for p'(0) is
eluding (v~')A„. By means of the formula (9) a sequence
of functions can thus be constructed, on the basis of
known moments, converging to f(v)

M, =gp Q 8„.. (10)
GQ ~00

(v')A, = i vrf(v)dv f(v)dv
J0 0

(19)

The relevant energy is the complete Hamiltonia, n (2);
the operator expressions to be calculated and aver-
aged are the right-hand sides of (7); SpurM, ',
—k—'Spur(3CM, —M PC)' etc.

The first two moments have been calculated by
Broer.4' His results are, in brief,

vrf(v)dv=k ' Spurigaa
0

$2=AU+V, fr5; fr given in (13).

Direct commutation results in

(21)

I f(v)dv= ', Ng'P'$(S+-1) =kTxp, (11) A= 9g'P'—Z' [Aar'"+(1+Aar)Aar"'5rar'
k, l

3g'P' Z—
' D1+Aar)Barr +Darr 5rar rav (22)

v f(v)dv= —k a Spugra= kTxrr(va)A„, (12)

4= U'+l', gPZ~- = 3*g'P'2—

X {rar r(SaX (r/r)ar). (Sr (r/r)ar) }, (13)

f
(v')a, = v'f(v)dv

aJ 0

f(v)dv =g'P'H a/k' (l4)
J0

H,2=2g'P'S(S+1)g rpq '. (15)

The appropriate approximation (9) is k+2=2, k=0;
(9) becomes

f2(v) = (2/rr(v')A. )'(v')A, exp( —v'/2(v')A, ). (16)

An important point to notice is that (v )a, is independent
of the exchange constant A. The mathematical reason
for this is that the exchange energy P,~,K;;S;S, com-
mutes with gppg„; thus the operator pr of (13) is
independent of A. This point will be discussed more
fully later, in Section IV.

The experimental results which we will discuss are
usually limited because of technical difficulties to such
low frequencies that only f(0) can be determined; they
are expressed in terms of a quantity p'(0) defined by

p'(0) = rrf(0)/2kTxp. (17)

According to (16) and (17) the theoretical formula

A~i"'+As~"'= o, (27)

and since the Aar"' terms occur symmetrically in (22),
the relation (27) causes the A' terms to drop out of
(22). Since the crystalline potential terms were omitted
originally, this theory will be applied only to substances
with a spin of ~; therefore we shall, for the sake of sim-
plicity, omit the Ah, &&'& term from now on. This term
will presumably be only a small correction for not too
large S.

C. J. Gorter and J.H. Van Vleck, Phys. Rev. 72, 1128 (1947).

Aar&r& = (S; (r/r) ar)'{ (r/r)arX ((r/r) ar XSa)5. (23)

2Aar"' ——{[(SaX(r/r) ar) XSr5., (Sr (r/r)ar) }+

+ {Sr SaX(r/r)ar, (SaX(r/r)ar), }+ (24)

Barr =L(SaXSr)X(r/r)ar 5(Sr'(r/r)ar ~)

+(SaXSr (r/r)ar)(Sr X(r/r)ar )* (25)

—-', f7a« = L(SaX (r/r)ar) X(r/r)ar 5.(Sr. (r/r)ar)

X(Sr"(r/r)ar +(SaX(r/r)ar rar )

X(Sr (r/r)ar)(Sr" (r/r)ar ),. (26)

The symbol {A,B}+ or [A,B5+ is taken to mean
AB+BA; and the symbol {A,BI or $A,B5 means
AB—BA.

For a spin of ~ it is easy to show that
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The next problem is to square the expression (22)
with the Akl(2& term omitted. Omission of terms whose
average is zero results in

lation finally results in'

9g10P10 SpurL 4Q 7glOP10S3(S+ 1)3A'ld —12

(error small), (38)

with

10= p' Akt73k«rkt 3rkt '
k, l, l'

t}l2'= &1+&2+&3

81glOP10 Qt A (1)r —12

k, l

&2=81g"p" 2' Akl"'Akl "'rkt 'rkt '
k, L, l'

5—9glOPIO Q g.

(28)

(29)

(30)

(31)

9g"P" Spurl 1=89g"P"f}/AS'(S+1)3d "
(error small), (39)

9g10P10 Spurr 2
—

80glOP10gVAS3(S+ 1)3d 12

(estimated error negative and less than
—12 percent), (40)

9g"P" Spurl. = 75g"P"&VS'(S+1)'d "
(estimated error positive and less than

25 percent), (41)

XD"ktt AkÃktt rkt 3rkt 'j (32)

I 1 2 2 ~1 kt73ktt'rkt "kl'
kl l'

9g"P" SpurL4 ———110g"P"ÃS3(5+1)'d—"
(estimated error negative and less than

25 percent), (42)

I-2=22'Dkttrkt 'rk« '
klL'

X[I'0k«J3k«rkt 3rkt 3] (33) 9g"P" SpurL =1 7 10'g"P"tVS3(S+1)'d "
(estimated error positive and less than

25 percent), (43)
XP' ktt Aktf3ktt & kt &kt'j (34)

f3ktt'rkt rkt [f 'ktt f}ktt rk't rk't 1'
kl l'

'P' ktt &ktt &kt '&kt
k l l

2' Dk«&kt '&kt 'P"'k«Dktt &kt '&kt
kl l'

(35)

(36)

(37)

Substance
Form (18)

for p'(O)
Exp c (' I'.xe. P to}q
p'(OI %Form ($8}1

The L0 term will, when evaluated, be proportional to
A', it is the only "pure" exchange term in $22. The
two terms 1.1 and I.2 will be proportional to A; they are
terms coupling dipole and exchange interactions. The
terms 1.3, 1.4, and L5 are pure dipole terms, along with

E& and E2. In evaluating numerically the various terms
of (28), two assumptions will be made: first, that ex-
change acts only between nearest neighbors, and thus
A;,=0 unless i, j are nearest neighbors; and second,
that the paramagnetic atoms are arranged on a simple
cubic lattice, so that the number of nearest neighbors
is z=6.

