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however, the lifetime of this state exceeds 10 ' sec. and
is less than the lifetime of Hf'" it would be very diQi-

cult to detect. This would certainly be the case if the
transition gives rise to a magnetic 2-pole or electric
2 -pole radiation. Correcting the theoretical half-life for
/=4 for the probability of internal conversion, the re-
sult comes out as a few seconds. A probable working
hypothesis is therefore to assume that the 0.134-Mev
transition is of magnetic 2'-pole and/or electric 2'-pole
character.

Finally the P-transition from the ground state of
Hf'" to the higher metastable state in Ta'" will be
considered. From the values of the disintegration con-
stant and the maximum energy of the P-particles, we
find that the position of the point in the Sargent dia-
gram for the P-emitters in the heavier elements" cor-
responds to a once-forbidden transition.

Collecting the results of the above discussion as to
the nature of the diferent transitions, we arrive at the
most probable spin and parity assignments to the
diferent nuclear states as indicated in Fig. 2. %e have
tried a number of alternative models for the decay
scheme, but all of them seem to be in disagreement
with experiments. It should be remarked that the transi-
tion between the two metastable states is very rare
owing to the special selection rule operating when the
centers of mass and charge of a system coincide. H this
transition had not been forbidden it had been necessary

'~N. Feather and E. Bretscher, Proc. Roy. Soc. A165, 545
(1938).N. Feather, Nature 161, 451 (1948).
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FzG. 2. The decay scheme of Hf '".

to assign a spin 13/2 or larger to the first excited state
of Ta'".

Note added in proof: Comparison with recent discussions of
nuclear shell structures (e,g., M. G. Mayer, Phys. Rev. 75, 1969
{1949))shows that the energy-levels of Ta'" all appear within the
same shell. The states in order of increasing excitation energy are
then supposed to be formed by the odd proton moving in g&I2, s&&2,

d3/2 or d&&2 and h»&2 orbits. The problem still arises as to why the
direct transition from metastable to ground state does not occur.
Special selection rules must apparently operate in this case.
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Multiple Scattering of Neutrons. 11. Diffusion in a Plate of Finite Thickness
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The diffusion of neutrons in an inhnite plate of 6nite thickness is studied. Analytic expressions are derived
for the density and current of the returning and transmitted neutrons at the boundaries. Density and current
distribution inside the material at sufEciently large distances from the boundaries are also calculated.

INTRO DUCTIO N

N I we succeeded' in obtaining a rigorous analytical
& ~ solution for the density and current distributions of
neutrons which have been impinging with an arbitrary
velocity distribution upon a plate of infinite thickness;
the neutrons were assumed to undergo elastic isotropic
scattering processes and capture inside the material.

1This second paper (see Halpern, Luneburg, and Clark, Phys
Rev. 53, 173 (1938), referred to as I) appears belatedly due to
reasons beyond the control of the authors; much of its content
has been presented orally at an earlier opportunity {Phys. Rev. 56,
1068 (1939)).

%'e here extend the treatment under the same
physical assumptions to the case of a plate of finite
thickness; in the limit of very large thickness the
results, of course, will have to agree with those of I.
The solutions given here will be asyslploticatly valid if
the thickness of the plate is large compared with the
mean free path of the neutrons inside the material.
They will, therefore, become rigorous for the limiting
case of infinitely large thickness.

The treatment is here extended considerably farther
than in the first paper. %e obtain information not only
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about the distribution functions at both boundaries but
also about signi6cant regions in the interior of the

plate. It was, furthermore, possible to put the new

transcendental function which represents the main part,

of the solution into a form which permits easy use in

the evaluation of individual problems. Tables for the
solution and auxiliary functions are given.

1. FORMULATION OF THE PROBLEM

The distribution function w(x, $) satisfies the well-

known transport equation (see I)

~+1
((8w/Bx)+ Aw = Bw(x), w = wdg.

2. AN INTEGRAL EQUATION FOR uI,'z)

Introducing the function v(P, s) by the relation

~l
v($, s)= —B/s ~ w(x $)e"*'&dx

JD
(2.1)

(2.11)

one obtains from (2.1) and (1)

It may be noted that u(z) is regular in the whole
complex plane with the exception of the origin, which
constitutes an essential singularity.

If the plate is located between x=0 and x=l, then we

want to find a solution of (1) with the boundary con- v(P, s)+o u(z)= —
t w(l, $)e"'*—w(0, P)j (2.2)

ditions $—s $—z

w(o, &) =(fh)

w(l, ()=0, $(0.

