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Variational methods developed by Schwinger are applied to
neutron-proton scattering at energies below 10 Mev. S-wave
scattering alone is considered, and the tensor force is not
taken into account. An expansion is obtained for the phase
shift in powers of the energy. The coefFicients can be evaluated
explicitly from the wave function. The 6rst term of the series
is related to Fermi's scattering length, the second term in-
volves an effective range. " The third and higher terms
turn out to be negligible.

The results are used to define an "intrinsic range" for a
potential well of arbitrary shape. Thus a reasonable com-
parison of potential wells of different shapes is made possible.
The relation between intrinsic range and effective range is
discussed.

The experimental data on coherent and incoherent neutron-
proton scattering are discussed in terms of a "shape-inde-

pendent" approximation. The best value for the effective
range in the triplet state is ri=(1.56&0.13) )&10 " cm. The
effective range in the singlet state is not well determined by
the present data.

The effect of higher, shape-dependent terms in the expansion
of the phase shift is considered. These terms become more
important as the well shape becomes more long tailed, but
they are found to be negligible within experimental uncer-
tainties for the four well-shapes considered here (square,
Gaussian, exponential, and Yukawa).

The results for the scattering phase shifts can be extrapo-
lated to negative energy to give an approximate algebraic
equation for the energy of the bound state of the deuteron.

All the numerical results are shown in graphical form;
interpolation formulas are provided where higher accuracy
may be needed.

I. INTRODUCTION

HE interpretation of nuclear scattering data
commonly proceeds according to the scheme

(Experimental Cross Sections) i(Phase Shif ts)
+—(Theoretical Nuclear Potentials). (1.1)

That is, the phase shifts' constitute the common
meeting ground between theory and experiment.
The classic example of this type of analysis is the
pioneer work of Breit and associates' on proton-
proton seat tenng.

The scheme (1.1) involves a large amount of
computation. There has long been a feeling that
the low energy data really do not yield enough
information to merit such a detailed approach.
This feeling was expressed by Landau and Smoro-
dinsky" among others. They developed a semi-
empirical formula for the phase shifts. Unfortu-
nately, they did not succeed in giving a rigorous
mathematical justification for their method of
approach. Consequently they were unable to relate
the parameters which they introduce to the correct
wave mechanical description of the two-body
system in a precise way.

~ Assisted by the joint program of the ONR and the ABC.
' N. F. Mott and H. S. W. Massey, Theory of Atomic Calli-

sions (Oxford University Press, London, 1933), p. 24.
~ G. Breit, E. U. Condon, and R. D. Present, Phys. Rev.

50, 825 (1936); G. Breit, H. M. Thaxton, and L. Eisenbud,
Phys. Rev. 55, 1018 (1939); L. E. Hoisington, S. S. Share,
and G. Breit, Phys. Rev. 55, 884 (1939); G. Breit, A. A.
Broyles, and M. H. Hull, Phys. Rev. V'3, 869 (1948).

'L. Landau and J. Smorodinsky, J. Phys. U.S.S.R. 8, 154
(1944)

J. Smorodinsky, J. Phys. U.S.S.R. 8, 219 (1944) and 11,
195 (1947).

During the last few years, however, Schwinger'
has developed a powerful variational method which
provides a rigorous basis for the Landau-Smoro-
dinsky approach to the analysis of scattering data.
This method shortens the labor of computation
materially for any one assumed form of the nuclear
potential. In addition, this method provides a
simple way to determine just what properties of
the nuclear potential can and cannot be inferred
from the experimental data.

The essence of the approach of Schwinger and
Landau and Smorodinsky is its prediction of a
simple functional form for the variation of the
phase shifts with energy under very general assump-
tions about the nuclear potentials. This functional
form involves some undetermined parameters, of
course. The analysis then proceeds according to
the scheme:

(Experimental Cross Sections)~(Phase Shifts)
-+(Variational Parameters)

+-(Theoretical Potentials). (1.2)

In contrast to (1.1), the meeting place between
theory and experiment is not the phase shifts
themselves but the values of the variational param-
eters implied by the phase shifts. This simplihes
the numerical work since only a few parameters
(actually 3 are sufficient for energies below 1Q Mev)
have to be computed for each choice of the theo-
retical potential energy, rather than a larger number
of phase shifts. One can get a qualitative under-
standing of these parameters so that one can easily

' J. Schwinger, Phys. Rev. 72, 742A (1947); hectographed
notes on nuclear physics, Harvard, 1947.
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predict the difference in the scattering properties of,
say, a "short-tailed" and a "long-tailed" well. The
scheme (1.2) also makes it possible to give a clear-
cut criterion of "best fit" to the data: one fits a
definite functional form to the phase shifts, so that
the parameters and the errors in them can be
determined by least square methods.

The present paper deals with this scheme of
analysis for neutron-proton scattering. (A com-
panion paper on proton-proton scattering is in
preparation. ) For low energies (below about 10
Mev), 5-wave scattering alone is of importance.
For this case the quantity k cot8 [k =wave number
of the neutron in the center-of-gravity system,
8 =phase shift J can be expanded as a power series
in k' (i.e., in the energy, since the two are propor-
tional), as follows:

k cot8 = —1/a+-', r,k' —Tk4+ . (1.3)

The existence of the series (1.3), and of its
equivalent for proton-proton scattering, was real-
ized before the work of Landau and Smorodinsky.
Indeed, Breit, Condon, and Present' showed that
the zero-range assumption does not give a good fit
to the proton-proton scattering data. This assump-
tion is equivalent to using only the first term of the
proton-proton series corresponding to (1.3). The
Russian papers served to focus attention on the use
of (1.3) as the starting point for a complete scheme
for analyzing the data. Schwinger's work in turn
made it possible to relate the coefficients to the
quantum-mechanical properties of the system.
Since that time Bethe, ' Peierls, ' Hatcher, Arfken,
and Breit, ' and Chew and Goldberger' have all, in-
dependently, found ways of deriving the Schwinger
expressions for the coefficients in (1.3) directly from
the basic differential equation, without the use of
variational methods. Ekstein" has independently
succeeded in deriving the variation principle under-
lying the present work. Hulthen" has applied
slightly diA'erent variational methods to similar
problems.

The first two coefficients of the power series (1.3)
have been written in a special form so as to give
them simple physical meaning: the parameter a
turns out to be Fermi's" "scattering length" evalu-
ated at zero energy. ro is dimensionally a length
and the factor i~ in (1.3) makes its value fall
somewhere near the "edge" of the potential well.

' H. Bethe, Phys. Rev. 70, 38 {1949).
~ F. C. Barker and R. E. Peierls, Phys. Rev. 75, 312L

(1949).' R. D. Hatcher, G. B. Arfken, and G. Breit, Phys. Rev.
75, 1389 (1949).' G. F. Chew and M. L. Goldberger, Phys. Rev. 75, 1466A
(1949};also Phys. Rev. 75, 1637 {1949).' H. Ekstein, Phys. Rev. 75, 1322A (1949)."L. Hulthen, Arkiv f. mat. , astr. och fysik 35A, No. 25
(1948)."E.Fermi and L. Marshall, Phys. Rev. 71, 66 (1947).

Hence ro is called the effective range. " The term
"e8'ective range" must be used with some caution
since ro depends not only upon the range but also
upon the depth of the potential well.

The result (1.3) does not look too promising at
First sight since a power series has infinitely many
terms. Hence we must, in principle, determine
infinitely many parameters, i.e., the coefticient of
every power of k' in (1.3). For low enough energies,
however, the first few terms of the power series mill
clearly sufhce. Suppose the first n terms of the
series (1.3) are sufFicient to give an adequate fit to
the data over the energy range in question. Then
the data determine no more than these n coeScients
of the series (1.3). Two wells which lead to the
same values of these coeS.cients are equivalent fits
(equally good or equally bad as the case may be)
to the experiments, even though their higher order
parameters (coefficients of k'", k'"+', etc.) may
differ considerably.

It will turn out that the third term of (1.3) and
all the ones beyond it are so small that they can be
neglected within the experimental error over the
energy range in question. We then get the shape-
independent approximation formula:

k cot8——I/a+-', rok'. (1 4)

The name comes from the fact that (1.4) involves
only two variational parameters, namely, the scat-
tering length a and the effective range ro. For any
well shape we always have two adjustable well
parameters at our disposal: the well depth and the
range of the well. Having two well parameters with
which to fit two variational parameters, we can
obviously make a fit no matter what the shape of
the well, provided only the well shape and energy
range are such that the higher terms in (1.3) are
indeed small.

In neutron-proton scattering, the data below 10
Mev are sufficiently inaccurate so that one cannot
determine the coeScient T of k' except within very
wide limits. Moreover, around 15—25 Mev the
5-wave phase shift is near to 90' so that the 5-wave
cross section is close to 4m'', and the transmission
experiments just measure the effective wave-length
of the neutrons. At even higher energies, the data
are extremely hard to interpret; higher orbital
angular momenta enter significantly, and their
contributions (phase shifts) are hard to separate. In
addition, the spin-orbit coupling due to the tensor
force also becomes significant, and this doubles the
number of independent phase shifts which must be
determined from the data. The present data"
around 90 Mev do not have the accuracy necessary

'~ L. J. Cook, E. M. McMillan, J. M. Peterson, and D. C.
Sewell, Phys. Rev. 72, 1264L {1947);J. Hadley, E. Kelly,
C. Leith, E. Segre, C. Wiegand, and H. York, Phys. Rev. 75,
351 (1949).
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for such an analysis. We are therefore restricted to
the data below 10 Mev, and we can learn nothing
at all about the shape of the nuclear potential well.

There is a slight correction to the conclusion of
the last paragraph; one can of course conceive of
wells with values of T so abnormally large that
they would make the third term of (1.3) predomi-
nate even at moderately low energies. Even the
rather inaccurate and low energy data will then
give a poor fit to (1.3). Peculiar wells with such
abnormally large values of T are excluded by the
experiments. But we shall see that all the commonly
assumed mell shapes give quite small values of Tk4

below 10 Mev. Well shapes which lead to large
values of T must ha.ve a very long tail (longer than
the Yukawa well). Extremely long-tailed wells are
probably excluded by Wigner's" original argument
for short-range forces (based upon a comparison of
the binding energies of H', H' and He'). Hence
ioe conclude that, except for unusuat well shapes likely
to be excluded by other considerations, the experi-
mental data about the neutron proton -system at toui

energies tell us nothing at all about the shape of the

nuclear potential m'ell.