There are two factors affecting the relative difhculty
of numerically evaluating the I.,'s. One of these results
from the fact that Dkll is a far more complicated ex-
pression than BkLL. Thus in I; terms in which Dkll
enters, approximation methods will be used. Secondly
it is far simpler to evaluate sums involving exchange
interactions, since the pairs of atoms involved do not
have to be summed over all possible pairs of neighbors.
Involved algebraic manipulation and numerical calcu-

TAsLE I. Gaussian approximation to f(v): theory wrsscs
experiment for p'(0).

SpurE2= 83g"P"iVS'(S+1)'d "
(error small), (44)

SpurK3 = [22—7S—'(S+ 1)—1jg'oP 1oÃS3

X (S+1)'d " (error small). (45)

It is seen that I-& and 1.2 cancel, within the accuracy of
the evaluation of the lattice sums. Omission of these
two terms then yields for It ' Spf22:

13 ' Spf '=g"p"1Vd "h 'S'(S+1)'[40.7A'
+2.4.10'—7S '(S+1) 'j (46)

Division by (v0)A, from (11), and use of (14) then re-
sults in

(")"=& ' Sp4'/(")"
= ((t 2),„)2[0.43A'+2. 6—0.1S-'(S+1)—') (47)

for the fourth moment. Possibly a term proportional
to A, of magnitude probably positive and less than
0.1A, may be present. The coeKcient 2.6 is accurate to
around 25 percent. Thus the value [2.6—0.1/S(S+1)]
implies that, to within the accuracy of our calculations,
if A is negligible, the mean fourth frequency is just
what one would get by integrating the function (16)
times v4 from zero to infinity. If there is no appreciable
exchange, the function (16) is therefore a good approxi-
mation to the actual function describing the shape of
the line. This fact has been demonstrated by Van Vleck'
in connection with the Larmor line in a perpendicular
6eld; Pake and Purcell" have tested this theoretical
prediction for the substance CaF2 and found it to be
very well con6rmed experimentally.

The formula for f4(2) is

Cu(NH4) 2(SO4) 2 6H20 200
CuSO4 5H20 370
Cu(Br08) 2 6H20 250
CuCJ2-2¹O 590

2,0
1.1
1.6
0.69

5.7
4.2
7.1
6.0

2.g
3.8
44
8.7

f4(~) = }32'X0(2/~(~&A.) 'f 1+([(~4)"
—3(2')A'j/4!)(did~)'I exp( —~'/2(~)A. ) (48)

' A. Wright, thesis, Harvard, 1949."G. E. Pake and K. M. Purcell, Phys. Rev. 74, 1184 (1948}.
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QQ

f2(v) f4(v) =—&v'&A„
— v2fi(v)dv 6 !

0

&&(dldv)' exp( —v'/2(v')A. ) (51)

At the origin this becomes

—15[&")"—15(")"(").+30(&")")'j/[6'(&"&)"'j (52)

The condition that the expression (49) for p'(0) be a

good approximation is therefore that

I 15[(")"—15("&"(")A+30(("&")'3/[6'&(")")'jI
«[&"&"/(&~)2)'—8/8 (53)

The moment &v')2, is not known; however it is reason-
able to expect that

(v )Av:[ClA +C2A +C3]((v )Av) (54)

with Cl—0.1, C2—3, and C2—15.' The expression (53),
written, using (54), in terms of A, becomes

I0.1A4—3A'I «2.5A' or
A«[(1/0. 1)(2.5+3)]&=7. (55)

Thus, for A«7 formula (49) will be an adequate ap-
proximation. When A is of the order of 7 or larger
however, the convergence of the sequence (9) will be
very slow and another approach is indicated. We will

return briefly to this question after we have considered
other methods of estimating A accurately.

There are two further methods of estimating A which
we will consider. The first of these is based on the for-
mula (56) below for the ratio of the specific heat con-
stant b to Curie's constant C, in terms of A and H; of
(15):

(b/C) = (b~ +b,i, )/C =
(.H 2/2) [. 1+036A'j. (56)

Formulas (48) and (17) result in

p'(o) = ( /2("&")'[1+x(("&"/& '&"'—3)j (49)

A comparison of (18) and (49) shows that a theoretical
calculation, say C', of the coeScient C of Table I, in

this approximation, is just

C'= }1+—[( )„„/( ) „—3j}=1+( )0.43A . (50)

In a purely formal way, without considering whether
or not the function (48) is a good enough approximation
to the actual shape function, the A which is necessary
according to the experimental values for C, given in
Table I, can be calculated from formula (50). These
values of A are called A& and are listed in column 3 of
Table II.

