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On the Approach to Statistical Etluilibrium
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We consider as a random process the distribution of a gas in momentum space as function of the time.
The probability of changes of the distribution in in6nitesimal time intervals is assumed to be given by the
"Stosszahlansatz. " For the Rayleigh model of a gas we derive the probability of a distribution as a function
of the time. Fur the Boltzmann gas v ith microscopic reversibility we show that the probability of a dis-
tribution approaches the stationary value in the limit of in6nite time.

cell problem, which was suggested by Ehrenfest' as an
entropy-model, further discussed by Schroedinger and
Kohlrausch"' and solved by Kac~ (in its original form
with discrete time variable) and later by the author'
(with a continuous time variable). Another model with
the simplified Stosszahlansatz is Ehrenfest's "wind
tree" model. ' The problem of concentration Auctua-
tions is also of this type, if ~s; is interpreted as the
number of colloidal particles in cell ~ in coordinate
space, and if all intervals of observation times are long
compared with the time it takes for the colloidal par-
ticles to come to Maxwell Boltzmann equilibrium in
momentum space. This assumption makes it possible tq
consider the process as Markoffian in the occupation
numbers in coordinate space cells (rather than in the
occupation numbers in phase space). It was pointed out
by M. Kac (private communication) that this process
is actually (even with the above approximation)
Markoffian in the whole set of occupation numbers, and
that the occupation number of one cell is not (as is
usually assumed) a MarkoSan random process.

In Section III we have solved explicitly a simple two-
cell problem with transition probabilities which are
quadratic functions of the occupation numbers, as a
ITiodel of a system with binary collisions.

In Section IV we have discussed the random process
generated by the Boltzmann Stosszahlansatz with
microscopic reversibility (symmetry of n). We have
shown that the conditional probability of any distribu-
tion ~~, which can be reached from the initial distribution
m by a succession of allowed binary collisions, ap-
proaches the multinomial coefficient for f.—+ ~ .

X the usual derivation of the H-theorem the proba-
bility description is abandoned when, for the purpose

of the calculation, the collision probability postulate
("Stosszahlansat. z") is used as giving an expression for
the number of collisions. Only the final result of the
calculation is again interpreted as a probability state-
ment. It therefore seemed to us of interest to attempt
a discussion of the approach to equilibrium adhering
to the probability description throughout the calcula-
tion, and, by treating the "distribution" or "Z' state"—i.e., the set m(t) of occupation numbers n, ( )tin
momentum space cell i at time t—as a random process'
to obtain the probability of a distribution as a function
of the time, or at least to investigate whether this proba-
bility approaches a limit for infinite time. The "Stoss-
zahlansatz" is used in its original significance as a
postulate expressing the probability of a change of the
distribution in an infinitesimal time interval in terms
of the occupation numbers and a matrix e whose os
diagonal elements are the probabilities of individual
collisions.

In Section I v e have derived a formal expression for
the probability function and discussed its limit for
t~~. Limit theorems of a more general scope'-' are
probably known, hut are not needed for our purpose.

In Section II we consider the random process
generated by the simplified "Stosszahlansatz" de-
scribing the Rayleigh modeP of a gas, which consists of
non-interacting independent molecules. Changes in the
system are caused by collisions with the atoms of
another gas which is not considered as part of the
system and whose distribution is assumed to be un-

changed throughout the process. The elementary transi-
tion probabilities for the model are then linear in the
occupation numbers. The probability function for its
distribution can be expressed explicitly if a can be
diagonalized, which is shown to be the case, if e.g. , the
Rayleigh gas interacts with a gas in thermal equilibrium
by binary collisions. The Stosszahlansatz of Section II
also applies to the continuous time variant of a two

We consider a system described by a set of occupation
numbers n~(t), n~(t) err(t), with

n;=X

'Terminology of M. C. Wang and G. E. Uhlenheck, Rev.
Mod. Phys. 17, 323 (1945}.

'Some far reaching limit theorems for random processes with
a discrete time variable have been derived by R. v. Mises, W'ahr-
scheirIlichkeitsrechrIurrg (Berlin, 1931}.

3 Lord Rayleigh, Scient. Papers IIX, p. 473, also i'll. C. Wang,
Dissertation, Ann Arbor, Michigan, 1942.

' P. and T. Khrenfest, Physik Zeits. 8, 311 (1907};also Wang
and Uhlenbeck, reference 1.