Here, f(() is a known function.
It has been found useful in I to introduce a Laplace

transformation of w(x, $) or w(x). We here generalize

the transformation by writing

with the abbreviation o =B/A.
If we now put

p+& z—1
p(z) = 1+os = 1+os log

$—z z+1

one obtains by integrating (2.2) over t the relation

(2.3)

u(s) = —B/z)I w(x)e"*I'dx, (1.3)
+I

p(z)u(z) =—cr Lw(l, f)e~i' w(0,—$)ad( (2 4)

the upper limit being given by the actual thickness of

the plate. Since we are in particular interested in the

boundary values w(0, f) and w(l, $), it is important to

notice that they are already determined by u(z) and

that we need to invert the I.aplace transformation only

if we are interested in values of m in the interior of the

plate. This statement can be proven as follows: %e
first notice that (1) is solved by the integral equation

u&(x P)=e—'"*«& w(0, $)+B/$ „w(x)e"*«dx, (1.4)
D

which gives, in particular,

If we now replace w(l) and w(0) m (2.4) by the ex
pressions given for them in (1.61) and (162) one
obtains an integral equation for u(z),

t' 0 (6) t' (u(()
p(z)u(s) = e' (1—e"~' &'&)d]+

&o $—z ~
& P

—z

t' gu(() e-&«
+oe"I* I dp (2 5)

@le assume without restriction of generality that
f($) =8($—zo) and write (2.4) in the form

w(l $)=e "" w(o 5)+B/h w(x)e"*'«x
4 p

~w(0 k) I' gw(l t)
(1 41) p(z)u(z) =e —

'
dp ee& &* I—

"o $—s

with the abbreviation ) =At.
Introducing (1.3) into (1.41) one obtains

w«&)=e '"«'Ew(0, 4) —u(()3, (1.5)

and specializing (1.5) for $&0 and $(0,
w(0 $) =u($) ((0 (1.61)

w(l, ()= e ""Lf(() u(k) j, 5»— (1.62)

The relations (1.61) and (1.62) prove the statement

made.

f(
~o P

—z

~' W(0, 5)
=n,

$—z

tTzp

t
'kw(1, 5)—ne"~*

II df . . (2 6)
~o $—s

If we define a pair of new functions U(z) and y{z) by
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The right side of (3.1) is everywhere regular except at
the origin; it follows that

the equations

zo —z /' gw(0, ])
U(z) = 1+ dg, (2.61) 1

LU(z)z
—(),/2z) V(z)zx/2z]

/ (z)
zo —z /' $w(l, $)

V(z) = (2.62)
can only be singular at the origin; since, furthermore,
E(zp) =0, it follows with the aid of (2.71) and (2.72),

zo ~o

we can write (2.6) in the form
U(z )&&/2zo —V(z )zx/2zo

U(z(&) = 1,

V(zo) = z
—o /zo)

(3.11)
O'Sp

/&(z))/(z) = L U(z) —e"'V(z)]. (2.7) (3.12)

(3.13)The functions U and V can also be expressed directly
as integrals containing u(z) by introducing (1.61
(1.62) into (2.61) and (2.62)

"o—z /' E~(k)
U(z) =1+ ~ dg,

zo —1

Since E(z) is everywhere regular except possibly at
the origin, the same will hold true for its even and odd
parts. Now, from (3.1) we have

(2.71)
1

E(z)+E(—z) =-} {U(z) —V(—z) }e-("/'*&

+ {U( —z) —V(z) }e"'*], (3.21)

—{U( —z)+ V(z) }e""z] (3.22)

%e introduce a pair of auxiliary functions which are
both regular in the right hand of the complex plane

(2 81) F(z) and G(z),U(0) = 1+ w(0, $)d$,
—1

F(z) = U(z) V( z)

G(z) = U(z)+ V(—z)

(3.31)

(3.32)
I

V(0)= t w(l, &)dg. (2.82)

and can, therefore, write (3.21), (3.22) as

-.o—z /) h~(5)z »"- P
(z) z

—~/zo
'

d] (2 72)
zo &0 $—z

1
inspection of (2.71) and (2.72) proves that the function E(z)—E(—z)= —

{ {U(z)+ V(—z) }z—(&/'*&

U and V are regular, respectively, in the right and left p

half of the complex plane.
Letting z=0, we obtain in (2.61) and (2.62)

Equations (2.81) and (2.82) show that the neutron
density at the near and far boundaries are determined,
respectively, by U(0) and V(0).