Now let us investigate the convergence of the se-

quence (9) near the origin v=0, as it depends on the
magnitude of A. The next approximation, f2(v), will

differ from f4(v) by

This formula is due to Van Vleck;" the experimental
determination of (b/C) has been made from spin-lattice
relaxation data by Broer and Kemperman, ' and by
Volger, Vrijer, and Gorter, ' for Cu salts. Column 4 of
Table II gives (b/C) s,s derived from their data; column
5 gives A2 as obtained from these values of (b/C) and
formula (56).

The second method is based on formula (57), due to
Opechowski, "for the temperature constant 0 occurring
in the Curie-Welss formula for the static susceptibility
x=C/(T —0), in terms of b, the gas constant R, and
the number of nearest neighbors b —b „.of a para-
magnetic atom:

(b b~.)/—R=b,x.l, /R =30.2/2s. (57)

"J.H. Van Vleck, J. Chem. Phys. 5, 320 (1937)."V7. Opechovrski, Physica 4, 181 (1937).

Formula (56) in turn relates b to A and H;. The number
of nearest neighbors z is usually 6; R is 8.315 10'.
Column 6 of Table II gives values for several salts;
column 7 gives values for A3, as derived from formulas

(57), with (56) and these values for O.
The first point to be noticed in Table II is that A2

and A& agree well for all substances for which both
methods are available. The agreement is well within
experimental error. Thus we may regard A as known
from A~ and A3.

For CuNH4(SO4)2 6H20 the actual A is thus about
4.5. The inequality (55) is satisfied to a first order of
magnitude, but not accurately. This is reflected in the
fact that Ai is 6; thus A& and A& certainly agree to
order of magnitude, but not accurately. The disagree-
ment is moreover in the proper direction. For A=4, 5
the left-hand side of (53) is negative; therefore, as can
be seen from (52), the next contribution to p'(0) is
positive. Thus the actual A should be, and is, smaller
than Al. Unfortunately, no data on p'(0) are available
for CuK2(SO4)2 6H20; thus no Al can be calculated.
The agreement would presumably be a little better for
this substance.

The remaining substances do not have exchange
coupling of such a magnitude, as indicated by A2 and
A2, that the inequality (55) is satisfied. Thus the
parentheses in the Al column indicate that (48) and
(49) are not good approximations and agreement with

A2 and A3 should not be expected. All the Ai in paren-
theses are less than A2 and A3, as would be expected,
since the next contribution (52) to p'(0) is negative in
these cases. Thus the values for A~ and A3 are at least
adequate to account for the observed values of p'(0).

Thus we may say that the above theory agrees
with experiment as far as it goes. For the substances
with very large values of the exchange constant, an-
other mathematical method of approach to the problem
other than that based on (8) and (9) is indicated. The
same mathematical situation exists at the Larmor fre-

quency in a perpendicular field; calculations on this
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TAw. K II. Magnitude of the exchange coupling
by various methods.

Substance Hg At (b/C) &0 4 Aa

Cu(NH4)g(SO4)g 6HgO 200
CuK~(SO4) 2 ~ 6H20 220
CuSO4 SHE 370
Cu(c, r-X,N)(NO, ),
CuC12 2HgO 590
Cu{Sr03)2 6HgO 250

6 018 4 5
0.12 3.3 0.052 3.3

(7) 10-20 25 —0.70 25
0.25 8.3

(12) — — —5 120
(8) — — 1.5 80

13 Sloembergen, Purcell, and Pound, Phys. Rev. ?3, 679 (1948}.
"iQ. H. L. Pryce, Nature 162, 538 (1948}."E.Zavoisky, J. Phys. U.S.S.R. 10, 170, 197 (1945).

subject have been made by Van Vleck. ' However, the
available data for this case also applies to substances
for which the exchange coupling is very large, such as
CuSO4 5H~O and CuC12 2H20. The approximation
method (9) is not adequate for these cases either. It is
uncertain as to what alternate procedure could be used.

Van Vleck' has indicated an interesting analogy be-
tween the relaxation theory of Bloembergen, Purcell,
and Pound, "relating to phenomena in substances with
molecular rotation, and the theory in terms of moments.
He points out that this analogy would predict a value
for the line breadth for very large exchange coupling
of the order of magnitude h(hv')&, /A. The quantity A.

relates to Van Vleck's notation; changing over the
notation to that in terms of A, and using the value
which Van Vleck has obtained for the mean square
frequency of the Larmor line, we have that the line
width should be of the order of magnitude of

Half-widths of the Larmor line have been obtained
for two Cu salts, Cus04 5H.O and CuC12. 2H~O. (Van
Vleck has pointed out that, in an eR'ort to reduce the
broadening in cupric salts due to anisotropy in the
g-factor, " it is advisable to use relatively small con-
stant fields, inasmuch as this broadening is proportional
to the applied field. Thus the half-breadths which we
will use are those furnished by the measurements of
Zavoisky, "at relatively low resonant frequencies. ) We
have obtained an A value for each of these two sub-
stances: 25 and j.20, respectively. The half-widths ac-
cording to the formula in the preceding paragraph
would then be for the two substances, respectively,

16 gauss and 5.5 gauss. The observed values are
175 and 125 gauss. One would not expect the di8erence
between observed and predicted values to be oG by
more than a factor of about two or three because of
proportionality factors which could not be obtained
through the analogy. However, the conclusive point is
that the predicted rat~0 of the two line breadths, which
shouM be independent of any proportionality factors,
is 3. The observed ratio is i.4. Thus the approach of
Bloembergen, Purcell, and Pound does not seem ap-
plicable in this case. It is uncertain as to just what the
mathematical approach should be.