An analysis given by one of us, "based upon the
shape-independent approximation, shows that it is
impossible to determine the parameters uniquely
even with this simplifying assumption. The effective
range r, in the singlet spin state is known at present
only within limits so wide as to be almost meaning-
less. However, more accurate data would remedy
that situation, and the accuracy involved appears
to be within the limits of present experimental
techniques. On the other hand, we feel that it is
useless at this time to analyze the neutron-proton
data by any more detailed method than the shape-
independent approximation.

Section 2 of this paper is devoted to an exposition
of the Schwinger variational method for scattering
problems. In Section 3 we use' this method to derive
the shape-independent approximation (1.4). An
alternative, simpler derivation of (1.4) without the
use of variational techniques is given in a companion
paper by Bethe. ' Section 4 is devoted to the elabo-
ration of these results. We define the "intrinsic
range" and "well-depth parameter" of a well of
arbitrary shape and we discuss the relation between
the effective range and intrinsic range. Section 5
gives an approximate formula for the energy of the
ground state of the deuteron. Section 6 is devoted
to the analysis of the experiments in terms of' the
shape-independent approximation, bringing the
results of reference 15 up to date. The formula for
T in (1.3) is derived in Section 7, and some com-
puted values are given there to show that T can
indeed be neglected for the usual well shapes.

Finally in Section 8 we give a more accurate
expression for the ground state energy of the
deuteron. We also give interpolation formulas for
the necessary well depth as a function of the
intrinsic range b of the well for the four conventional
well shapes.

The tensor force has been neglected throughout
this work. An investigation of this aspect of the
problem is being carried out by L. C. Biedenharn,
and will be presented in a later publication.

II. THE ESSENTIALS OF THE SCHWINGER
VARIATIONAL METHOD

The Schwinger analysis, ' upon which this whole
work is based, can be summarized for our purposes
as follows. We shall assume 5-scattering only and
no long-range (Coulomb) forces for the sake of
simplicity of presentation. Let vi(r) be the radial
part of the wave function in the center-of-gravity
system, and let

u(r) =rq(r)

Then u(r) satisfies the Schrodinger equation:

(2.1)

u(0) = Q. (2.3)

Since V(r) approaches zero rapidly as soon as r
exceeds the range b of the nuclear force, the solution
of (2.2) and (2.3) will behave for r))b tike

u(r) sin(kr)+tanb cos(kr). (2.4)

(2.4) defines the phase shift 8. The cross section is
given by

o = 4ir sin'8 jk'. (2.5)

Schwinger now proceeds to replace the differential
equation (2.2) by an integral equation. He writes
(2.2) as

( d'/dr' k') u(r) = —[2m —V(r)/5']—u(r)

and introduces a Green's function for the operator
on the left-hand side. The Green's function is the
one appropriate to standing waves. It satisfies the
conditions:

( 8'/ctr' k')G(r, r')—= h(r ——r'),
G(0, r') =0, G(r, r')-cos(kr) for r) r' (2.6).

This Green's function is given by

[—d' jdr' —k'+2m V(r) jh']u(r) =0. (2.2)

Here k'= 2mB/h' is the square of the wave number
associated with the relative motion, B is the energy
associated with relative motion, m =mimi/(mi+mi)
is the reduced mass, and V(r) is the nuclear
potential. This differential equation is to be solved
subject to the boundary condition

"E.signer, Phys. Rev. 43, 252 (1933)."J.M, Blatt, Phys. Rev. 74, 92 {1948). G(r, r') = k ' sin(kr&) cos(kr~), (2.7)
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tanb=k ' dr' sin(kr') W(r')u(r') . (2.10)
eJ p

where r& stands for the smaller one of r, r', and r& 5 is given by
stands for the larger one of r, r'.

Ke also introduce the notation

W(r) =— 2—ntV(r) /Fi' (2.8)

The differential Eq. (2.2) can now be written as an
integral equation:

u(r) =sin(kr)+ ~ dr'G(r, r') W(r')u(r') (2..9)
Jp

Ke observe that if we add any multiple of sin(kr)
or cos(kr) to the right-hand side of (2.9), u(r) will
still satisfy the differential Eq. (2.2). The particular
choice (2.9) was made so as to satisfy the boundary
conditions (2.3) and (2.4). (2.3) is obviously satis-
fied. To see whether (2.4) is satisfied, we let r be
much larger than the range b of the forces. The
integral extends practically only over values of r'
of order b, which is much smaller than r by assump-
tion. We therefore substitute r& r', r& ——r——in G(r, r')
(2.7). This gives

Schwinger now rewrites the integral Eq. (2.9) in
the form of a variation principle. To do this, he
multiplies both sides of (2.9) by W(r)u(r) and
integrates over r. The result is

00 F00

W(r)u'(r)dr = W(r)u(r) sin(kr)dr
J p

F00 00

+ dr ~ dr'W(r)u(r)G(r, r') W(r')u(r').

He divides both sides of this equation by the square
of the expression (2.10), i.e., by tan'b. This gives,
after rearrangement of terms,

00 F00 ~00

Wu'dr dr —dr'W(r)u(r)G(r, r') W(r')u(r')
~p Jp dp

I'
W(r)u(r) sin(kr)d»

u(r) sin(kr) 00 - —1

=k' W(r) u(r) sin(kr)dr
LJ00

0+ k ' dr' sin(kr') W(r')u(r') cos(kr).
Q p The right-hand side of this equation is equal to

k cotb by formula (2.10). We therefore get the
Comparison with (2.4) shows that the phase shift fundamental equation of the Sckwi»tger tkeory:

k cotb=

W(r) u'(r)dr —
I dr dr'W(r) u(r) G(r, r') W(r') u(r')

~o ~p ~o

00 -2

k—' I W(r)u(r) sin(kr)dr
Jp

(2.11)

Schwinger now observes that (2.11) can be con-
sidered as a variation principle for k cotb. In other
words, the function u(r) which satisfies the integral
Eq. (2.9), is precisely the function which makes the
expression (2.11) stationary. Conversely the value
of k cotb computed from that function u(r) which
makes (2.11) stationary will give the correct phase
shift which satisfies (2.10). These statements can
be verified directly. One merely has to replace the
correct wave function u(r) by u(r)+bu(r), expand
to terms linear in bu(r), and observe that these
terms vanish no matter what form is assumed for
bu(r), merely as a result of the fact that u(r)
satisfies (2.9) and (2.4).

A useful corollary of the stationary property of
the expression (2.11) is the fact that the error in
k cotb computed from (2.11) will be of the order of
magnitude of the square of the error in the wave
function. A qualification is necessary here. u(r)

enters (2.11) only in the combination W(r)u(r).
Hence an error in u(r) is important only if it occurs
within the range of nuclear forces.

Another advantage of (2.11) is its homogeneity
in u(r). Multiplication of u(r) by a constant factor
does not change the variational expression for
k cotb. Hence we do not need to normalize the
trial wave function.

In addition, Schwinger is able to give an explicit
method for improving the trial wave function
systematica11y. Suppose we start with a trial func-
tion uo(r) not equal to the correct u(r). Ke substi-
tute uo(r) in place of u(r) into (2.11) to get an
approximation k cotbp. We can then use the integral
equation to iterate the wave function, getting a
better approximation ui(r) from uo(r). This gives
an improved value of k cot8~, which can be used to
iterate again on the wave function, and so on. This
method converges very rapidly if uo(r) is chosen
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properly. An example of this procedure is given in
Section 7 of this paper.

Unlike the usual variation principle for the
energy which gives an upper bound for the energy
of the ground state of a system, " the variation
pr&icipls (Z.ll) gives neither au upper nor a lower
bound for k cotb but rather a value close to k coth
with an error whose direction we do not known,
even though we can estimate its magnitude.

The generalization of (2.11) for arbitrary orbital angular
momenta, l/0, and to include Coulomb forces is trivial.
However, Schwinger has generalized the variational approach
so that it is useful for a much wider range of problems.
Examples are (1) the inclusion of spin-orbit coupling (tensor
force), ' (2) improvement of the Born approximation at high
energies, @'" (3) a general discussion of the scattering matrix, "
of reciprocity theorems and conservation laws; the Heitler
theory of radiation damping" emerges as a particular case,
in which certain terms are neglected, (4) the analysis of the
effect of obstacles in wave guides" and of diffraction problems
in optics, " and (5) a discussion of boundary conditions in
neutron diffusion problems.

The analysis in the form given here is not applicable to
nuclear reactions" where the "particles" which collide are
highly complex, and where rearrangement of components to
form reaction products of different kinds is possible.

The preceding remarks are intended merely to
sketch in some of the background of this particular
application of the Schwinger formalism. It is hoped
that Professor Schwinger wi11 soon 6nd the time to
publish the general formalism in detail.

III. THE SHAPE-INDEPENDENT APPROXIMATION
FORMULA"

It is the objective of the Schwinger method to
obtain an approximation to the energy dependence
of the phase shift in the simple form (1.3). In order
to do this, Schwinger replaces the wave function
u(r) in the variation principle (2.11) by a trial wave
function us(r) which is the correct expression for
u(r) at some particular value of the energy. It turns
out that the wave function us(r) appropriate to
sero energy is best adapted for our purposes. In
other words, we replace u(r) which satisfies (2.2)

'OSee, for example, L. C. Pauling and E. B. Wilson, Intro-
duction to QNanhcm Mechanics (McGraw-Hill Bool' Company,
Inc. , New York, 1935), Chapter VII."J. Eisenstein and F. Rohrlich, unpublished theses,
Harvard University.

'~ J.A. Wheeler, Phys. Rev. 52, 1107 (1937).W. Heisenberg,
Zeits. f. Physik 120, 513, 673 (1943}.C. M&ller, Kgl. Danske
Vid. Sels. Math. -Fys. Medd. 23, No. 1 (1945}.