Similarly, by letting s—+~, one obtains the relations

1
E(z)+E(—z)=—LF(z)e ("/ *&+F(—z)e"/'*] (341)

P

zoLU(~) —1]=
J

$w(0, $)d$,
—1

(2.83)

1
K(z) —E(—z) =—[G(z)e '""*'—G(—z)e""*] (3.42)

P

1

zoV(~)= t gw(l, $)d$.
Jp

(2.84)

Equations (2.83) and (2.84) express the returning and
transmitted current in terms of U(zc) and V(z(&).

3. REGULARITY CONDITIONS FOR U AND V

In analogy with the treatment of I we shall here
show that the functions U and V are uniquely deter-
mined by the regularity conditions. For this purpose we
rewrite (2.7) as follows:

1
U(z)z (x/2z) (V) zx z2 /]z

/ (z)
ZQ

U(z) e—'""*&=—E(z). (3.1)

e thus obtain the following conditions for I' and 6':
(1) F and G are both regular in the right-half plane.
(2) The expressions given by the right sides of (3.41)

and (3.42) are regular everywhere except possibly at
the origin.

(3) z{ F(zo)+G(zo)]=1,

—;{G(-z,)-F(-z,)]=.-{»* &.

(3.43)

The conditions (3.43) and (3.44) are a consequence of
(3.12), (3.13) and (3.31), (3.32).

The regularity conditions will turn out to be suf-
6cient to determine uniquely F and G. Before proceeding
to establish this result, we want to obtain a relation
between F and G. Multiplying (3.41) by Ge (» *' and
(3.42) by Fe {""*'and subtracting, one obtains the
result that

1/pl&(z)F( z)+F(z)G( z)1— —
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is regular in the right-half plane. Since it is an even
function of s, it must, therefore, be regular in the whole

s plane and thus equal to a constant C

G(z)F(-z)+F(z)G(-z) =C~(z). (3.5)

~()=P()P(—), (4 2)

P(s) being a regular function in the right-half plane,
then we obtain by multiplying (3.41), (3.42) with P(z)
the result that the expressions

&(z) &(—z)
e
—&x/z&+

P( z)—P(—z)

4(z) 0(—z)
e—('A jz)

P(—s) P(—s)
(4.22)

are regular in the right-half plane. The function

p(z) =1+as log(s+1)/(z —1) (4.23)

4. INTEGRAL EQUATIONS FOR F AND 0
%'e shall 6rst find two functions F and G which

satisfy the first two regularity conditions but not (3.43),
(3.44). In place of (3.43), (3.44) we require that

F(ao) G(ao)
(4.1)

[»(~)]' [»(~)3'
Let us denote these special functions by s and P.

If we now split (as in I) p into factors,

%'e now contract the path of integration to a small loop
around the section (0, 1) of the real axis, leaving n
outside. This gives us

(u) &' ~(s)e '""a(s)
ds, (4.61)

cj+z - o s+3

P'(u) a
a(s)=1+ e &"' &

»'(n)

P'(n) b(u) &' r(s)e &""b(s)
b(z)=1 — e '"' '—+ — ds (4.62)

p'(n) n+s ~o s+z

in which r(s) stands for the discontinuity of P(s)/P( s)—
on the real axis.

The functions c and b thus satisfy two regular
integral equations; we know from general theorems that
there exists only ore solution if the associated homo-
genous equations do not happen to have any other but
the trivial solutions a = b =0.

Ke can now construct with the aid of

()=P() (), 0()=P()b(),
the pair of functions F and G satisfying (3.43), (3.44)
as follows: The first two regularity conditions are
satis6ed by

F(s) =C&P(s)a(s),

G(s) =C,P(s) b(z),

(4.71)

(4.72)

with arbitrary constants C~ and C2. These two con-
stants can now be used to satisfy (3.43) and (3.44) also.
For this purpose we insert (3.31) and (3.32) into (3.12)
and (3.13) and obtain, after adding and subtracting,

vanishes at the two points s= +a. If o.& ~ then n is

real; if o-&-,' then a is purely imaginary.
%e now consider a closed path of integration L in

the s plane which shall enclose the real axis between 0
and 1 as well as the point +n. Replacing s in (4.21),
(4.22) by s and multiplying by [1/(2vri)j[1/(s+z)],
we integrate along the closed path I in the s-plane.