IV. ABSORPTION IN THE APERIODIC LINE IN A
PERPENDICULAR MAGNETIC FIELD

In the presence of a perpendicular magnetic 6eld the
single absorption band centered about zero frequency
shifts to an absorption band centered about the Larmor
frequency gPH/h= vr, . In addition, because of the pres-
ence of the spin-spin interaction which spoils any selec-
tion rule, absorption bands of weaker intensity are
present at frequencies of approximatejy 0, 2vt. , and
3vr, (and in higher order perturbation processes at still
higher multiples of the Larmor frequency). A direct
calculation of Pqg'/Mg, , g[2, Pl, gvqPJMqqf', includ-

ing all pairs of states k, l as was done in Section IXI in

connection with absorption for no magnetic field
present would be completely inappropriate. The sum

Pq, ~'~ Mk, ~
~

' would give the area under the function
f(v) including all the absorption lines: in the remaining
moments the higher frequency bands would actually
contribute more due to the weighting factors of vt, P,
vq~4 ~ ~ . No information at all could be obtained in
this way about the low frequency band.

It is necessary to limit the states k, l appearing in the
various series in some way to states with energy diGer-
ences which are &(gPH. The problem is to construct, by
means of perturbation formulas, an operator expression
from gpss;S„which gives the correct matrix elements
(M.)A, ~ between levels with small energy differences
(small compared to gpH) and no matrix elements for
other pairs of states. If we designate this expression
by (M,)&.&., (l.f. meaning low frequency), then the
moments to be calculated are

Sp(M.) J.f.', —h ' Sp[BCD(M,) $. f,
—(M.) ).g.Xp]', . (5g)

A first-order perturbation theory is sufFicient to give
non-vanishing matrix elements of gpss;5; between
states for which vt, ~((vt, . The perturbed low frequency
elements for gPQ;(5„iS„;)—and for gPP, (5;+iSv;)
will first be calculated, and then an average taken to
obtain the low frequency elements of gPP;5„. This
procedure will be simpler and less ambiguous because
the selection rules AM= —1 and 6M=+1 for g;(5„—iS„,) and g;(5„+iSv;), respectively, are sharper
than the selection rule AM=&1 for P;5.;; thus the
energy terms of (4) involved in the respective calcula-
tions will be more sharply separated from one another.

According to First-order perturbation theory the new
wave functions are

rP&'&as v =f"'~ v+
M "-M a2, +i

XP'~"'v'"(Ki)~" v"',sr z /(M"' M')gPH, (5—9)

the factor (M'" M')gPH in the den—ominator repre-
senting a difFerence of unperturbed energy levels ac-
cording to (6). Use of the Hermitian properties of the
perturbing energy and of the formula

n

Fsr z';sr"s"' =J /*us FPm"I "dr (60)
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Yij 7ilirij +7i2Pij +~3Vij i irij v142ij + v2Pij +v3Tij (70)

must be used. The expression which will be obtained
for the zeroth and second moments of f(v) will be
functions of the cosines j}}», X2, X3 of the field Ho with
respect to the crystalline axes; and also of the direction
cosines vl, v2, v3 of the oscillating field HA exp(22»iv3)
with respect to these axes. These expressions will then
be averaged over aB directions of X», )2, )3 p» v2 va.

The two resultant moments will refer to a powder, and
will be those of interest since the physical measure-
ments have been made only on powders.

In order to calculate the zeroth moment of f(v), (69)
must be squared and averaged over the spin functions,
then the transformation formulas (70) must be applied,
and appropriate lattice sums substituted. For a calcu-
lation of the second moment, the commutator of (69)
with 3'.0 is the expression to be squared and evaluated.
The results of these two calculations are

(F"')M P'M"P"=(Ft")M P M"P

+ P (F')M P'M"'P"
~rrr(+~rr) prrr

X(BCi)M" P"',M"P"/(M"' M"—)gPH

(3'.1)M P M" P "+
~r rr(+ ~r)pr r r

X(F3)M- P";M"P"/(M"' M')—gPH (61.)

Let the operator F now be gPP;(5„iS—„i) Th.e zeroth-
order elements Ii &"u'p";J}/I''p"" are then

(F Q'P'M"P"=8 M' 1(F )M-'P', M'+\P". (62)

Substitution of (62) into (61), together with M'=M"
in order to get low frequency elements, results in

F M'P'as'P"= [FKl
—Kl 1F ]M'p'M'p "/gPHrr.

That part of X» with matrix elements of the type

(Xl)M'+1,P"';M'P" ol (Xl) PM', 'M1,P'" ls Kl

therefore (64) becomes

[gPZ'(5*;—iS,~)]i1.
(63)

(v')A„=O 72g4PAX. S'(5+1)2Hrr 'd '

X[1+6.8(XA'vl'+l~2'v22+7i3 v3 )] (71)

(v')A g4p'1s 2——d '[1+68(7 1'vlr+. 7''v2'+7i3'v32)]-'
(64)

IS(5+1)[—50/, 13v12+7 23v22+1133v3')

+100(X1242v32+~12g32v12+7i227i32v12)

—100li19~2913'+(43+49A') () 1'vl'+F2'v2'+7i3'v32)

+32(7i14+li24+X34)+ (—26+3A')]

for the matrix elements of an operator results in the equations the transformation formulas
following expression for the 6rst-order perturbed wave
functions of an operator Ii:

A similar expression holds for the matrix elements

[gPP, (5.;+iS„,)]11.
[gPQ;(5;+ iS„,)]&

= (1/Hsr)[g;(S. ;+i53,),SCA"'], (66)

the appropriate part of K» being X» &".Direct commuta-
tion results in

[gPP, (5.~+iS„;)]11 =(g'P'/H. .rr)g' F r*r;

X[25.,5.;—5;5;—5„;S„;] (67)

[gpss;(S.; 25„;)]1—1—( 'g. '.p——/H)apl'F, ,r;;

X[—25„5„+5„5;+5„;S„,]. (68).