'9 W. Heitler and H. W. Peng, Proc. Camb. Phil. Soc. 38,
296 (1942).J. M. Blatt, Phys. Rev. 'F2, 466 (1942)."8'aeeglute Handbook, M.I,T. Radiation Laboratory
Series (McGraw-Hill Book Company, Inc. , New York, in
press).

~' H. Levine and J. Schwinger, Phys. Rev. I4, 958 (1948};
V4, 1212A (1948).

~ See, however, the recent paper by W. Kohn, Phys. Rev.
74, 1763 {1948}.

~* The following derivation, except for a few trivial changes
is reproduced from lecture notes on a course in nuclear physics
given by Professor Schwinger at Harvard, Spring 1947.

by us(r) which satisfies

d—'us/dr'= W(r) us. (3.1)

One reason for this choice is the fact that (3.1) does
not lead to an eigenvalue problem for the determi-
nation of us(r). Indeed, once a form for W(r) is
assumed, (3.1) can be integrated numerically
without any difficulty.

Another reason is the simple behavior of us(r)
outside the range of the forces. Equation (3.1)
shows that outside the nuclear range, us(r) behaves
like a straight line. We shall write

uo(r) 1 cxr— (3.2)

for r»b, k being the range of the nuclear force (we
shall see later on how one can give an unambiguous
definition of b) We o.bserve that (3.2) is normalized
in a certain way. This does not lead to any difFiculty
in practice. One merely integrates (3.1) numerically
until r&&b, and normalizes the straight line obtained
there to the form (3.2).

The constant 0, has a simple interpretation. We
observe that us(r) =0 when r~n ', provided u ' is
large enough so that the asymptotic form (3.2) is
valid there. u=n ' is therefore the Ierm&' scattering
length evaluated ct sero energy.

One might think at first sight that us(r) is a very
poor choice of a trial function for E/0 since its
general behavior diR'ers radically from the oscil-
lating form of the correct u(r) outside the nuclear
well. We recall, however, that us(r) needs to
approximate u(r) only for r&b since u(r) enters
(2.11) only in the combination W(r)u(r). Inde
the nuclear range, however, us(r) is a good approxi-
mation to u(r), the di(ference being of order k'.
Since the error in k cotb is of the order of the
square of the error in the trial wave function, we
conclude that our result for k cotb will be accurate up
to, but excluding, terms of order k' in an expansion
iu powers of k. In other words, we will get the first
two terms of the series (1.3) correctly.

The various reductions which will be made in
this section to derive formula (1.4) amount to a
replacement of V(r)us(r), wherever it occurs, by
(Es T)us(r), T bei—ng the kinetic energy operator
(Bp =0 with our choice of the trial wave function).
One then uses the fact that (Zs —T)us(r) = 0 outside
the range of the nuclear forces to split oR the
asymptotic behavior of the tria1 wave function. As
a result of this procedure, the final formula (1.3) for
k cotb does not contain the potentuil V(r) explicitly,
only imPlicity in its effect uPon lks truil wave function
us(r). In particular, " the final result does not even
depend upon the assumption of a potential of the
usual type:

Vu = V(r)u(r) (3 3)
~ This was observed by Breit for proton-proton scattering.

G. Breit and W. G. Bouricius, Phys. Rev. V4, 1546I. (1948).
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but follows just as well from a more general A double integration by parts gives
potential operator

V(r, r') u(r')dr' (3.4)
J(r) =cos(kr) +) O'G/Br"g(r')dr'.

0

J 0

X=
J

W(r)u, '(r)dr
~

W(r)uo(r) J(r)dr,
0 0

In the second term, we use (2.6) to eliminate
(the "velocity-dependent force" of Wheeler" ). Thus (O'G/Br"). J(r) then assumes the form
the form (1.4) is quite general and depends for its
validity only upon these conditions:

(1) The state of the nuclear two body system
can be described by a wave function f

(2) The usual symmetries hold (i.e., the center- The numerator X of (2.11) is
of-mass motion and the angular motion can be
factored out of P). 1

(3) The wave function satisfies a Schrodinger-
type equation

with V a very general operator, restricted only by
the assumption of "short-range. " In this connection
"short-range" merely means that the wave function
approaches its asymptotic form rapidly enough so
that the effective range (3.9) turns out to be finite.

Since the final result is so general and does not
involve the potential V(r) explicitly, one suspects
that it can be derived in a simpler way, by elimi-
nating V(r) at a much earlier point in the deriva-
tion. This is indeed the case. Bethe6 has succeeded
in giving an alternative derivation which uses the
three postulates above directly. The Bethe deriva-
tion shows that the expansion for k cotb is closely
related to the orthogonality condition on the wave
functions belonging to the same Hamiltonian
operator but to difkrent values of the energy.

It is rather gratifying to see that a considerable
amount of useful information can be derived on the
basis of such general assumptions. On the other
hand, some people may consider it disconcerting to
find just how little the experiments really tell us
unequivocally about the nature of nuclear forces.

Since Bethe has given a simpler derivation of
(1.4), we shall only give the bare outline of the
reduction from (2.11) to (1.4). We define the func-
tion g(r) by

u0(r) —= 1 —ar —g(r), all r.

(3.2) shows that g(r) is zero for r))b, while the
boundary condition (2.3) on uo(r) implies that
g(0) = 1. We also observe that d'uo/dr' =+d'g/dr'-—
= W(r)uo(r) from formula (2.1). We first treat the
numerator of (2.11).We need the integral

J(r) = )' G(r, r') W(r') u, (r') dr'
0

IX= d'g/dr'[uo(r) J(r) jdr. —
0

Using integrations by parts similar to the ones
above, we get the result

X= —a+k'~ [2g(r) cos(kr) g'-(r) ]dr—
0

~00 QQ

—k' g(r) G(r, r')g(r')drdr'. (3.6)
J0

We can estimate the magnitude of these integrals
as follows: g(r) is of order unity inside the nuclear
range b, while it drops to zero rapidly for r»b.
Hence the integral Jo"g'(r)dr is of order b. In the
other term of the single integral we expand cos(kr)
in a power series. We can do this consistently since
we are trying to get an expansion in powers of the
energy k'. Every term in the power series leads to
a term of form k'" multiplied by an integral which
is of order of magnitude b~" '.

We recall that because of our choice of trial
function our final expression for k cotb will be
correct only up to, but not including, terms of order
k'. We are therefore justified in replacing cos(kr) by
unity in (3.6) and in neglecting the double integral
(or order k4b') altogether.

Now consider the denominator of the variational
expression (2.11). It is the square of the integral

D'*= I k ' sin(kr) W(r)uo(r)dr

= k-~ I sin(kr)dig/dr-'dr.

Integration by parts yields

J0
G(r, r') d'g ~dr"dr'

ts oo 00

Di=1 —k i sin(kr)g(r)dr~1 —k2, ~ rg(r)dr.
'4 J. A. %heeler, Phys. Rev. 50, 643 (1936).
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Having adjusted the mell depth in the way
described, we shall call the potential V(r) for this
resonance case V& '(r), and the wave function
u0&s'(r). It is understood that the well depth chosen
is the smallest one which will give a resonance at
zero energy. Formula (3.9) then gives

r ' &= b=—2 t L1 —uo&s'(r)']dr.
0

(4.2)

FIG. 1. Resonance wave function No("){r). The potential
V(r) is chosen to give a scattering resonance at zero energy
(the scattering length c is inhnite).

We want D ' which, to order k' inclusive, is given by

D '~1+2h' rg(r)dr. (3.7)

r.= 2~" I:2g(r) —g'(r) —2«g(r)]«

r.= 2 L(1 —«)2 —u. (r)]dr.

(3 9)

We now combine (3.6) and (3.7) to get the shape-
independent approximation

k cot6 = ND —' = —a+-,'rob'
+(terms of order h'ro') (3.8)

where «. is given by (3.2) and the "effective range"
ro ls defined by

No extraneous length (such as a ') enters into
formula (4.2). Furthermore, the definition of uo'"'
depends only upon the shape and range of the
potential V(r) since its depth has been adjusted.
It is therdore reasonable to define b(4 2) to .be the
intrinsic range of the nuclear potential V(r). We
remark that for a square well potential, the defini-
tion (4.2) gives just the ordinary range of the
square well.

Having defined the intrinsic range of the well,
we shall now introduce a well-depth parameter.
We obtained V&s&(r) from V(r) by multiplication
by a constant, i.e. ,

V(r) =s V'"'(r). (4 3)

(4.3) defines the well depth -parameter s. s=1 if there
is a resonance at zero energy; s &1 implies a virtual
level, s&i a real level of the two body system.