It shall be assumed that the point s= —s lies outside

the closed path of integration. Then the integral is zero

and we obtain the relations

Cis (zo)+C24 (zo) =2, (4.73)

—Ci& (—zo)+C24 (—za) = 2e"&*o. (4.74)

These equations give for C~ and Cg the expressions

[P(—zo) —4 (zo)e '"'"'],
u(zo)

(4.75)

(4.76)L& (—zo)+ &
(zo)e-&"'*"].

»(zo)
p(z) 1 r &o(s)e &"'& ds

P(z) 2~i & g P( s) s+z—(4 31) In (4.75) and (4.76) use has been made of (3.5) which
now reads

P(z) 1
t P(s)e

—&"'& ds
f+

P(z) 2~z & ~ P( s) s+s— 0(z)s(—z)+9 (z)4(—z) =2p(z) (4 77)
(4.32)

The explicit expressions for F and 6 can now be written
down:

we obtain

& (z) =a(z)P(z),

4 (z) =b(z)P(z),

(4.41)

(4.42)

P(s)a(z)
F(z) = LP(—zo)b( —zo)

»(zo)

(4.51)

P(s) b(s)
b(z) =1+ ("') ds.

2~i "zP(—s) s+z
(4.52)

P(s) a(s)
a(s) =1- e—( I )

2mi~z P( s.) s+z— —P( o)b( o) '"'*"j, (4.81)

P(z)b(z) [P(-").(-..)
»(zo)

+P(zo)a(z )e '"'*'&j, (4.82)
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b(—z) b(s)
g(s) — ei/2z e

—(i/2z)

P(s) P(—s)
(4.86)

The combination of Eqs. (4.83) to (4.86) and (2.7) leads
directly to the wanted expression for u(s):

0 SO

u(z) = e"'" ""*'Lf(s)g(zp) -f(zo)g(z)j (4 9)
2(zo —z)

5. ASYMPTOTIC EXPRESSIONS

2U(z) b(—s,) b(s,)e
—&"/z»-

= a(s)
P(s) . P(zp) P(—z,)

a(—sp) a(zp)e &"'*"

+b(z) + — (4 83)
- P(zo) P(—zo)

2V(z) b(—sp) b(z())e
—&"/*z&

= —a(—s)—
P(—s) P(s()) P(—zp)

-a( zo) a(zp) e
—(i/zp)—

+b(—z) + — (4 84)
P(sp) P(—sp)

The formulas (4.83) and (4.84) together with (2.7)
express u(s) as function of a(z) and b(s); a simple sub-
stitution would lead to an explicit though somewhat
lengthy equation for u(z). Later applications make it
appear advisable to express u(s) with the aid of two
auxiliary functions f(s) and g(z) which in turn are
defmed with the aid of a(s) and b(s) We w. rite:

a(—z) a(s)
f(z) — ei/oz+ e

—(i/oz) (4 85)
P(s) P( s)—

so that we finally can write

2nS(n)e-&"' & 1
a(s) = 1+

1—5(u)e &"/~) n+s
(5.21)

b(s) =1—2uS(u)e —&i/ ) 1

1+5(u)c—&"/~& n+z
(5.22)

g(z)ei/oz~
P(z)

2~se-(»-)

0(s&1:

—1— . (5.32)
P( s) 1+Se—&"/ & n+z

We are primarily interested in w(0, $) and w(l, $),
which are given by u($) and u(g)e ("/r), respectively,
(cf. (1.61) and (1.62)) and, therefore, need to construct
asymptotic expressions for

u(z) in the case —1&z&0,
u(s)e &Mz& in the case 0&z&1,

or, referring to (4.9),

f(s)e"/" and g(z)e""' for —1&s&0,
f(s)e '""*' and g(s)e &""*'for 0&z&1.