An average of (67) and (68) then results in

[gpZ;5.;]1 1 =(g'p'/HD). Z. '( 2v;;~;,)»;,-'—

X[2S.;5„—S„S„.—S„,S„,]. (69)

It must be remembered that the direction cosines in
(69), and in the commuts. tor of (69) with 3C3, refer to
axes such that the magnetic field is along the z axis.
In order to make use of the usual lattice sums in any

—7A2(7i12v12+X22v22+X32v32) I. (72)

In calculating (v')A„ the terms involving a single power
of A have been calculated to be zero or have been
estimated to be small. Thus in view of difficulties in-
volved in calculating them they have been omitted.
Because of an accidental cancellation it was possible to
calculate the pure dipole terms in (72) accurately
without too great difficulty, also the pure exchange
terms are accurate. The expression for (v')A„(71), is
also accurate. The appropriate expressions for a powder
have been calculated by averaging (71) and (72) over
X»~ X2~ X3) p»~ p2) v3 as

(v')A, =1.7gip4XS'(5+1)2Hrr 'd 3) (73)

f2(v) = (2/2»(v )A,) t exp( —v /2(v )A,), (75)

(v')A„and (v')A, being given by (73) and (74), re-
spectively. Such a Gaussian is presumably a good ap-
proximation to the shape function, since exchange
enters into the mean square frequency (74) in contrast

(v')A =g'p'h 'd '[S(5+1)(5.0+5.0A') —0.6A'] (74)

The approximation to f(v) if two moments are known
is just f2(v), a Gaussian shape function:
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FIG. 2. Explanation of exchange broadening in terms of Larmor
precessions; the quantity 5„+S„remain constant {zero) at all
points of the cycle, thus no energy can be absorbed in the x
dlrectloll,

to the situation for the line with no 6eld present or for
the Larmor line in a perpendicular 6eld. Therefore,
there is no such phenomenon as exchange narrowing
present to any great degree in the case that we are dis-

cussing, but rather an exchange broadening. The situa-
tion here is not critically dependent upon the higher
moments to any large extent, since (74) with (75) takes
both dipole and exchange forces into account. The
fourth moment calculated mathematically will be of
the order A'; also the fourth moment calculated from
(75) is of order A'. Similarly, all higher moments are
given correctly as regards order of magnitude by in-
tegrating (75).

It is perhaps interesting to consider the difference
between exchange narrowing and exchange broadening
on the basis of a Larmor precession model. The 6rst
point to be noticed is that dipolar broadening is always
present. One can in the usual way, " regard a dipolar
term of the type P,&,g'P'r;, '8;,S„S„asanalogous to
a sort of Zeeman energy, with P,gPr;, '8;;S„repre-
senting a mean dipolar fie1d due to atoms j acting on
the magnetic moment gPS„. of atom i. This field will

vary as atom i varies; thus the resonance frequency
will shift slightly over the crystal and the absorption
line will be spread out. A measure of the magnitude
of the dipolar 6eM is H;; thus we expect, and always
6nd, a term in the root-mean-square frequency pro-
portional to H;.

The question arises as to why the exchange inter-
action cannot always be treated in a similar way, and
why there is not always a term in the root-mean-square
frequency proportional to AH, . Figure 2 illustrates an
explanation in terms of Larmor precessions for the
case of absorption in the absence of a magnetic field.
The mathematical explanation is, of course, that
gP+,S„, the relevant component of the magnetic
moment, commutes with the exchange energy, as
pointed out in Section III. The exchange interaction,
as far as just two atoms are concerned, is proportional
to S»S~,"+Sy+yj+S P j Figure 2 interprets the term
S„S„asa 6eM in the s direction, S„,due to atom j,
acting on atom i; and the term S„,S» is similarly in-
terpreted as a 6eld in the y direction due to atom i
acting on atom j. Figure 2 is drawn for an instant of
time such that S~;&0, S„&0.The moments S„,S„at

this particular instant of time are zero, and the direc-
tions of precession, as shown in the figure, are such
that the sum 5„+S„remains zero at all later points
of the cycle. Thus any absorption due to the preces-
sional motion of one of the atoms is canceled by an
equal and opposite eGect due to the other atom, and
no net absorption at a frequency other than zero can
occur as a result of the sects of exchange.

%e thus see that there will be no exchange broaden-
ing in this case. Not only will the exchange precessions
cause no spreading of the absorption however, but
they will tend to disrupt the precessional eGects of the
dipole terms which do contribute to the broadening.
Thus there will 6nally be a certain narrowing e6ect
of the exchange interaction.