We give the forms of various commonly assumed
potentials in our notation. We will express V(r) in
Mev and the intrinsic range b in units of 10 " cm.
Then the square well, exponential we11, Yukawa
well, and Gaussian well are given by

Square well (5)

IV. THE SPECIFICATION OF A NUCLEAR POTENTIAL
BY AN INTRINSIC RANGE b AND A WELL-DEPTH

PARAMETER s. THE RELATION BETWEEN THE
INTRINSIC RANGE AND THE EFFECTIVE RANGE

—V(r) = s(102.276)b
—', (r (b),

=0, (r)b),

Gaussian well (G)

(4.4S)

op =4xa'. (4.1)

When a becomes infinite, so does the scattering
cross section o 0. (This does not contradict the usual
rule that r must not exceed 4m'' since X=k '= ~
at zero energy. ) This explains the use of the term
"resonance. "

Formula (3.9) for the effective range enables us
to give an unambiguous definition for the intrinsic
range of a nuclear potential. Let V(r) be the potential
in question. In general, the scattering length a '
will have some finite value. However, we can change
the well depth (i.e. , multiply U(r) by a constant)
until the first resonance occurs at zero energy.
The wave function for that case is illustrated in
Fig. i. We see that +=0, i.e., the scattering length
c is infinite. The scattering cross section at zero
energy is in general given by (see (2.8) and (2.5))

—V(r) =s(229.208)b '
Xexp[ —2.0604(r/b)'], (4.4G)

Exponential well (E)
—V(r) = s(751 541)b ' exp. L

—3.5412r/b], (4.4E)

Yukawa well (Y)
—V(r) =s(147 585)b '(b/r). -

Xexp L
—2.1196r/b], (4.4Y)

where the bracketed numbers in each coefFicient
are in Mev&10 "cm'. For the Yukawa well, the
corresponding meson mass p, is given by

( / t&)m= 818.57/b,

where m, is the electron mass, and b is in 10 "cm.
The corresponding expressions for W(r) are (in

cm ' if b is measured in cm)
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r,—b —4n rg& &(r)dr.J, (4.6)

The effective range decreases with increasing well

depth. The order of magnitude of the decrease can
be estimated easily. The integral (4.6) is estimated
by putting g' (sr) =1—sin(vr/2b) for r&b, g&"'(r)
=0 for r &b. This is, of course, the correct function
for a square well. Then (4.6) gives

ra br 1 —0.38(ab) ]. (4.7)

The numerical coefficient of (ab) will of course
diRer from well to well. For a long-tailed well,
g's'(r) will extend farther out than r=b. Since
g' (er) is multiplied by r in the integral (4.6), we
see that bigger values of r are weighted more
heavily. Hence we conclude that the numerical
coefficient in (4.7) will increase with the length of
the well-tail. For a given value of (nb), the effective
and intrinsic ranges will dier more the more "long
taiLed" the meLL shape. We have remarked before
that all mell shapes give identical results for the
scattering as far as the shape-independent formula
(3.8) is concerned. This does not contradict the
fact that the relation between the eRective range ro
and the intrinsic range b is diferent for diRerent mell
shapes. The intrinsic range b is never observed

Square well

W(r) =s(s'/4)b ', (r(b)
=0, (r & b),

Gaussian well

W(r) =s(5.5296)b ' expr —2.0604(r/b)'], (4.5G)

Exponential well

W(r) = s(18.1308)b ' expL —3.5412r/b], (4.5E)

Yukawa well

W(r) =s(3.5605)b
—'(b/r)

Xexpr —2.1196r/b]. (4.5Y)

In Fig.. 2 we have plotted b'W(r) vs. (r/b) for these
four wells with s=i. The wells in Fig. 2 give
equivalent results in the shape-independent ap-
proximation.

Ke nom discuss the dependence of the Schwinger
parameters, 0. and ro, upon the well depths, s. Let
us start with the well depth adjusted to give
resonance, s=1 (see Fig. 1). Now increase s some-
what. The curvature of the wave function will look
as indicated in Fig. 3. We see that the scattering
length is now positive.

To a first approximation, g(r) is unchanged from
its behavior at resonance, g's'(r) Form. ula (3.9) (in
its first form, involving g(r)) then tells us that ro
will be somewhat less than b. Indeed,

,4 4 g I0 l2 IA Uj I QQ ~ g.4 25 2+
I ~ I I
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FrG. 2. Ordinate: b'W(r); Abscissa: r/b. The dimen-
sionless representation of the nuclear potential b'W(r)
(=(—2mb'/A') V(r)) is shown as a function of r/b for the
square (S), Gaussian (G), exponential (8), and Yukawa (V)
well shapes for s=i (scattering resonance at zero energy).
These potential wells are essentially equivalent in the shape-
independent approximation. The left-hand ordinate scale is to
be used when r/b (1.1, the right-hand one when r/b) 1.1.

FIG. 3. Wave function u0{r) for zero energy with the well
depth adjusted to give a bound state (s)1). The scattering
length u is finite and positive.

directly but must be inferred from the experimental
values of ro and n. Hence a given experimental ro

leads to diRerent intrinsic ranges b for various
assumed well shapes, but we cannot infer anything
about the well shape from an experimental knowl-
edge of ro.

Ke conclude this section by giving the results of
some calculations with various well shapes. The
dependence of o, and ro upon the well depth is
illustrated in Fig. 4 and Fig. 5 where the dimension-
less quantities (ab) and (ro/b) have been plotted
against the well-depth parameter s. As a supplement
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0.7

il

~f, b

term gives an exponentially decreasing contribution
while the second term goes like exp(+yr). Hence
we get an acceptable wave function for a bound
state of our two-body system if and only if S
vanishes when k= —iy. We therefore obtain the
condition for tke energy 8= —li'y'/Zm of a bound
state:

0,6 s( —i&)=o, »o.
Since 5=exp(2ib), (5.2) can be rewritten as

(5.2)

0.4

cotb = —i for k = —iy. (5.2')

We now substitute (3.8) to get the approximate
equation

y—n+ —,'r&y'. (5 3)

0.2

01

S~
&.6 &8 P,0 P g

FIG. 4. Ordinate: 0th; Abscissa: s. The ratio of the intrinsic
range b of the potential well to the scattering length u (=cx ')
is shown for the square (5}, Gaussian (6}, exponential {E},
and Yukawa (Y) well shapes as a function of the well-depth
parameter s. s&1 means a well deep enough to allow a bound
state; s &1 has only a virtual state.

If we neglect the range correction (i.e. , put
ro ——0), this gives

(5.4)

(5.4) shows that a bound state of the two-body
system can be expected if n is positive. If n is
negative, there exists a "virtual level" at the
positive energy E 1't'a'/2m, but there cannot be a
bound state very near to zero energy.

For the triplet state, (5.4) tells us that the triplet
scattering length a& is approximately equal to the

to Fig. 5, Table I contains interpolation formulas
for (ro/b) as a function of s for the various well

shapes. The range of validity of these interpolation
formulae can be inferred from the curves in Fig. 5.

One can eliminate the well depth s between ab
and ro/b once a well shape (e.g. , exponential) is
assumed. This gives a plot of ro/b ss. olb. In practice
it is more useful to have b/ro plotted against (era)
since one determines u and ro from the experiments
and then wants to know the intrinsic range b

which will give the best fit. Plots of (b/ro) es. (aro)
are given in Fig. 6 for the various well shapes.

08

07

0.6

14 tD 22
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V. THE SCATTERING MATMX AND THE GROUND
STATE OF THE DEUTERON

We can use the shape-independent formula (3.8)
to get an approximate expression for the energy of
the bound state of the deuteron. The asymptotic
behavior (2.4) of u(r) can be rewritten as

u(r) ~e- ikr geiibr (5.1)

where 5—=exp(2ib) is the matrix element Soo of the
scattering matrix 5~i. (The off-diagonal elements
S~E, 3/l' vanish due to our neglect of tensor forces,
while Sii—1 for I ~& 1 at low energies. ) If we replace
k in (5.1) by iy (y re—al and positive) the first

04

03-

FsG. 5. Ordinate: ro/b; Abscissa: s. The ratio of the effective
range ro to the intrinsic range b is shown as a function of the
well-depth parameter s for the four well shapes. For a virtual
state (s&1) ro&b, while for a bound state (s&1) ro&b. The
figure shows that the ratio of effective to intrinsic range for
wells of the same depth s depends strongly upon the well
shape, ro deviating from b more as the well gets more long-
t@iled.
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TABLE I. Interpolation formulae for the ratio rpjb of the To the extent that the term in r&2 can be neg-
H«t've range to th~ intrinsic ra"ge as a f""ct'o" of the

l ted this gives Bethe's2e first-order range cor-
weli-depth parameter s for various weu shap s. eC e

rection
Shape

Square well

Gaussian well

Exponential well

Vukawa well

ro/b

r /b =1—0.500(s —1)+0.486(s-1)~-0.476{s—1)~
+0.378(s —1)» —0.158(s-1}'

ro/b =1 —0.641(s -1)+0.568(s —1)~—0.721(s —1)~
+1~ 172(s -1)4—1.015(s-1)s

rp/b =1-0.904(s —1)+0.745(s —1)~-0.543(s -1)s
+0.174(s -1)4

rsgb =1 —1.369(s—1)+1.093(s-1)~—1.127(s —1)s
+1.005(s -1)4-0.324{s-1)~

"radius of the deuteron" y ' =4.332 X 10 " cm "
In other words, the s scattering of neutrons by
protons in the triplet state is approximately repre-
sented by scattering from a hard sphere of the
radius of the deuteron.

There is no sense in solving (5.3) exactly since it
is only an approximate expression for y. Instead
we use (53) to iterate on y, starting with y=a as
a erst approximation. This gives

y=n+ ,'ron'+-i2ro'n'-+terms of order (ro'a') (5.5.)

The terms of order to'n' would not be given cor-
rectly anyhow since the expression (3.8) for k cotb
is only correct up to, but not including, terms of
order ro'k4.

Conversely, if we know the triplet scattering
length a& and the binding energy of the deuteron
experimentally, we can determine the triplet eHec-
tive range r& from (5.3). This is actually the way r&

is found (see Section VI).

og=—4n(1 —pre)-'(k'+y') '. (6.2')

(6.2) is correct to terms in rP inclusive since the
coefficient T in (1.3) is of order r, '. Hence formula
(6.2) is more accurate than (6.2'). On the other
hand, (6.2') is somewhat simpler in form, showing
that the zero-range cross section 4m(k'+y') ' is
approximately multiplied by an energy-independent
factor (1—yr, ) '. The calculations in this paper and
in reference 15 were based on formula (6.2) for
the triplet state.

In the singlet state, it is possible to introduce a
"virtual level" with an energy Z'=Vy"/2m,
being defined by (5.3) with the singlet state scat-
tering length a, used in computing 0.. Since a„and
hence n. =a, ', is negative, y' will be negative also.
With this definition of y', (6.2) can be used for the
singlet state.

This is not very convenient, however since (unlike
the triplet state) the quantity y' itself depends
upon the e6'ective range one assumes. To see the
nature of the result, it is better to use (6.1) directly.
We observe that the singlet scattering has a (very
broad) resonance rather near to zero energy. In
terms of formula (6.1) this means that n, is small
compared to 0 for energies above the energy of the

VI. COMPARISON OF THE SHAPE-INDEPENDENT
THEORY VGTH EXPERIMENT

We have already pointed out that formula (3.8)
represents the entire effect of the nuclear potential
upon the scattering cross section by two constants,
the Fermi scattering length (evaluated at zero
energy) a=n ', and the effective range r. To the
extent that the higher terms in the Schwinger
expansion can be neglected, we get a simple closed
formula for the cross section a as a function of the
neutron energy E.

o =4wk 'sin'8=4+[( a+ 'rk')—'+k'J-' (6.1).