Combining (4.85), (4.86), (5.21), and (5.22) we obtain
—1&8&0:

a(z)
b(z)ex/oz~

P(—z)

1 2nS(n)e &"' & 11+,(5.31)
P(—s) 1 —S(n)e &""u+z
b(z)

e x&&e ~ (5.1)

In this latter case, the integral becomes small and we
obtain asymptotically

Equations (4.61) and (4.62) can immediately be
solved for a plate of inhnite thickness; in that case,
the integral disappears on account of e "'—4. %e can
also derive an asymptotic solution of (4.61) and (4.62)
valid for all cases in which

a(—z)
b(z)e

—(i/oz) ~
P(s)

2~Se-(»-)
1+

P(z) 1—Se &""n —s

b( z)—
g (z)e

—(i/2 z) ~
P(s)

(5.41)

2nS(n)e &"' '

a(s) =1+ a(n), (5.11)
2nSe —(» ) 1

1— . (5.42)
P(s) 1+Se &"' & n z—

2nS(u) e—("')
b(s) =1- b(n)

with the abbreviation

1 P'(u)
5(u) =-

2n p'(u)

a(n) and b(n) are in this approximation given by

a(n) =1/[1—S(n)e &"/ &], (5.14)

b(n) = 1/[1+S(n)e"/~j, (5.15)

If we introduce these last asymptotic expressions into
(4.9), we obtain the final expressions

OSp 2(rzou52(n)e —(oi/a)

w(0, s)=
(zp —s)P(—s)P (zo)

X (5 5)
(n zo)(n+z) P(—zo) P(—s)

2~.,~Se-(»-) 1 1
w(l, s)= (5.6)

1—5'e ""' ' (n —zp). (n —s) P(zo) P(s)
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Kquations (5.5) and (5.6) permit a simple inter- mcanbefoundfromItobeequalto1. 43. Thuswehave
pretation. For P,—+~ the second term in (5.5), disap- P( )=(2/v3)LI —( /2 )], (6.27)
pears and we obtain the result derived in I. Equation
(5.6) gives an explicit expression for the transmitted and from (6.27), (6.21), and (5.13),
density distribution.

0. LIMITING CASE OF VERY SMALL CAPTURE

In the case of p —+pi, as given by (cf. 4.23)

n log(op+1)/(a —1)
(6 1)

n becomes very large; we, therefore, shall look for an
expansion in negative powers of u. We find for S(a)
(cf. (5.13)), treating the denominator first:

) S(cx)=1—(pip/n). (6.28)

ZQ

(6.3)
2(m+ li) P(zo)P( —z)

Equations (5.5) and (5.6), therefore, take on the fol-
lowing form for 0.—-~ and n—+~,

Zp

w(0, z)=
2(zo —z) P(—z) P(zo)

ie(l, z)=
2(m+li) P(zo)P(z)

(6.4)

1 CK+ 1—(a/2) log, (6.2)
1—(1/~') 0;—1

or up to terms of order 1/a'.

132
~'t '(~)=- 1+

3 15u'
(6.21)

To expand a'P'(n), we use the relation (cf. I, (37))

s ds
P(z) =(1—2a)i+a ~'

&o s+z P(s)
(6.22)

If we add P( z) and put z=—a, then we obtain, because

of P( a)=0, the re—lation

S ds
P(n)=2(1 —2o)»+2a ~

&p s' —o.'P(s)

Now (6.1) gives

2 t' 2
2a(1—2o)»-—

i
1+

15m')

(6.23)

(6.24)

and it then follows from (6.23)

p' s'ds
op aP(op) ——

v3 ~p P(s)
(6.25)

in which the integral has to be taken for cr=-2. Q'e

introduce a numerical constant tn by the relation

s ds
m=~3

P(s)

1 ~ "log3(1 t ctgt)/sin't—
dt, (6.26)

g Q
sin~3

.(z) = (7.2)
1+(qi/Po) (1—2p)»+ (qp/Po) (1—2p )

+ (qp/Po) (1—2o)»

The functions q; can be determined as polynomials of z
multiplied by PQ and its erst derivative. These ex-
pansions are valid for x&1. We present in Table I
numerical values for P '(z), (q;/Pp) for values of z
between 0 and 1. Table II contains values of P '(z)
as function of z in the range between 0 and 1 and of o-

in the range between 0.5 and 0.4.
We also state the result that the straight line which

approximates PQ with the smallest quadratic deviation
is given by

1/Pp 1.08+ 1.84z. ——

8. INVERSION OF THE LAPLACE TRANS-

FORMATIONN

(7.3)

While the distribution at the boundaries is, according
to (1.61) and (1.62), given by N(z), knowledge of the
conditions inside the scatterer requires explicit deter-
mination of w. Since, according to (1.3),

J,
i

pt(z) = —— co(x)e"*'*dx (1 3)
Z Q

'7. SOME EXPRESSIONS FOR P~(z) FOR e
The new transcendental function P(z), which plays

a fundamental role in our theory, has been studied in
great detail by one of the authors (R.K.L.). We give
here a few results of this mathematical investigation
which may be useful for applications. We also add in
form of tables certain numerical data which will be of
assistance in the use of the theory.