~ E.Schroedinger and F.Kohlrausch, Physik Zeits. 27, 306 {1926}.' M. Kac, Am. Math. Monthly 54, 369 (1947}.
7 A. J. F. Siegert, LADC 438.

P. and T. Ehrenfest, Encyclopaedie der Math. Wissenschaften
IV, 32, p. 19; A. J. F. Siegert, Phys. Rev. 75, 1322 (1949}.

'M. v. Smoluchowski, Physik Zeits. 17, 557 (1916); see also
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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This presupposes that n(t) is E-dimensional Markoffian,
i.e., that the probability of any change of the system in
the time interval (0, LU) depends only on the occupation
numbers at time zero. It is also assumed that the
process is stationary, i.e. , that P(se/n, 6I) does not
depend on the choice of the zero time. It is convenient
to consider P(m/n, t), (mlQ, 'n) and (ml1ln) asmatrices
P(/), Q and 1 (unit matrix) with 2E indices which run
from 0 to X. The matrix Q is arbitrary except for the
properties:

(IIQIN) =0 unless Q m;=Q n;=X (2)

Q(~nIQI ~) =0
'll

where P is P and
PllSQ ' ' lip

( IQI )&0-l,

(3)

except if n;=m; for all i Qis in.dependent of the time.
The above assumptions lead to two systems of dif-

ferential equations:"

dP/dh= PQ,

dP/dt= QP

to be solved with the initial condition

P(0) =1.
The formal solution is

(5)

(6)

P =expQ(.

'0 This change can be visualized as an elementary step of a
random walk in the E-dimensional lattice formed by the points n
on the hyperplane dined by Zq- nfr= X.

"Special case of Eqs. {52) and (57), A. Kolmogoroff, Math.
Ann. 104, 415 (1931).The proof is based on the Smoluchowski
equation

P(t+t'')= I'(f)P(t') for t'&0,
which implies that the validity of the above equations is restricted
to cases where the state of the system can be ascertained between
changes without disturbing the process.

L"distribution" or "Z state") where n;(t) is the number
of elements (e.g. , atoms or molecules) in state i, where

the state ~ may, e.g. , be a cell in momentum space. The
conditional probability

P(m/n, i) =P(m—„m2 /n„n2, . , t)

is the probability that n;(/) =n; if n;(0) =m, . We will

try to calculate P(m/I, 3) from the probability of the
change of the system in an in6nitesimal time interval
At: P(m/n, ht)" assuming that

P(~/~, ~~) = (~l 1 I.)+(~i Ql.)~~+o(~0 (1)

where o(At) is defined by

1im o(At), 'DL = 0
Dl-+0

( Ill )=II~, ,

The solution can be made explicit if Q can be diago-
nalized by means of a matrix C such that

(~IQI~)=E(» IC 'lf»«d~ . fx)(~ICI~). (9)

If C can be found, we get

P(m/n, 1) =Q (m
I
C ~

I l) LexpA(l) t] (l I
C

I
n). (10)

Because of Eq. (3), there is at least one right eigen-
vector to the eigenvalue A(l, )=0:

(nlC 'Ilo) = b(lo) (independent of n).

If there is only one eigenvalue with vanishing real
part we get, for I,—+~

P(m /e~ ~ ) = b(lq) (lo ,

'C
I
n) = (l, l C I n)/P(lo I C I

n') (10')

since all ReA(l)&0 (see Appendix I). In this case,
therefore, an equilibrium probability function is
approached, which is independent of the initial dis-
tribution m.

The eigenvalue zero of Q is degenerate, however, if
e.g. the matrix Q is reducible by a mere rearrangement
of rows and columns. Reducibility means that from a
given initial point m in the E-dimensional lattice only
the pointsn which belong to a sub-lattice can be reached,
either directly or bv any succession of steps. Reduci-
bility can be caused by, e.g. , conservation of energy and
momentum. The above considerations are then applied
to the sub-matrix and the sub-lattice, and if the eigen-
value zero of the sub-matrix is non-degenerate equi-
librium is reached and is independent of the choice of
the initial point m in the sublattice.

To apply these considerations to special cases, we
will therefore have to prove in each case that Q can be
diagonalized by a similarity transformation and that
the eigenvalue zero of Q (or of its sub-matrices) is non-
degenerate.

