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The EFFect of Nuclear Motion on Atomic Magnetic Moments
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The effect of the 6nite mass of the nucleus on the Zeeman pattern of multi-electron atoms is investigated.
This effect consists of two parts, one due to the motion of the core and nucleus about the center of mass,
the other an exchange phenomenon between the electrons themselves, Both are of order m/3f, where 3f
is the mass of the nucleus.

HE effect of the 6nite mass of the nucleus on the
Zeeman pattern of multi-electron atoms is small,

but with the increasingly high precision attainable in
the measurement of magnetic moments' it may become
quantitatively signi6cant. While the apparent anomalies
of the g ratios in atoms consisting of one electron outside
closed shells are qualitatively understood in terms of
the "intrinsic" moment of the electron, there remain
small discrepancies between theory and experiment.
The present consideration does little or nothing to
resolve these discrepancies, but it seems desirable to
investigate all relevant factors which might effect the
interpretation of the experimental results.

To take account of the motion of all the charged
particles composing an atom let r and r; be the position
vectors of the nucleus and electrons with respect to a
6xed point. The total kinetic energy is then

To= (1/2M)p'+(1/2m)Q; PP

as the 6rst power of H becomes:
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It is legitimate to neglect the motion of the center of
mass, so that R and the momentum conjugate to I
may be set equal to zero. The terms of interest are
therefore:
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where y and y; are the momenta conjugate to r and r;.
It is in this system of coordinates that a constant 6eld eH h ( Z m M+(1V—1)m~
H is represented by the vector potential A=-,'HXr, and Tlr= . I +
can be introduced into the Hamiltonian by the well- + +
known substitution ~y —ZeA/c and P,~p;+eA, /c.
To 6rst order in Ei,

T~ —(Ze/2Mc)H rxy+——(e/2mc)P, H r;Xp;.

Transforming to the Hamiltonian operator in the usual
way, ~(h/i)grad, and assuming that the magnetic
6eld is directed along the z axis,

TH (ea'/2c) (h/i) ( (—Z/M) —(—r XV',),
y (1/m)g, (r~X V'„),I.

For a neutral atom, in which X, the number of elec-
trons, is equal to Z, the nuclear charge number, this
simplifies to the expression:
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If we now introduce the coordinate vector R of the
center of mass, and the relative coordinates 8; of the
electrons with respect to the nucleus, = THO+ THI.

——Q((s,XV ~).+(s,x&.,).j
M jy'

s„=r,—r, (m+Mm) R=Mr+mar;, The 6rst term, Tao, gives rise to the well-known

that portion of the Hamiltonian operator which varies eigenvalue l. for each electron, although it is to be
noticed that the factor (1—m/M) enters. The second

' P. Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948}. term, TII~, is analogous to the "speci6c isotope eGect"
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in atomic spectra, ' and has already been mentioned in
connection with atomic g values. '

The matrix elements of (s~XV.;), may be readily
evaluated in terms of radial integrals if all quantities
are expressed in polar coordinates and determinantal
electronic wave functions are used. Only exchange
integrals wiO contribute for any given conhguration,
and these always enter with a negative sign because of
the antisymmetry of the atomic wave functions. Those
pairs of e1ectrons will interact which have the same
spin, opposite individual parity, and m~ values difFering

by &1. This means, for example, that a p valence
electron in an atom such as gallium or indium will
interact with one s electron in each closed s shell, and
two d electrons in each closed d shelL (The sum of all
such interactions between electrons within closed shells
is zero, just as Trio is zero in that case. )

For the normal conhguration of an atom like gallium
or indium, consisting of an nop valence electron outside'
closed s and d shells, the total contribution due to
interaction with these shells is

eIIk m 2
Tag ——— ——Q ~ R(ns)rR(nop)r'dr

2m@ M3 n&»,

8R(ns)
R(nop) r'dr

0 {9f'

ot} BR(nd)
R(nd)rR(noP)r dr I R(noP) rodr

n&3~0 Bs
00

+3 I R(nop) R(nd)r'dr—
0 r

Here r refers to the polar coordinates, r, 8, @, relative
to the nucleus, and E is the appropriate single electron
radial wave function. The summation, of course, extends
only over closed shells.

The radial integrals in the expression above are
elementary in terms of hycLrogenic wave functions, but
the results of such computations can serve only as a
very rough guide, since the penetrating p orbit and all
the core orbits involved are distorted by the charge
distribution of the core itself. The matrix elements of r
are relatively well known, because of their relation to
the intensities of radiation from the ionized atom. The
integrals involving 1/r and the derivatives of the wave
functions, however, are didFicult to estimate. The main
contribution to these integrals comes from inside the
core, where the distribution of nodes is very critical.
The use of hydrogenic wave funct. ions and the same
screening constant for the nos and nop electrons causes
the interaction with the closed nos shell to be exactly
zero, although the interaction with the inner s shells
does not vanish. Also, in the case of the normal 4p state
of gallium, the 6rst term of the interaction with the

~ D. S. Hughes and C. Eckart, Phys. Rev. 36, 694 (1930).' M. Phillips, Phys. Rev. 60, 100 (1941).

3d shell vanishes, since the derivative of R(3d) is a
constant times R(3p). The net result, using hydrogenic
wave functions for gallium, is that Ta~ is somewhat
less than, although of the same order as, the correction
for the motion of the core as a whole, i.e., the sum of
the radial integrals in the bracket above is slightly less
than unity. There is no obvious reason why improved
wave functions should not give an answer several times
as great as this, although not of a higher order. A very
similar result is obtained for indium: again the contri-
bution of the overlapping s shell is zero, although there
is a non-vanishing interaction with deeper s shells and
both d shells.

It would be routine, although tedious, to evaluate
TII& using numerically integrated wave functions with
something like a self-consistent 6eld. At present the
experimental precision does not seem to warrant such
a calculation, especially since the relativistic correction
is presumably somewhat more important.

APPENDIX

To write the matrix elements in polar coordinates:

a a(;xv.;).= . ;—;—=-(;;g--;g;)=G(', j),
a/2 2

where

g; =x;+iy; =r; sin8;e@"
and

a . a . . a cos|Y& a i
Ci =—+i—= sin~i. e'~ —+ . ' —+

ax/ ay2
'

arg- rg sine) ac). r2 sjn'e2 aq f.

The integrals to be evaluated are then:

fdr(fdr21o(1}no(2}Gno(1)o(2)+8(2)no{1}Gno{2)o(1)I

Here e& is the wave function of the valence electron, and v is the
single particle function for the interacting core electron. When
these wave functions are introduced the angular integrals are
elementary, and the matrix element of (s;XV's;),+(s&X&8s)z
involving any s shell is

$ QQ aR
R(ns)rR(npp) r~dr R(ns) —(n pP) r dr

3 0 ar
aR(ns) 1

R(npp) r dr+2 R(ns)-R(npp)r~dr
0 dr r

2$ aR(ns)=+— R(ns) rR(npp)r dr R(npp) r'dr.
0 0 ar

The analogous result for the interacting d electron with azimuthal
quantum number equal to zero is

2i aR(nd)
JR(nop)rR(nd)r d—r f R(nop) rodr

15 0 0 dr

1+3J R{noP) R(nd)rodr . —

The interaction with the d electron having azimuthal quantum
number 2 gives

4i aR(nd),
R(npp) rR(nd) rmdr R(npp) r~dr

5 0 ar
1+3f R(nop) R(nd)rodr—

0 r

The 6nal expression for Tel in the main body of the paper is just
the sum of all such matrix elements, multiplied by the constants
in the Hamiltonian.