24

20

te
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We first give a qualitative discussion of (6.1) for
the triplet and singlet scattering separately. For
the triplet scattering, we can use the relation (5.3)
to write

4~(k2+~2) —1[1 ~r+1r2(k2+'2)J i (62)

"We use ~=2.208&0.007 Mev as the binding energy of
the deuteron. This value lies between the old value (2.185)
and the value (2.237} reported recently by R. E. Bell and
L. G. Elliot, Phys. Rev. V4, 1552 (1948). Reasons for using
thy value quoted are given in reference 6.

O.B '
Jgrg

-03 -02 -0& 0 Ol 02 03 04 05

Fio. 6. Ordinate: b/ro. , Abscissa: pro. The ratio (intrinsic
range/effective range) is shown as a function of (effective
range/scattering length) for the four well shapes. The values
of a(=a ') and ro can in principle be inferred from experiment.
Knowledge of n and ro then allows determination of the
intrinsic range b for any assumed shape of the potential well.

"H. Bethe and R. Bacher, Rev. Mod. Phys. 8, 119 (1936).
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virtual level. Hence it is useful to write (6.1) in the
form (l1 = h ' =de Broglie wave-length/2s ).

o =4sl1'[1+(nX)' —(nr)+-'r'h'] ' (6 3)

To interpret this formula, we notice erst that
setting n =0 (resonance exactly at zero energy) gives

o =4s 11'[1+'r'h'-] ' 4v—X' nr—' . . (6.3')

In words: under the assumption of a resonance
exactly at zero energy, the cross section is approxi-
mately given by the maximum possible one, 4m'',
minus the area of a circle of radius r.

This, however, is not a good approximation for
the physical situation. Between 2 and 4 Mev one
gets a better (but still very rough) estimate by
neglecting both (nt)' and ', r'h'-, i.e., by using

os ', (4——v-aP)+ ', (4v-a.'),

and (2) the coherent scattering amplitude

(6.5)

technique. The present data available at this time, "
however, are not that accurate.

We just saw that measurements of accuracy
&1 percent anywhere between 0.5 and 4 Mev will
determine the singlet eRective range to within
&0.8X10 " cm Provnfed the triPlet effective range is
haroun exactly Th. e results of reference 15 (Fig. 2
there) show that an uncertainty of as little as
~0.1X10 " cm in r~ implies an uncertainty of
about &0.7 &10 "cm in r,.

Since the value of the triplet eRective range r~ is
so important for this analysis, we briefly recapitu-
late the factors entering into its determination.
They are (1) the epithermal cross section

(6.3") f=2(4«+ &s.) (6.6)
This shows that o, is depressed (n, &0!) below its
maximum possible value 4+X' by roughly a constant
factor in this energy region. %'e would like to
emphasize that (6.3") is not nearly as good an
approximation to (6.3) as the Bethe expression
(6.2') is to (6.2).

Some representative values for the contribution
of the singlet and triplet scattering to the total
scattering cross section

& = g&s+ 4&t
I 3 (6.4)

are given in Table II for the special assumption
r&=1.56X10 " cm, and the values of r, ranging
from 0 to 3&(10 " cm. 0., was adjusted to give
20.36 barns for the cross section at zero energy (see
later on for the origin of these numbers). We see
from Table II that 40., predominates for low ener-
gies, becomes equal to ~30' around 1.5 Mev, and is
smaller than 430.

t, from then on. The percentage
change in 4'0, between r, =0 and r, = 3 X 10 " cm
is 10 percent at —,

' Mev and 20 percent at
5 Mev (it is of course 0 at epithermal energies).
The resulting percentage change in the total cross
section o, (6.4), is however practically constant
with energy, being 6 percent all the way from
—', Mev to 5 Mev.

Conversely, we see from Table II that a cross
section measurement accurate to &1 percent will
determine r, to ~0.5X10 " cm if the eRective
beam energy is known. An error of ~1 percent in
the eRective energy of the beam will lead to an
error of about +0.3X10 " cm in r, . Both these
estimates are practically independent of energy
between 0.5 and 5 Mev. Nevertheless it is advisable
not to go to energies much beyond 34 Mev since
the shape-independent approximation itself be-
comes worse at the higher energies. One percent
accuracy in the cross section and in the eRective
beam energy is probably within the limits of present

(6.5) and (6.6) determine a~, and a& together with
the binding energy determines r& through (5.3).

The best value of 00 comes from neutron velocity
spectrometer measurements. 's It is

os=(20.36&0.10) barns. (6.7)

"C, D. Bailey, W. E. Bennett, T. Bergstralh, R. C.
Nucholls, H. T. Richards, and J. H. Williams, Phys. Rev. 70,
583 (1946); D. Frisch, Phys. Rev. 70, 589 (1946).

'8 %.B.Jones, Jr. , Phys. Rev. 74, 364 (1948).E. Melkonian,
L. J. Rainwater, and K. %'. Havens, Jr. , Phys. Rev. 75,
1295A (1949).

'9 R. B. Sutton et al. , Phys. Rev. 72, 1147 (1947).' C. G. Shull, E. O. Wollan, G. A. Morton, @nd %', L.
Davidson, Phys. Rev. '!3, 842 (1948).

This value differs from the value used in reference
15. This changes the resulting estimate of r& in the
upward direction.

The coherent scattering amplitude f can be
determined in two independent ways: scattering of
neutrons from parahydrogen, and scattering of
neutrons from crystals containing hydrogen atoms.
The present values are""

f= —(3.95a0.12) X10 "cm (parahydrogen),
f= —(3.96&0.20) X10 "cm (crystals).

The perfect agreement is rather gratifying, even
though probably somewhat accidental. The sta-
tistical error is smaller on the parahydrogen meas-
urement; on the other hand, the systematic error
of this measurement (unknown admixture of ortho-
hydrogen) could be quite large. Since this particular
systematic error does not influence the crystal
measurement, and since the two measurements of f
agree, it is reasonable to assume that the para-
hydrogen determination does not in fact have a
large systematic error concealed in it.

In reference 15 these data were shown graphically
on a plot of ( —f) vs. os (Fig. 3). This is done here
in Fig. 7 with the presently accepted values (6.7)
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and (6.8) as well as the new value of the binding
energy of the deuteron. '~ We see that the data
give the following estimate for r~

r, = 1.56+0.13X10 "cm (preferred)
1.2&r, (1.9X10 " (outer limit).

The "preferred" value corresponds to the quoted
experimental errors. The "outer limits" were ob-
tained by using three times the quoted errors.

The analysis of the incoherent scattering data by
the use of two linear plots, the "singlet plot" and
"triplet plot, " was discussed in reference 15. The
results were summarized in Fig. 2 of that reference.
Ke do not reproduce that figure here for the follow-
ing reason: it seems possible that the energy of the
beam was systematically overestimated by an
amount which is not known. " If that were true,
the necessary correction would yield a larger value
of the singlet effective range (for any given triplet
effective range) than that predicted by Fig. 2 in
reference 15. This can be seen most easily from an
ordinary plot of cross section vs. energy. In Fig. 8
we have plotted the experimental cross sections
with their errors. Also drawn there are theoretical
curves taken from Table II (i.e. , with r~=1.56
XIO "cm).

Figure 8 shows that the experimental points are
fitted best by a value of r, between 0 and 1 X10 "
cm and that r, 3Y10—"cm is not a good fit, in
contradiction to the assumption of charge inde-
pendence of nuclear forces." (This lack of agree-
ment would have been a little more pronounced had
we used the old value of the epithermal cross section
which led to a shorter triplet range. ) On the other
hand, suppose that the effective energy of the beam
had been overestimated systematically. The cor-
rection for that error would shift all the experi-
mental points to the left on the figure, towards
larger singlet ranges.

The present situation can therefore be summar-
ized as follows:

(1) It may not be possible to obtain an excellent fit to all
the present low energy data on the neutron-proton system by
a singlet e-p range as long as the (singlet) range of the proton-
proton force ( 2.6X10 "cm).'

(2) It is however quite possible to use the known experi-
mental errors to get agreement with such a long singlet range.

(3) In addition, the fast neutron cross-section measurements
may contain a systematic error of unknown size but in a
direction which would lead us to underestimate the true
singlet range.

The fast neutron scattering experiments are now
being repeated with improved technique. " It seems

3' D. Frisch, private communication.
~ G. Breit, H. M. Thaxton, and L. Eisenbud, Phys. Rev.

SS, 1018 (1939); G. Breit and J. R. Stehn, Phys. Rev. 52,
396 ($937)."J.H. Williams, private communication.

1S

TABLE II. The total neutron-proton scattering cross section

& = 4&1+ 4, &Sd

where

o]——4~ k'+( —1/a)+~rgk')'j '
0 =4~ k +(—1/a, +&~r,k } j

in the shape-independent approximation. The values of a~ and
a, were determined from the experimental values of 0.0* andf** while the value of r~ ——1.56X10 " cm was determined
from the values of F0 and f, and the binding energy of the
deuteron*** (see Fig. 7).

k'=1.206 X10'4E(Mev) cm '

k2
{in

1 024

cm s)

0
0.5
0.75
1.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
8.0

10.0

3 &t
{in

10 24

cm2)

2.63 17.73
2.3& 4.64
2.29 3.39
2.20 2.67
2.03 1.87
1.88 1.44
1.64 0.99
1.45 0.75
1.30 0.61
1.17 0.51
1.07 0.44
0.98 0.38
0.84 0.31

$ hard {in
rd =1
X10 &s

cm

17.73
4.50
3.27
2.57
1.80
1.38
0.95
0.72
0.58
0,48
0.41
0.36
0.29

10 "-4 cm')
rd 2
X10 &3

cm

17.73
4.35
3.16
2.47
1.72
1.32
0.89
0.67
0.54
0.45
0.38
0.33
0.26

rd 3
)(10 13

cm

17.73
4.21
3.04
2.37
1.64
1.25
0.84
0.62
0.49
0.41
0.34
0.30
0.23

(in
Mev)

0
0.415
0.622
0.829
1.244
1.658
2.488
3.317
4.146
4.975
5.804
6.634
8.292

*See reference 28."+ See references 29 and 30.
+++ See reference 25.