As a special case we consider a matrix Q representing
changes in a system whose elements do not interact with
each other, but change states independently, e.g. , by
collisions with a di6erent set of molecules. This form of
the "Stosszahlansatz" describes the Rayleigh model of
a gas' and Ehrenfest's "wind-tree" models (in mo-
mentum spa, ce), also the continuous variant of Ehren-
fest's two box entropy model' and Smoluchowski's con-
centration fluctuations' (in coordinate space).

The matrix elements of Q are given by

(ml Q I e) =P' aI, ;m, 8. ;,
i, k r

iQk rQk, i

+P ~, ,m, g S.„,.„(11)
where n&;At is the probability that a particle goes from
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state i to state k in Af. The o6-diagonal matrix elements
0.1,; are arbitrary except for the conditions

o.I,;&0 for k/i
and the diagonal elements are defined by

G (x, t) with initial condition

G(y, x, 0) = (Q y,x,)".

The solution is*

(22)

G(y, x, t) = [P x;(e ');,y,j"
and it is assumed that n can be diagonalized hy a
matrix c such that [P x.;c, .e""'c '„.,y,

(23)

To obtain Q and P in the forms (9) a.nd (10), respec-
14)

tively, we define a matrix representation C(c) by
We shall prove that under these assumptions Q is

diagonalized by a certain matrix representation C of c,
defined by Eqs. (24) and (25). To show this we define
t he generating polynomials with

(24)

G (x, t) =P P(m/n, t)II x,",

Q (x)=P{m fQfn)II x, "&,

where x stands for xl, x~, xk, and note that

(15)

%e note that

(26)

(28)

%e thus get

E9.'1 t' 7

{1)l) G{)', x, t) = [Q zzie vz]'

Equation (5) then yields

c)G (x, t) =P P(m/zz', t)P(zz'
f Q f zz)II x, "~

II(zz eiszz, )lt
t,. ! ~z

II zz„."exp(P ) l,~. )IIti,."
n' dx;

t.o be solved with initial conditions

{-',„(x, 0) =II x, » .

It is convenient for our purposes to solve this equation
by introducing a function

(21)

Xexp(P X~1„t)(l ~ C(c) f zz)II x, "~.
, (29)

and using Eqs. (21), (15), and (26)

P(m/zz, t) =Q(m f
C—'

f
7) exp(Q Xplzt) (l IC

f
zz) (30)

and

(m l Q f
zz) =P (m C.

' '
l
l) iP Xz lz) (t f

C'
f

zz) {31').

which satisfies the same difFerential equation as *See Appendix II for an alternative proof.
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As a simple example we consider the most general two- collisions with the atoms of a Boltzmann-gas. In this
state model, assuming case 0. has the property

&
—v p i

~ y p—&
(32)

~P 1~ 1(1 1~
e=f

f
with e

—'=
( f. (33)

p+y (y —pi

The eigenvalues of u are Xk ——0 and X.= —(P+y) and
the transformation matrix c is obtained as

(es —ek) /kT
ki sk (38)

p ~ek/ "kT(. (39)

where t.i is the energy of state i, in addition to the
properties expressed by Eqs. (12) and (13). To prove
that 0. can be diagonalized we show that it can be sym-
metrized by a similarity transformation. We define the
diagonal matrix p by

Equation (23) becomes

G(y, x, ') =(P+V) I(Pxk+yxk)(y&+y)

and the symmetric real matrix tT by

tT= pc1p (40)

+(xl —xk)e-&e+»'
o- can be diagonalized by a real matrix b, such that

o.= Qb (41)= (p+y) "Iy&[(pxl+~'k)+y(» xk)e—"+"'1
with X real and dia, gonal, and with b real and (b ');l ——bl;,

+yk[(Px&+yxk) —P(x,—xk)e e+ "]I (34)

and we get for G (x, ~):

G (*, ~) =(P+y) '[(Px'-+yx )+y(', x,)e —e+» ]--"

X[(pxl+yxk) p(xl —x.)e &—e+&"j'"' (35).

For large times, G„(x, ~) approaches

pxl+yxk '
G (x, co)=

and we get
Palyak

P(m(n, ")=- (with n ,+n, =..V) (36).
nl'n '(p+v)"

where
o.= p 'op= p 'blab 'p=c 'Xc,

c=b 'p.