The cancellation shown in Fig. 2 depends on the
equality of the magnitudes of the magnetic moments
under consideration for the two atoms i and j. If the
magnetic moments are to be calculated by means of a
perturbation calculation, then the magnitude of this
moment for an atom will vary over the crystal as the
mean field acting on the atom varies. The magnitudes
in Fig. 2 for atoms i and j will not be the same and can-
not cancel at all instants of time. In this case the ex-
change eGects can be pictured as fluctuating 6elds, and
exchange broadening is present.

Experiments' have determined the variation of the
absorption coefficient p'(0) as a function of the mag-
netic fieid Hn. According to the definition (17), for a
shape function (75), p'(0) in large fields is given by

p'(0) =0:61[0.30(1+0.9A') ] &(H '/2Hn2)
X [~V/(2~gPH, )]. (76)

We know, moreover, what p'(0) is for Ho=0; the ex-
pression (18) times C, with C determined experimentally
(see Table I). A reasonable method of combining p'(0)
for no field and (76) into one formula is on the basis of
a Debye curve

p'(Hn, =0)=p'(0, 0)(H; /2)/[(H, /2)+ pHn'0 (77)

with p as calculated on this bs,sis given by

p =0.9C[1+09A'] & (78)

The experiments of Volger, Vrijer, and Gorter deter-
mine (p( H)n/p( Hn 0)) as a function ——of Hn for several
Cu salts. Consequently, a direct comparison of (77),
(78) with experiment is possible. Figure 3 shows this
comparison for Cu salts, for which C has also been
measured. Curve A in Fig. 3 shows (77) for p=0.9C[1
+0.9A~)&, as given in (78); curve B shows (77) for
P=0.9[1+0.9A'j&. Both these cases are important for
two reasons. In the 6rst place, this correction in for-
mula (78) is in a sense a phenomenological one. The
value of C as it differs from unity is due to higher
order corrections to the theory for an A of zero; these
corrections are very dificult to evaluate. In the second
place, there will be higher order corrections to the
function (75), which could be taken into account by
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introducing an analogous constant E into (75) and
(76). Then (78) would be

p= 0.9(C/E) (1+0.9A') ). (79)

It is believed that these corrections will be of a lower
order of magnitude than in the case with no field pres-
ent, since the mean square frequency includes the
first-order effect of exchange as well as of the dipole
forces. Thus K will never exceed t". However, for a
substance such as CuC12 2H20, in which A is very
large, it is possible that these corrections might be
appreciable. Thus, the experimental curve in large
fields should lie somewhere between (77) with p= 0.9C(1
+0.9A')& and with p=0.9(1+0.9A')). A glance at
Fig. 5 shows that for Cu(NH4)2(SO4)2 6H20, the sub-
stance for which we might expect the best agreement,
the curves agree at large HD pretty well with the ex-
perimental curves. It is gratifying that the curve with
the observed value of C in p agrees a little better as
far as numerical values go with the experimental curve.
It is also to be noted that the curve with C=1 in p
lies above the experimental curve at large HD, thus the
correction to (75) is small and E is less than C.

The increase near the origin over the theoretical
curves, present in all the substances investigated, is
due to the absorption from the Larmor line, which is

not yet resolved out for these values of the magnetic
field. The position of the Larmor line is vI.eH~, and a
field strength roughly the breadth of the Larmor line
in Gauss is necessary to resolve out this line. Due to
the exchange narrowing of the Larmor line in a per-
pendicular field this is accomplished for relatively
weak fields in a perpendicular field; however in a
parallel field the Larmor line is exchange broadened,
and the resolution is difficult to obtain. This point will
be referred to later (see the end of Section V).

3E,=gPP;5„. (80)

It has been pointed out by Broer' ' that low frequency
matrix elements of this operator vanish, when these
elements are calculated on the basis of a first-order
perturbation treatment. Use of a second-order per-
turbation theory is necessary. As Broer observes, the
moments of the shape function, (v')A„(v')A„will be
proportional to (H /H, ') in such a situation. Now, in
describing the experimental results it is customary to

V. ABSORPTION AT LOW FREQUENCIES IN A
PARALLEL MAGNETIC FIELD

The relevant component of the magnetic moment
whose shape function f()) is to be investigated is in

this case
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FIG. 3. The theoretical variation with field strength of the absorption coefBcient at zero frequency, p'(HD). Curves
E are the experimental curves. Curves A are theoretical curves of the type (77) with p given in (78); curves 3 are
theoretical curves of the type (77) with p given by (78}without a C. The reasons for these two theoretical curves are
given in the text.
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modify the de6nition (17) in the presence of a parallel
magnetic field. The usual dc6nition in the presence of a
magnetic leld g, is

p'(0) =s[2hTx~;.b.t,;,j-'f(0);
x~ ab.a.=&xo/(&+CH. )' (81)

Thus two powers of H, are removed by the definition

(81), therefore, according to the theory for the aperi-
odic line the quantity p'(0) as de6ned by (81) should
be proportional to HP/H, 2.

Experiments have been carried out for magnetic
fields several times the mean dipolar 6eld II; for a
good many substances; in no case has a significant de-
crease been observed. Figure 4 summarizes the observed
situation: the first number in parenthesis gives the
mean dipolar field for the salt.

It was uncertain as to whether or not this effect
was compatible with the theory, since no quantitative
calculations had been made. Therefore, we have calcu-
lated the zeroth and second moments of f(v); and ob-

tained an approximation to the absorption coefhcient
p'(0) by 6tting the known p'(0) at zero 6eld and the
calculated value at large fields with a Debye curve.