'4 E. M. Purcell, R. V. Pound, and N. Bloembergen, Phys.
Rev. "IO, 986L (1946).

reasonable to us, therefore, to wait until the new
data are available for analysis.

In view of the fact that a small error in r& implies
a large error in the resulting estimate for r„we
would like to recommend a careful redetermination
of the coherent scattering length f by means of
neutron scattering in parahydrogen. Figure 7 shows
that the present uncertainty in r& is mostly due to
the uncertainty in f If the sta. tistical error in f
were cut by a factor of 2 and if in addition proper
precautions were taken to avoid systematic errors,
we would know r~ to &0.07X10 " cm rather than
the present +0.13X10 " cm. An uncertainty of
&0.07)&10 " cm in r& would imply an uncertainty
of only about ~0.4X10 " cm in the effective
singlet range r, . Since the likely errors of the fast
neutron cross-section measurements will give this
kind of uncertainty also, with present techniques
it does not seem useful to us to push the measure-
ment of f much beyond twice its present accuracy.
It appears very much worth while, however, to push
it that far. The use of the magnetic resonance
absorption method of Purcell et a/. '4 to monitor the
admixture of orthohydrogen while the experiment
is in progress would eliminate the major source of
systematic error.
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VQ. THE TRN.D TERM IN THE EXP',NSION FOR A cotS

We saw in Section 3 that the trial wave function
eo is not accurate enough to get the terms of order
k' or higher correctly in the expansion for k cotb.
The variational principle tells us that if we wish to
get the expansion exact to terms in k' (and also k')
we must have our trial wave function correct to
terms in k' inclusive. There are alternative ways of
proceeding towards this goal, but before indicating
the actual methods used to 6nd the improved trial
wave function, it is better to examine the extension
of the expansion for k cotb under the assumption
that we know the trial function correctly to terms
of order k' inclusive. Ke write the correct wave
function u(r) as an expansion in k',

u(r) =uo(r)+k'v(r)+higher terms, (7.1)

where u(r) satisfies (2.2), and uo(r) satisfies (3.1).
Ke assume that by some means or other we have
determined v(r) to terms independent of k'. To
find kcotb correct to terms to k' inclusive, we
substitute (7.1) without the higher terms into the
variational principle (2.11).We expand the numer-
ator and denominator in powers of k'. We can
keep terms up to k' inclusive, but we have restricted
ourselves to terms up to k4 inclusive since the
numerical work involved in computing the coeffi-

cient of k' as a, function of s (i.e., of the well depth)
is already quite large. Furthermore, it turns out
that the k' term exerts a small efkct for energies
less than 6 Mev, so that it is reasonable to assume
that the k~ term can safely be neglected for the
same energy interval.

In writing down the result it helps to define the
function

We then get
w(r) —=g(r) —W(r)s(r) (7 2)

I'
T=

I
w(r)rgw(r')drdr'

Jp al 0

W(r)v'(r)dr

~
00 00

r(ro r)w(r)dr —(1/3)a ii —r'w(r)dr
0

Qo 9
Pl AI

—a ~i rw(r)dr . (7.4)
0

The coefticient 1has the dimensions of a volume.
|A'e can therefore write T in two alternative forms
with non-dimensional coeRicients I', I'~:

k cotb = —e+-', rok' —Tk'+ ~ (7.3)

where ro is given by (3.9) (this must be so since
(3.8) was already correct to that order) and where
the coe%cient T is:

(f)
e O"oem

h9

h. l

i ierr
I

Iv
/
~~i

p
1

C,'olumblo VAeÃy
selector

T=Pro'=P*b' (7.5)

We remark here that a similar expansion of the
phase shift (actually sin'b) and cross section for the
case of a square well has been made by Kittel and
Breit." Their method of expansion is somewhat
different from ours since they solve the boundary
value problem directly and then expand the result-
ing relation for sin'b. In the energy region where
(7.3) is a good approximation to k cotb (for energies
less than 10 Mev), their results and ours for the
square well are equivalent.

We now turn to the problem of determining v(r)
in the expansion (7.1). The first method which
suggests itself is that of modifying the integral
Eq. (2.9) in order to get an iteration method for
improving the wave function. To do this, we use
(2.10) to write the coeScient (=unity) of sin(kr)
in (2.9) as

Cr. &o eo'o s
3.h l

l4 ted% IOIO 804 RCL4 IO,4 IOS SlO

FK'. 7. Ordinate: (—f); Abscissa: 00. The experimental
values (see references 29 and 30) of the coherent scattering
amplitude f=2(gag+ $a,) are plotted against the experimental
value (see reference 28) of the epithermal incoherent scattering
cross section cr0=4~(gap+~ap). Curves of constant rg are
superposed. The experimental values of f and 00 imply
1.ZX10 'll cm&rg&1.P)&10 " cm as outer limits, r&=(1.$6
&0.j.3)X j.0 '~ cm as most probable. ¹tein proof: Ordinate
label on 6gure is incorrect. Quantity plotted is (-f).

1= (k cotb)k-'~~ dr' sin(kr') W(r')u(r').

The integral Eq. (2.9) then assumes the form

u(r) =~t G~(r, r') W(r')u(r')dr',
0

"G. Breit and C. Kittel, Phys. Rev. 56, 744 (1939).

(7.6)
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where the kernel G*(r, r') is given by

G"(r, r') = (k cotb) (sin(kr)/k)
X (sin(kr')/k) +G(r, r'). (7.7)

We observe that (7.6) and (7.7) insure that u(r)
has the correct asymptotic form for large values of
r, as well as that u(0) =0.

We use (7.6) as the basis of an iteration method
in the following way. Ke start with a trial function
Np and compute k cot8 =k cot80 from the variational
expression (2.11). We then insert this value of
k cothp into the Green's function (7.7) and compute
a better trial function ui(r) from (7.6). From then
on the process is repeated until sufhcient accuracy
is obtained for the purpose one has in mind. The
improvement of the wave function afforded by each
step of this method is considerable. However, the
wave function cannot be said to be correct to one
order higher in k' aFter each step of the iteration.
The results obtained by means of this method are
such that the first two coefFicients of the power
series (1.3) for kcotb will be exact (since they
depend only on up), while succeeding coefficients
will be only approximately correct (their correctness
depending on the goodness of the iterated wave
function). The numbers obtained for the coefficient
of k4 in what follows were obtained by the above
iteration method. An estimate of the resultant error
in 1will be given later.

An alternative method of finding an improved
wave function, correct to terms in k inclusive, is to
substitute (7.1) directly into the differential Eq.
(2.2). This leads to the following differential equa-
tion for v(r):

d'v/dr' W(—r)v(r) = u—p ——1 —ar —g(r). (7.8)

v(r) must vanish at r =0, by (2.3). It is not necessary
to impose another boundary condition on the
solution of (7.8) since a constant multiple of up(r)
added to v(r) in (7.1) does not influence the final
result for k cotb. This can be seen from the fact
that, to order k' inclusive (p =constant):

u p+ k'(@+Pup) + = (1+k'P) (up+ k's+ .) (7.9)

so that the addition of Pup to pi in (7.1) merely
amounts to a change of normalization of the trial
wave function in the variation principle. The
variation principle (2.11) is invariant under such a
change of normalization.

It turns out t:hat (7.8), in addition to yielding the
exact iterate v(r), also makes it possible to simplify
the expression (7.4) for T. In particular it makes it
possible to get rid of the double integral which is
rather tedious to compute. On the other hand, the
iteration method based upon the integral Eq. (7.6)
proceeds entirely by quadratu res, whereas the
iteration method (7.8) involves the solution of a
second-order diR'erential equation. From a compu-

tational point of view the work involved in the two
methods of iteration is substantially the same.
%'e might add that the Bethe derivation of the
Schwinger formula leads directly to the result
obtained with the (exact) differential equation
iteration method (7.8).

For completeness's sake we write down the
expression for s(r) obtained by the integral equation
iteration method (7.6). It is

v(r) ,'r(r,——r)+(—1/6)arP+(ar)~~ r'g(r')dr'
0

r&g(r')dr'. (7.10)
0

This approximate expression for s(r) is compared
with the exact function in Fig. 9 for the case of a
square well. In accordance with (7.9), a multiple of
up(r) was added to (7.10) to make the comparison
meaningful. The dot-dashed curve was adjusted to
have the same asymptotic behavior (for r)k) as the
exact v(r), while the dashed curve was adjusted to
give the best flt in the region of interest (i.e., within
the range of the nuclear forces). One sees that the
general form of the curves is the same, and that the
numerical agreement is fairly good. More important

~ e1 t0' in tO cpn.

Fs pO
i ~

fs p 1% 6 epll

rg p l.5$ s Ip cpn

E inMev

9 IO

FrG. 8. Ordinate: 0, Abscissa: E. The total incoherent
scattering cross section 0. is shown as a function of E(Mev)
for rt=1.56X10 " cm, and r, =0, 1, 2, 3X10 '3 cm. The
experimental measurements (see reference 27) with their
uncertainties are also indicated. The experimental points are
compatible with rg ——1.56g10 "cm, r,—0 or 1 &(10 '~ cm.
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~t'

VIt +~PUo

~Vtt~ uo fxg (s )ds

0$ Q7

Fir. 9. Ordinate: e(r); Abscissa: r/b.
1 he approximate and exact expressions
for v(r) are compared for a typical case
with a square mell potential. e{r) is the
coefficient of k~ in an expansion of the
vrave function e{r) in powers of
k' [u(r) =NO(r)+k'v(r)+ .]. v(r) oc-
curs in the evaluation of the coe%cient
T in k cotb = —j./e+$rpk' —Tk'+ ~ ~ ).
e(r} is sma 1 in magnitude compared to
unity, and in addition the approximate
and exact forms agree rather well )see
text after formula {7.10)j.

still, we notice that v(r) is numerically small com-
pared to g(v) (which is unity at the origin). Since
m(r) =g(r) —W(r)v(r) is the important quantity in
evaluating T, and W(r) is of order unity, the
smallness of v(r) relative to g(r) insures that the
values of T computed with the approximate v(r)
will agree closely with the exact values of T. (See
later ).