The function P, (z) can be represented for values of
0. in the neighborhood of 2 by the following expression:

1/LP. ( )]=m.( )]/LPo( )] Po( ) =P( ) = l (7.1)

Here, Q, (z) is defined by
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TABLE I. Values of Po '(z) and of q;/Po.

P;1(z)
qI/Po
q2/Po
q3/P0

0.0

1.000
0.000
0.000
0.000

0.1

1.241
0.173
0.113—0.050

0.2

1.446
0.346
0.162

-0.082

0.3

1.640
0.520
0.189—0.109

0.4

1.827
0.693
0.214—0.129

0.5

2.011
0.866
0.236—0.142

0.6

2.193
1.039
0.252—0.154

0.7 0.8 1.0

2.373 2.552 2.730 2.907
1.212 1.386 1.559 1.732
0.260 0.270 0.278 0.286
0.169 —0.180 —0.190 —0.198

or with A/s= —y,

1
u(—~/—&)=,l w(x)e- -dx,

0+ 0

(8.1)

P&0:
1 /+'" u(s)e ("*'&

w(x ()=f(P)e-("*«&+ -ds. (8.6)
2&rz & ia) — s—$

9. DISTRIBUTION INSIDE A PLATE OF INFINITE
THICKNESS: ASYMPTOTIC FORMULASwe see that (1/oy)u( —2/y) is the Laplace adjoint of

w(x). The inversion gives w in the form
If the thickness of the plate becomes infinite, we

find after some simple calculations
w(x) = (1/2&ria) I u( —A/y)ep'*(dy/y). (8 2)

0Sp 1
u(z) = (9.1)

zo —z P(zo) P( z)—Here L can be the imaginary axis or any line parallel
to it; we can also deform the path of integration into

any closed curve I & which stays in the left half plane-

and intersects the real axis in the origin with an angle
of 90'. This is permissible because u(z) is regular in

the left-half plane. If Co is determined from the inversion

theorem, we obtain an expression for m by introducing

(8.2) into (1.4) and integrating over x,

w(x, &)=w(0, &)e '"*'&'

$)0:
u(x, p) =S((—zo)e-("~/&&

erixjsdsaSp 1 P+'"
(9 2)

P(zp) 2&rz & —'~ (s+ $)(s+zp)P(s)
$(0:

eAx/sds(Tzp 1 t+
(9 3)

P(zp) 2&ri ~ —;~ (s+()(s+z,)p(x)
w(x, 5)=

1 / u(s)
+ (e

—(Az/a) e (Ae/s))—ds
2zrz ~ r, & s

(8 3) and from (9.1) and (8.2),

(+ia eAz/sds

w(x) =-
P(zo) 2zrz ~ —i~ s(s+zp)P(s)

Since the curve Li can be chosen arbitrarily small, we

may construct it so that the point $ is excluded. Then
the second term on the right side of (8.3) becomes simply

(9 4)

If P) 0 we obta. in w directly from 8.31

1 / u(s)e (~*"
w(x, () =f(k)e '"*"'+ ds.

2&rz ~r& s—$

Instead of integrating along the imaginary axis, we
can also integrate along a closed curve L1 which includes

(8.31) all singularities of 1/P in the left half of the complex
plane; these are the point s= —n and the sector
—1 ~s~0. The curve Li can in turn be split into two
separate closed curves Lp and L' including the point
s= —a and the section (—1, 0) separately. For //zrge

(8.41) values of Ax, the main contribution comes from the
curve Lp, the integral around it will, therefore, give us

For ((0 we have w(0, $) =u($) and, therefore,

1 / u(s) e
—("*'&

w(x, ()=u(&)e (-4*/&&+ ds (8.42)
2&iz & I& s—$

or
1 / u(s)e '"*"

w(x, $)=- ds)2' ~~, s—g

where I.z includes the point s=$. In both cases the

imaginary axis is equivalent to Li and L2. This gives
$(0:

1 /. +'" u(s)e ("*"ds
w(x, g)=-

2&ri &—i~ s—$

TABLE II. Values of P '(z}.