The zeroth and second moments have been calculated
to be

(v')A„——3 Og'p'ES'(S+1)'H, '0-
=0 13' hT(H'/2H ')' (82)

(v')A, =2 4(.1+1 SA. ')g4p4h 'd '
= 0.19(1+1.8A') g'P'HP/h' (83)

Both formulas are calculated for a specific direction of
the field H„corresponding to XI ——'A2=0, X3= 1.Also the
expression (83), because of its complicated nature, has
been calculated for a spin of ~~. The theoretical formula
for p'(0), according to (82) and (83), can be reasonably
taken to be

p'(H. ,v=O) =p'(0, 0)[(H /2)/(H /2+pH, ')), (84)

with

p= C[3.0(1+1.8A') &(1+0.36A')] (85)

just as in the perpendicular field case. Formula (85)
shows that the predicted decrease of p'(0), propor-
tional to 1/H, ', should take place in fields the order of

H;/A &; thus quantitative calculations only emphasize
the discrepancy between theory and experiment. For
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Fro. 4. Experimental variation of p'(P, ) as a function of P„ the parallel constant magnetic field, for various salts. The first term
in brackets in H;, the second term t,'given when known) is AH;. {Eofe:The subscripts to H which appear in the figure should be c, not
o.)
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this reason a sketch of the calculation of (82), (83),
(84), and (85) shall not be given. ' Instead, a proposed
explanation of this discrepancy will be presented.

It must be remembered, as was mentioned at the
conclusion of Section IV, that a certain minimum Geld

strength is necessary to resolve out the Larmor line
and make measurements at low frequencies actually
refer to the aperiodic line. Now, in a parallel Geld the
Larmor line is exchange broadened; this means that
the breadth of this line, which is of order of magnitude
of the mean square frequency of the line, varies as

[1+const. A']gPH;/k. (86)

Also it is to be noticed that the Geld strength necessary
to resolve out this line is roughly (86), its line breadth,
measured in Gauss. Thus exchange broadening of the
Larmor line in a parallel field implies that Geld larger
by factors of 10 or 100 than the mean dipolar Geld are
necessary to eGect this resolution. Such Gelds have not
yet been used experimentally, as the second term in
parentheses in Fig. 4 shows. This term is AH;, and is
given for those (copper) salts for which A is known.
Thus the experimental data actually refers to the un-
resolved Larmor line, for which p'(0), as defined by
(81), should be roughly constant for fields so far used.

A number of effects will influence the variation of
p (0). First, the shift of position of the Larmor line
must be taken into account; second, its shape about
this mean position is important; and third, the low fre-
quency line will have a small effect. A combination of
these variations causes the observed behavior shown in
Fig. 4 and makes this behavior somewhat dd5cult to
predict. Also an arbitrary factor has been removed in
the definition (81), which probably is not quantitatively
correct. If too large a factor has been removed, p'(0)
increase with II„and vice versa. The important thing
to notice is that the average behavior is around
constancy.

VI. THE ADIABATIC AND ISOLATED
SUSCEPTIBILITIES

The situation with regards to the Larmor line in a
parallel constant Geld is slightly diferent from that
for the absorption lines corresponding to the various
conditions discussed in the preceeding sections. There
are no measurements on the absorption line as regards
its shape and intensity in this case; thus the mean
square frequency is not of interest. However the sum
of (v')&„——J'0"f(v)dv for the Larmor line and for the
line at double the Larmor frequency is just propor-
tional to the isolated susceptibility for the spin system
in large fields. This latter susceptibility is of a great
deal of interest as far as its numerical agreement or
disagreement with the adiabatic susceptibility of
Casimir and du Pre" is concerned.

"H. B. G. Casimir and F. K. du Pre, Physica 5, 507 (1938).

The experimental situation is as follows: in studies
of spin-lattice relaxation usually the susceptibility
z'&,«; " obeys a relation of the following sort within
the accuracy of the experiments,

x'i«~ -=x +(xo—x )/(1+v'~') (87)

thus obtained is the isolated susceptibility of the sys-
tem according to statistical mechanics. On the other
hand, according to the thermodynamic theory of
Casimir and du Pre, x„ is the adiabatic susceptibility

x~ia «ia [b/(b+——CH')]xo (88)

It is not deGnite as to whether these quantities, the
isolated and the adiabatic susceptibilities, are actually
the same. **

The adiabatic susceptibility is in large 6elds in-

versely proportional to H,2:

(b/C)xo/HP; (b/C) = (1+0.36A')H, 2/2. (89)

Matrix elements of the magnetic moment gPP;S„.
which are, when squared and averaged, inversely pro-
portional to H, , can be obtained with the Hamiltonians

(3) and (4) for the unperturbed and perturbing energies,
by using a first-order perturbation theory. Division by
kT will then result in the isolated susceptibility in
large fields for a system with the Hamiltonian [(3)
+(4)]. It is found that the appropriate matrix ele-
ments will be just the area under f(v) for the Larmor
line plus this area for the line at double the Larmor
frequency.