We now return to Eq. (7.3) for k cotb, to terms
in k4 inclusive, to examine the significance of the
coe%cient T. The term Tk' in the expansion of
k cotb gives tke first indication of a shape for the mell
For example, T is negative for a square well,
positive for a Yukawa well. Conversely, two wells
with the same values of 0., ro, and T are indistin-
guishable within the accuracy of formula (7.3) (and
this means indistinguishable with the present
experimental data).

We shall assume that 0. and ro have been deter-
mined from the experimental data. The dimension-
less coefFicient I' = Tro ' can be written as a function
of the measured dimensionless quantity (nro) We.
then conclude that tuo mells mith tke same value of
P for the measured value of (nro) areindistinguishable
as to shape within tke accuracy of this analysis.
Curves of P vs. (aro) are given in Fig. 10 for the
four usual well shapes. We see that the four usual
well shapes con be distinguished from one another
if I' is known to sufFicient accuracy.

In order to understand the coeScient T a little
better, and to give an estimate of the error of the
integral equation iteration method, the following
calculation has been performed. We start with a
square well W(r) of range b and depth adjusted to
resonance (s = 1). We then add a lump of potential
e/be(r r') at the position —r')b; the dimensionless
constant e is considered small. This change has
several results: (1) the effective well depth is
deeper; (2) the intrinsic range is longer; (3) the
coefFicient T is changed.

We now decrease the depth of the square well by
an amount of order e until we are again at resonance.
We shrink the scale of length until the intrinsic
range is again equal to b. Ke then have a modified
well which is identical with the original square
well up to terms of order k' inclusive; i.e., the
modified well has the same scattering length
(a=a '= 00) and the same effective range (which
in this case just equals the intrinsic range) as the
original square well. It is then reasonable to ask
for the change in the well shape parameter P = T/b'.
(P=P* since b=ro here. ) The calculation is very
tedious but elementary. The result is, to terms of
order e

P = —0.03271+ePi(r'),
Pi(r') = —0.0398—0.2018x+0.2494x'

+-',x'+ ~sx4, (7.11)
where x= (r' —b)/b. (7.11) was obtained by the use
of the integral equation iteration method (7.6). If
one uses the exact iteration method (7.8), (7.11)
is replaced by

P = —0.03267+ eP, '(r'),
P, '(r') = —0.0397 —0.1013x+0.2500x'

+-,'x'+-', x4. (7.12)

We see that (7.11) and (7.12) differ for the square
well (e=0) by less than 2 percent. Furthermore,
the polynomials P&(r') and P&'(r') have the same
coefFicients within ~ percent, the coefFicients of x'
and x' being actually identical. A similar statement
is true if the extra lump of potential is added inside
the square well (i.e., if r'(b) (The co.rresponding
expressions are more complicated and will not be
written down here. ) We conclude that the values of
P (and hence of T) obkw'ned by tke integral equation
iteration method (7.6) are accurate to better than I
percent for all reasonable well shapes. Considering
the fact that the values of T turn out to be too
small for an experimental determination to be
possible, we feel that this accuracy is altogether
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r'/b

1.0
1.2
1.4
1.6
1.8
2.0
2.5
3.0
3,5
4.0
4.5
5.0

& =(r' —a),:a

0.0
0.2
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0.040
0.045

+ 0.011
+ 0 176
+ 0 516
+ 1.108
+ 431
+ 11.42
+ 24.7
+ 46.9
+ 81.3
+131.5

adequate. An exact differential equation iteration
method (analogous to (7.8)) will be used in the
paper on proton-proton scattering.

Returning now to the discussion of the result
(7.11), we see that the effect of a little lump of
attractive potential on the well-shape parameter P
depends upon the position of this extra potential.
If r' is just a little larger than b, b&r'&1.4b, the
extra potential will give a very slight negative
contribution to P. On the other hand, a little lump
of attractive potential placed anywhere farther out,
at any r )1.4b, will give a positive contribution to
P. For r&1.4b, the effect of the extra potential on
the well-shape parameter increases very rapidly
with r', eventually going like e/3[(r' b)/b—]'. Some
numbers are given in Table III. It is seen that Pi
increases by an order of magnitude between r'=2b
and r'=3b and by another order of magnitude
between the latter value of r' and r'= 5b.

In spite of the large values of Pi(r') for large x,
the overall value of P is quite small for most
reasonable wells. This is due to the fact that the
commonly assumed forms for the well-shape simply
don't have much of a tail. For example, an order-
of-magnitude calculation using Table III shows
that values of r &Sb don't contribute any signihcant
amount to the P of a Yukawa well; for this well
shape the main contribution occurs between r=2b
and r=3b.

We mentioned before that we have also computed
the eAect of a little lump of attractive potential
added inside the range of the square well. The
resulting formula is rather long, so we merely show
the result graphically in Fig. 11. For r'(b, Pi(r')
decreases in absolute value, reaches zero at r' —0.5b,
and then stays positive down to r'=0. For r'&&b,
P'(r') is proportional to (r'/b)s. This shows that
for well shapes which stay finite at the origin (e.g. ,

the exponential well) the main contribution to P
comes from the tail. Even for well shapes singular
at the origin (e.g. , the Yukawa well), the region

TABLE III. A small extra lump of potential at a point r'&b
aW= —2m/h (SV) =( /b)S(r —r')

is added to a square well of range b and depth adjusted to
resonance at zero energy. The table gives the effect upon the
well shape parameter P: P = —0.0327+&Pi(r').

Oj4

012

P

002

-0,02

-004

-0.06 -0,2 -Ol Ol

& le
I

0.2 03 04 0.5

Fj,G. 10.Ordinate: P, Abscissa: ar0. The coefFicient P = Tr0 '
of the k4 term in the expansion of kcotb(= —1/a+)r0k'—Pro'k'+ ~ ~ ) is shown as a function of ar0 for the four well
shapes. The coe%cient P is the first indication of well shape
in the expansion of k cotb. P lies between +0.16 and —0.05
for the well shapes treated and the range of ar0 covered.
With present experimentai data, ~P~~0.1 —0.2 is indistin-
guishable from P =0 for the nuclear ranges in question.

near the origin does not give a large contribution
to P. The contribution from the "tail" (i.e., the
main effect) is positive for an attractive potential.
Ke conclude that for all ordinary attractive po-
tentials P is not likely to fall much below its
square-well value ( —0.04). Ke do not know the
shape-parameter for "velocity-dependent" forces,
but it can be computed with our formalism. Since
the computation would be quite laborious, we did
not undertake to carry it through. It should be
pointed out that the considerations of the additional
lump of potential should be viewed as a qualitative
argument only and cannot be expected to yield
anything but order-of-magnitude values for the
effects of the tail of a nuclear potential.

The coefficients P and P* are dimensionless
quantities. They depend upon the well depth, of
course. %'e can plot the dimensionless quantity P
(or P*) against the dimensionless well-depth pa-
rameter s. Such a plot is given in Fig. 12 for the
square well, The Gaussian well, the exponential well
and the Yukawa well.

The striking feature of these numerical results
is the st@all value of the coegcient P. P lies between
—0.05 and +0.15 for the wells calculated so far
provided we restrict ourselves to reasonable values
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Fio. 11.Ordinate: P1(r'); Abscissa: r'/b. The dependence of
the addition eP1(r') to the well shape parameter P'p = —Q.327
+oP~(r'lj caused by a small extra lump of potential AV
= —{k'/2mb) eb(r -r') added to a square well of range b and
depth adjusted to resonance at zero energy is shown as
function of the position r' of the added lump. Table III gives
values of P1(r') for r'&b. The magnitude of P1(r') is greater
for r'&b than for r'&b and increases rapidly when r'&)b.
Any potential shape with a "tail" will have a value of P more
positive than a square well (assuming the potential is attrac-
tive at all distances); the value of P will be more positive,
the longer the "tail" of the potential.

magnitude of I'. %'e do not think so, but we do
not have any proof at this time.

VIQ. THE GROUND STATE OF THE DEUTERON

We now proceed to discuss the modifications
which our present more accurate expression for
k cotb introduces into the determination of the
ground state energy of the deuteron. The argument
of Section 5 which led to formula (5.2) is unchanged.
However, we now substitute the result (7.3) to get

v= +-'roe'+2 v'. (8.1)

%'e can again solve this by successive approxima-
tions, getting

V = ~L1+k(«o)+ s(«o)'+(&+ s) («o)'
+(3~+s)(«o)'+. . .] (8 2)

Since this formula is accurate to order («o)'
only, we replace I' as a function of («o) (see Fig. 10)
by the linear approximation a8orded by the first
two terms of a Taylor's expansion around aro ——0.
These linear approximations are collected in Table
IU for the well shapes which have been treated
numerically so far.

The relation (8.2) enables us, in the case of the
triplet state, to convert the dimensionless figures
of Section 2 into dimensional plots. For any given
well shape we get four relations between the five
quantities, s, b, a,. ro, and To (the first two are the
well parameters, the latter three are variational

of the range. The present experimental data are
such that values of I' less than 0.1 or 0.2 simply
cannot be distinguished from I'=0 for the nuclear
ranges in question.

As an illustration of this point, we have plotted
in Fig. 13 the triplet part of the n pcross sect-ion,
i.e., 40', against energy for the square and Yukawa
wells under the assumption that cg=5.220/10 "
cm, exactly. These wells were chosen since they
have the extreme values of I' (see Fig. 12), and
hence indicate extremes in well shape for the four
conventional shapes. It is seen that an accuracy of
1 percent in the oo-p cross section as a whole is not
sufFicient to resolve the difference even if we assume
that the singlet part of the cross section is known
exactly and does not introduce any uncertainty
(which is a very unreasonable assumption, of
course).