0.500 1.00
0.499 1.00
0.498 1.00
0.496 1.00
0.494 1.00
0.492 1.00
0.490 1.00
0.485 1.00
0.480 1.00
0.470 1.00
0.460 1.00
0.450 1.00
0.440 i.oo
0.430 1.00
0.420 1.00
0.410 1.00
0.400 1.00

1.24 1.45 1.64 1.83 2.01
1.23 1.42 1.60 1.77 1.94
1.23 1.41 1.59 1.75 1.90
1.22 1.40 1.57 1.72 1.86
1.22 1.39 1.55 1.69 1.84
1 21 1 38 1 54 1 67 1 81
1,21 1.37 1.53 1.66 1.79
1.20 1.36 1.50 1.62 1.74
1.19 1.35 1.48 1.59 1.70
1.18 1.32 1.44 1.55 1.64
1.1 7 1.30 1.41 1.51 1.60
1.17 1.29 1.39 1.48 1.55
1.16 1.27 1.37 1.45 1.52
1.15 1.26 1.35 1.42 1.49
1 15 1 25 1 33 1 40 1 46
1.14 1.24 1.31 1.38 1.44
1.13 1.23 1.30 1.36 1.41

2.19 2.37
2.10 2.25
2.06 2.20
2.00 2.13
1.96 2.09
1.93 2.05
1.90 2.01
1,85 1.95
1.80 1.89
1.73 1.81
1.67 1.74
1.63 1.69
1.58 1.64
1.55 1.60
1.52 1.57
1.49 1.53
1.46 1,50

2.55 2.73 2.91
2.40 2.55 2.70
2.35 2.49 2.62
2.27 2.39 2.52
2.21 2.32 2.44
2.17 2.27 2.38
2.13 2.22 2.32
2.05 2.14 2.23
1.98 2.06 2.14
1.88 1.96 2.02
1.81 1.87 1.92
1.75 1.80 1.85
1.70 1.75 1.79
1.65 1.69 1.73
1.61 1.65 1.68
1.58 1.61 1.64
1.54 1.57 1.60

ops 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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oso P(n) e '"*')
w(x, t)=

P(eo) p'(~) (~—$)(~—«)

«P(u)
w(xi = e—(Ax/a)

P(sp)(n —ep) np'(n)

(9 5)

(9.6)

If we allow n to approach ~ (o—+-,'), we thus obtain

V3 so
w(x, $)=—

2 P(«)

an asymptotic expression for m. Remembering that

1 P(a)

P'(~) p'(~)

we obtain easily

The path of integration can now be replaced by new
paths, namely the curves L& in the 6rst term and I.2
in the second term of the right side. The curves L)(Lp)
lies in the left- (right-) half plane only and c'onsist of
two parts enclosing the sector —1, 0(0, 1) and the
point —n(+n). We now assume /), to be so large that

e
—()tx) /a(ge —Xs

Then the contributions in Li(Lp) coming from the
sections —1, 0(0, 1) will be of the order of e "*(e "" *))
and can be neglected compared with the contributions
from the integration around —n(+ex). Under these
assumptions we have

a(n)P(n)
I)(x, P) =

e
—)) (j.—z)/a e—()tv/a)

w(x) =%3
P(«)

(9.8) X + (10.41)
(~+«)(~+&) (~—«)(~—k)-

10. THE DISTRIBUTION INSIDE A PLATE OF
FINITE THICKNESS

N(s) is in this general case given by (4.9). Introducing
(4.9) into (8.41) and (8.42) and replacing x by x/, we
obtain the following rigorous solution for w(x, $)

O'Zp

w(x, S)= e-(""*"Lg(e)I —f(«)I 3
2

(~)e
—(&z/t)

~ )0

b(~)P(~)
Ip(x, $) =

e
—)) (1—x)/a e

—()~s/a)

X (10.42)
(~+«)(~+5) (~—«)(~—5)

Since the term 8(«—$)e ("*)/$ can also be neglected,
we find from (10.41), (10.42), and (10.1)

(10 1) w(x g)
— e

—(x/pzo)
os() P(n)

)&0 2 p'(~)

g(«)a(~) —f(«)b(~)
X e—)~ (1—x) (a

( +")( +~)
In (10.1) the following notation has been used:

~+iao f($)e(M2s) () z/s)ds—
(10.21)

(so—s)(s—t)
I,(x, P) =

2X'S ~ -ioo g(«)a(~)+f(«)b(~)
+ e

—()) z/a)

(~—so)(~—t)
(10.5)