A perturbation formula similar to (63) is necessary.
The usual commutation relations then result in the
following expression for the isolated susceptibility in

**Van Vleck (unpublished) has calculated an expression for the
difference between the two susceptibilities. His results show that
the difference between the two susceptibilities will vanish only if
the energies W; or the derivatives 8W;/8H, coincide for all states
i of the spin system, or if the energy depends on the 6elds H, as
W;= W;( &q (H,)+P(H,) with p, f the same for all i. The actual
expression which he obtains for the difference x~-x; is

(&/&~) 0(W')A. —~') ((W")A.—(W')Av')
((WW )Av +(W )Av) 3/DW )Av

W' being (BW/aa, ).

with p a constant with respect to v. According to one
point of view, x is the contribution to the suscepti-
bility x= (BM/BH, )r, obtained upon differentiation of
M= [P;[ BW—/BH, ] exp( —W;/kT)]/[P; exp( —W;/
kT)], keeping the factors exp( —W;/kT) constant, and
differentiating only ( BW,/—BH,) with respect to H,
For sufficiently high frequency the spin system may be
considered isolated; and since the distribution of sys-
tems in the various energy states, given by the factors
exp( —W;/kT), cannot change for an isolated sub-
stance, the quantity

x;„=[P;( B'W;/B—H, ')exp( W;/kT—)]/

[P;exp( —W;/kT)]
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large 6elds:

x so= LkTH'j ' Z (t3'.i*)')A. . (90)

Use of xp= iVg'p'S(S+1)/3kT and (15) then results in

x;„=0.80gpHP/2H, '. (94)

The energy terms can be easily squared and averaged;
when this is done the following result is obtained:

g'P'5—'(S+1)'(kTH ') ' Q
' r " 'L

~

F'
I

'
9 t ~ J

It is necessary to make substitutions similar to (70)
in (91), and then average over all directions of lii, 4, 4.
The following values then result for the lattice sums:

P'[F"
[
r" =P'~D' ('r" P=2.52. (92)

Substitution into (91) then gives

x;,.= 2.24g'P4S'(S+1)P/(kTHP ). (93)

L. J. F. Broer has made an independent calculation
of the ratio of the adiabatic and isolated susceptibilities
for spins in a large field without exchange (private
communication). He arrived at the factor of 0.80. This
factor is the same as that of (94).
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Precision Wave-Length Measurements of the 1.1- and 1.3-Mev Lines of CQ"
with the Two-Meter Focusing Curved-Crystal Syectrometer*
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Recent improvements in the two-meter focusing curved-crystal
gamma-ray spectrometer are described which have extended its
quantum energy range well above 1 Mev and have also yielded
much better luminosity and resolving power than were obtained
initially. The improved components are (1) the crystal holder
whose aperture and resolving power have been nearly doubled
and (2) the collimator the new model of which can now discrimi-
nate between the reflected and transmitted beams when these
dier in direction by only 8 minutes of arc, a threefold improve-
ment over our first model. Our plans for further possible improve-

ments and the factors governing these are also discussed. Wave-
lengths of two gamma-rays emitted following P-decay of Coco

have been measured with this new equipment using a source of
about 50 mc strength and found to have values of {9.308&0.005}
X 10 " cm and (10.580+0.005) X 10 " cm corresponding to
quantum energies of 1.3316+0.0010 Mev and 1.1715+0.0010
Mev, respectively. The lines appear to have equal intensities.
The integrated re6ection coefficient of the (310) planes of the
curved-quartz crystal still appears to follow a P~-dependence on
wave-length down to 9 x.u. the shortest so far observed.

EXTENSION OF THE WAVE-LENGTH RANGE OF THE
TW'0-METER FOCUSING CURVED-CRYSTAL

GAMMA-RAY SPECTROMETER

' 'HE two-meter focusing curved-crystal gamma-ray
spectrometer' ' has up to the date of the work

here described, been applied only to the measurement
of nuclear gamma-ray lines of quantum energy equal
to or less than 640 kev. 4 ' Many natural and artidcial
radioactive sources of great interest exist however which
have lines in the quantum energy range from 1 to 2
Mev and even far beyond this. Our present experience
in measuring these ultra-short wave-lengths by direct

*Assisted by the Joint Program of the AEC and the ONR.
' Jesse W. M. DuMond, Rev. Sci. Inst. 1S, 626 (1947).
'DuMond, Lind, and Cohen, Rev. Sci. Inst. 18, 617 (1947).
'D. A. Lind, Rev. Sci. Inst. 20, 233 (1949).' DuMond, Lind, and Watson, Phys. Rev. 73, 1392 (1948).' Watson, West, Lind, and DuMond, Phys. Rev. 75, 505 (1949).
6 DuMond, Lind, and Watson, Phys. Rev. 75, 1226 (1949).
'Lind, Brown, Klein, Muller, and DuMond, Phys. Rev. 75,

1544 (1949).

crystal diBraction has shown that the upper limit of
quantum energy beyond which the precision of the
method falls to a value comparable with the precision
obtainable with the magnetic P-ray spectrometer is
probably 6xed by the characteristics of the crystal
planes used for the di6'raction. In the case of our present
two-meter curved-crystal spectrometer utilizing the
(310) planes of quartz this limiting precision for the
measurement of wave-lengths seems to correspond to an
uncertainty of about &0.005 x.u. This uncertainty is
essentially constant independent of the wave-length
measured. Thus, at a wave-length of 5 x.u. or about
2.5 Mev, a precision of the order of one part in a
thousand in wave-length measurement can still be
obtained. It has, therefore, seemed well worth while to
try to extend the range of applicatility of the instru-
ment as far as possible above the 1 Mev value. Such an
extension requires the following two improvemt;nts in
the method,