Ke might be tempted to conclude forthwith
that the assumption 8=0 made in reference 8 (i.e.,
the shape-independent approximation) is valid.
However, this conclusion is premature. It is just
barely possible that the presence of the tensor force
will lead to a significant change in the order pf

0IC

Oi2

b

P

OX(

OO4

O.O2

-O.O2

r.O &2 t4 & 6 &S 20 2.2 ?.4

FIG. 12. Ordinate: P; Abscissa: s. The coefficient P is shown
as a function of the well depth parameter s for the four well
shapes.
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TABLE IV. Linear approximation for I as a function of (0.'rp)
for various well shapes.

bt ln IO' cm

2eS

Shape

Square well
Gaussian well
Exponential well
Yukawa well

P =P(0) +P'(0)(are) +.- .
—0.0327 —0.0184(arp)—0.0183—0.0060(arp)
+0.0119+0.0190(arp)
+0.0648+0.0942

(harp)

5.0
I I

sAgt m 10 cm

parameters) so that only one of them can be varied
independently.

There are various ways of showing the results
graphically. We have decided upon two kinds of
graphs: (1) the intrinsic range b& in the triplet state
vs. the triplet scattering length at, for the various
wells; the values of r& are indicated parametrically
on each curve; (2) the well depth parameter s for
the triplet well as a function of the intrinsic range
b for the various well shapes; again r& is indicated
parametrically along the curves.

These graphs are used as follows: the experi-
mentally known a& is used to hnd the corresponding
intrinsic range b for whatever well shape is assumed
(type 1 plot). Then the well depth s implied by this
value of the intrinsic range (and the binding energy
of the deuteron) is found from the type 2 plot.

rt m IO cm indcated
parametricollII alonp curves

I

I

I
I

I

I Ie
I I

I 1

I
I lt
I

,'~el&'
I

I

I

I

I

I

I I

pt from measured
values of Oi and f

G

42 46 54

Pt InO cm
I

58 62

FIG. 14. Ordinate: bt, Abscissa: af. The intrinsic range in the
triplet state bf is shown versus the triplet scattering length at
for the four well shapes. The values of the triplet effective range
r& for each well shape are indicated parametrically along the
curves. The experimental value of af (from Fig. 7) is shown.
The value of the effective range rt consistent with this at is
about the same for all four well shapes; rt~1.5 —1.6)&10 "
cm. The "best" intrinsic ranges can be read off the figure.

24

20 Ot =522 x IO cm

for both curves

I.8

16

l2
0 10 2.0

20
30

4P f in M/V~
40 5.0
II in IO cm

FIG. 13. Ordinate: —,'cr&,. Abscissa: k', E. The triplet part of
the incoherent scattering cross section is shown as a function
of energy for the two extremes in well shapes treated, the
square and the Yukawa wells. The expansion k cotb= —1/a&
+)r&k2 —Prtek4+ . was used to evaluate 0.&(=(4'/k') sin~8)
with the value of a& determined from Fig. 7 (at=5.22)&10 "
cm). The smallness of the difference in cross section (only
about 0.01 barns at 4 Mev) is due to the smallness of the
coefhcients Pr p3. It implies that in order to determine anything
about the potential shape from incoherent scattering data the
experiments of 2—6 Mev must be accurate to much better than
one percent, assuming that the singlet cross section is known
exactly (a very unreasonable assumption).

The effective range r& in the triplet state can be
read off from either plot.

Plots of type (1) and (2) are shown as Figs. 14
and 15 respectively. We have indicated on Fig. 14
the present experimental value of af, with an esti-
mate of error. This value comes from measurements
of the incoherent and coherent n-p cross sections at
epithermal energies. ""It is seen that the eRective
range r& implied by this value at a& lies within the
limits (6.9) for all the well shapes considered. The
fact that we get nearly the same r& for all well
shapes is a consequence of the smallness of the
coefficient I' for these wells. The residual amount
of variation of r~ with different well shapes for the
same experimental a& indicates the eRect of I'.

One can also look at formula (8.1) from a
different point of view. We know y from the binding
energy of the deuteron, and we know the triplet
state n=a~ from the cross section (coherent and
incoherent) near zero energy. We then see that
(8.1) gives us a linear relation between ri and T,.
This linear relation is illustrated in Fig. 16 for some
representative values of ui (y is known with
sufficient accuracy so that the error due to it can be
neglected). Also shown on Fig. 16 are curves of
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not know the values of P for some representative
"velocity-dependent" forces.

While an analysis of the experimental data to
find P in the triplet and singlet states is possible in
principle, we have concluded that the small values
of P which we can expect to find and the large
experimental errors with which we are faced make
such an analysis unprofitable at this time. More
accurate cross section measurements would help
here, but the required accuracy is probably beyond
the limits of the present techniques.

We conclude this section by collecting for refer-
ence purposes for the four well shapes treated the
following interpolation formulas for the we11 depth
parameter s:

(1) s as a function of (o.ro),
(2) s as a function of (O.b),
(3) s as a function of (yb).

These are collected in Table V. The square well and
the exponential well can, of course, be solved

02

0
0

b in lp's cm
l

6 7

FiG. 15. Ordinate: s; Abscissa: b. The well depth parameter
s is given as a function of the intrinsic range b for the four
well shapes. Values of the triplet effective range rt are indi-
cated parametrically along each curve.

constant P. Ke recall that for the wells calculated
so far, P lies between —0.04 and +0.15 for the
region of (nro) involved here. Furthermore, P is
positive for the exponential and Yukawa wells,
negative for the square and Gaussian wells. The
analysis involving an extra lump of potential (see
formula (7.11) and the discussion there) leads us to
believe that attractive wells with a reasonably large
tail will have positive values of P. Putting these
two pieces of information together, a look at Fig. 16
indicates that the estimate (6.8) of the triplet
eRective range is not affected appreciably by the
well shape, within the experimental error. Three
cautions are in place here, however: (1) the values
of P were obtained without tensor forces. Until the
calcolation with tensor force is completed, the
result we have just stated must be considered not
quite certain; (2) we have assumed that the nuclear
force in the triplet state is attractive at all distances.
Our analysis shows that a lump of repulsive po-
tential placed some distance out beyond the main
range tp would give a negative contribution to P.
This possibility seems unlikely but it cannot be
excluded on the basis of our present knowledge
regarding the nature of nuclear forces; (3) We do

0
rt

,0 el(7 crtt

i1

T Prt'

o5

FIG. 16. Ordinate: T; Abscissa: rt. The coefticient T(=Prt')
of the k4 term in the expansion of k cot5 for the triplet state
is shown versus the triplet effective range r&. Equation (8.1)
determines a linear relation between r~ and T once a value
of nt(=at ') is specified (the value of y being well known).
This linear relation for representative values of at is plotted
on the figure. Also given are curves of constant P. For values
of

I
P

~
(0.2 (which is the case for the four well shapes con-

sidered), the value of r& implied by a chosen value of n& is
not significantly different from the value implied by P=0
(see also Fig. 14).
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TABLE V. Interpolation formulas for the we11-depth parameter s as a function of {arp), (ab), {pb) for various well shapes.

Shape

Square well
Gaussian well
Exponential well
Yukama well

I. s eersus (aro)

s = { 1 —1.574{nrp)+0.353{arp) )XL1 —2-384(arp)+1. 30(arp) j
s =

t I —2.030{nrp)+0.587(nrp}'g X Pi —2.810(arp)+1.805(nrp)~j '
s = L1 —2.9739(arp}+1.3602(arp}'g X t 1 —3.7134(arp)+3.1177(arp)'g '
s =

I 1 —3.5093(arp)+2.0354(arp)'j X t 1 —4.1348(arp)+3.7072(arp}'$ '

II. s eersus (ab)

Shape

Square well
Gaussian mell
Exponential well
Yukawa mell

s = 1.0+0.8098(ab)+0.6516(nb)'+0. 5229(ab)'+0. 185(ab)4+0.747(nb)'
s = 1.0+0.7811{ab)+0.5687 (ab) ~+0.352 (nb) 3+0.262 (ab) 4+0.020(nb) ~

s = 1.0+0.7109(nb) +0.4411(nb}'+0.4658(ab) 3—0.3877(nb) 4

s = 1.0+0.6361(ab) +0.2837 {nb)~+0.0338(ab) 3 —0.150(nb) 4 —0.031(nb) P

III. s versus (yb)

Shape

Square well
Gaussian well
Exponential well
Yukawa well

s = 1.0000+0.8104(yb) +0.2426(yb)'+0. 0184(yb)'+0.0041{yb)4+ ~ ~ ~

s = 1.0000+0.7806(yb) +0.1773(yb)'+ ~ ~ ~

s = 1.0000+0.7517(yb} —0.0046 (yb)'+0. 0657 (yb)' —~ ~ ~

s = 1.0000+0.6364(yb) —0.0340(yb)'+0. 0067(yb)'+0. 0139(yb)4 —~ ~ ~

exactly so that the numerical formulas are unneces-
sary. They are retained only for the sake of uni-

formity and completeness. A curve of nb vs. s is
plotted in Fig. 4. Since, for some purposes, more
accuracy is desired than can be obtained from a
graph, the numerical formula (2) may be of some
use. Figure 15 shows s in terms of b. To plot this
graph, the value y '=4.332)&10 "cm was used to
convert values of yb to corresponding values of b.
In view of the experimental uncertainty in y, it is
useful to have a numerical relation between s and

(yb) since such a relation will be independent of
the experimental value of y.

The ranges of validity of the formulas in Table V
are as follows for 0.02 percent accuracy in s:

(i) —0.2 &~r«0.4,
(2) —0.2&ub &0.6,
(3) 0 &qb &0.6.

Kith these formulas one can determine quite
rapidly the well depth for a given well shape upon

assuming a value of the intrinsic range, for example,
and knowing the binding energy of the deuteron
(from 3). The formulas agree quite closely with
those obtained by variational methods applied to
the calculation of s directly.
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