+iso g($)e(x/2s) —(xz/s)ds

Ip(x, $) = (10.22)
(«—s)(s—P) In order to determine the expressions within the

brackets, we use the previously derived asymptotic
expressions for a, b, f, g. These formulas were obtained
under the assumption that e "&(e "'; terms of the
order e "' are retained in them. This procedure is
only consistent if e "' »e "*, since in (10.5) terms of
the order of e " have been neglected. %'e, therefore,
have to require

If we now use the expressions for f and g as given by
(4.85) and (4.86), we have

+iso - a( $)eX (1 *)/s—
2orpI)(x, g) = l ds

.P($) (sp —s) (s—t)

a($)exz/

+-
P(—s) (sp —s) (s—P) .

(10.31) )),/n& )sx, x) 1/n

Similarly,
~+iso -

b( $)e) () x)ls—
2)ro7p(x, t) = ll ds

- P($)(«—$) ($—5)
)(/n& l~(1 —x), (1--x))1/a.

b($)e (xz/s)—
P(—$)($—6)(«—s)- (10.51)

This leaves as conditions for the validity of the
asymptotic approximations

(10.32)
1/n& x&1—1/a
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or 0.&2. The formulas will, therefore, be valid only
suKciently far inside the scatterer but not near the
boundaries x=0 and x=1. For these cases we have
already obtained expressions before.

Assuming (10.51) to be valid, we now collect the
expressions:

a(n)=1/(1 —Se "' ), b( a)=1/(1+Se "/~),

2aoSe—("" )Zp

u)(l/2) =
(a—sp) P(sp) 1—S'e-("'&

dZ

X (10.63)
~p (a—s)P(s)

tity is given by (5.6) after integration over $:

f(zo)e
—(&/o~o)—

1

P(s)=(1—2o)&+o iI
(s+s)P(s)2nSe —( l )

g(z )e
—(x/ogp)— (10.53)

P(zo) (1+Se '"' ')(n —s)

2o.Se—(~f ) To evaluate the definite integral in (10.63), we remember
1+ (10 52) that

P(z(&) (1—Se '"' ')(n —s)

Introducing these expressions into (10.5), we hs.ve

e '"""'Lg(«)a(a)—f(«)f (a)l
—2Se ("'&(a+sp) 1

(10.54)
(1—S'e ('"/ &)(a—sp) P(s(&)

e '"'"'[g(zp)o(a)+ f(zo)l&(a)]

or for z= —n,

Thus,

= 1—os, (10.64)
(e+z)P(e)

ds 1

(u —s)P(s) o a
(10.65)

2Se-(~~2-)Zp

u)(l/2) =
(n —zp)P(zp) 1—S'e "' (10.66)

(10.55)
P(z,)(1 Soe—(»/~&)' The ratio u&(z)/&I&(l/2) is given by

and thus Gnally for m

200.S

u/(-', ) 1—S'e "'

e(l/2) P(u)(1+Se-"')
(10.67)

oo(x, ()=
P(zo) (a zo) P(n) (1 Se —"/ )

e (~ J ) e )'(~—~)fa-

X Se—x/a (10.6)

For large n, but e "'-' (&1, ere then obtain

t/&(1/2)/u)(l/2) (n/2) V3. (10.68)

11. APPLICATIONS OF THE THEORY

Z{} e (

~(o) = (10.62)
(n —so)P(so) P(a)(1+Se ("' &)

I.et us now compare this density, valid in the middle
of a plate of thickness l, with the density at the far
boundary of the plate of thickness l/2. This last quan-

or by integrating over $,

Zp 2S(n)
to(x) =

P(zo)(n —zo) P(a)(1—S'e "/ )

X[e—(x*/a) Se—x/ae —x (1—a)/a j (10 61)

In the special case of x= ~, we have

The theory here developed obviously lends itself to
the evaluation of a large number of experiments
dealing with diffusion of neutrons. So far as we know,
no investigations are reported in the literature which
have been made with suKcient care of the geometrical
conditions so as to allow immediate evaluation. It is to
be expected that the presently available intensities of
neutron beams will soon permit a number of investiga-
tions of interest in this Geld. .

One of the authors (O.H. ) has extended the present
theory to include the treatment of the diffusion of
polarized neutrons under the inQuence of spin dependent
forces. ' More detailed calculations will be reported
shortly in a following paper.

' Otto Halpern, Phys. Rev. 75, 1633A (1949).