(42)

(43)

and

"l——Q b;«;kbkl
ik

fTii= O.t;= —~' O.k;= —~' Pk gkiPi
—1

k k
kQi kQi

(46)

Xext we show that the eigenvalue X~=0 is non-de-
generate (unless n can be reduced by a, mere re-ar-
rangement of rows and columns) and derive the form
of the eigen vector c;~. From

The probabilities derived in references 4 and 5 can be
obtained from Eq. (35).

%e may interpret this example as describing a system
of non-interacting spins in a constant magnetic 6eld
brought to thermal equilibrium, described by Eq. (36),
by a temperature reservoir. The temperature T is
de6ned by

P/y —e&n —tl) Ikr

where ~~ and e2 are the energies of states 1 and 2, re-
spectively, and k is the Boltzmann constant. The matrix
o. representing the effect of the temperature reservoir
on the system must, therefore, be of the form

we get, using the symmetry of 0.,

&&= —2 b*lpk '~ k p;b;l+Q b;«,kbkl
i, k i, k

iQk igk

and by interchanging indices

'l= —Z bklp; '~,kpkbkl+Q b;«;kbkl
i, k i, k

iQk iQk

Adding these expressions we get

"l ' Q(b lp Pk 2b'lbkl+'b. kl 'p Pk)~;k'
i, k
iQk

(46)

e(e2—e«) /k&

=yl —.«) /kr)
(37) = —-', p(b;l'PP —2b lbklp;pk+bkPpP)a;kp, 'pk ' (49)

i, k
iQk

Just as m the case of Brownian motion, 'k the proba-
bility of changes of the system in At is thus derived
from the validity of the Boltzmann law for the sta-
tionary distribution.

As a more general example we consider the case of a
system which is brought to equilibrium by binary

'' H. 3, Kramc'rs, Physica 7, 284 (1940}.

= —-', g(b;lp; bklpk)'~'k(p*pk) —'
i, k
iQk

(50)

From this follows P, «&0, and if A. ~
=o pibi~ = pg bki

unless erik=0. Thus, if there exists at least one sequence
of non-vanishing elements O.ik~, O.kik2, ~ fTk ~, k, or k

between any pair ik we get pib;&= pk, bk q= ~ ~ = pkbk&
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or bl, ~= p~ 's where s is determined bv

+$. 2 —1—s2+ p,—2 (51)

For the probability p, j, of an individual particle to go
from state i to state k in time t we thus get

and, for the generating function, we get

BG„(x, t) t' 8' 8' )=P(»' —xi')l — lG.(x, t), (»)
at E ax, ' ax, '&

with initial condition

p, k()t= (e—-i), =(i 'e"-tc),,;=+ p, 'b, ;e."-tb, . 'p -(52) G (i. 0)=x "zx-z (60)

and for t—+~ only the term j=1 remains, so that

zzzk= p;k(~ ) = pk bkzb i;p;= pk "s"

e rklkT/P—& r, lkT—
7

(55)

lt, l2
it+4 =X

with (m l
C '

l t) defined by

X (xi—xz) " (61)

The solution is

G (x, t)= P' (m}C,-'lt)e —'P""'(xz+x )'z

G(y, x, t)= (Q x;—pk (t)y, )
'

(54)

which becomes for /~~

Correspondingly one gets for the generating function
(23)

x,"'&x, '= P' (mlC '}l)(x,+xz)' (x,—x,)'-' (62)
&t, h

ii+4 =tV

in order to satisfy the initial condition. For t—+~,
G„(x, t) approaches

G(yx)(pxzzry)zz(gy)n(pxzzt )rv(55)G„(x, ~)=(m
l C}O,A)(xi —»)»

+(m}C 'liV, O)(xz+xz)", (63)
so that

and since

P(m, 'n, ~)= g~ rrr

( lC- }X 0)-2- ( lc- }0,X)=2- (-)-

which represents the canonical ensemble.
vie get

G (x, ~)=2-"{(—) z(x, —x,)N+(x, +x.)"} (65)

The cases discussed in Section II represent systems
which change due to an outside inhuence. The elements
of the system change states independent of each other,
i.e. the system is actually an ensemble. If the system
changes by interact. ion between the elements, (n

l Q l
n'),

is no longer linear in the variables n;, but can be, for
instance, of second order (e.g. with Boltzmann's "Stoss-
zahlansatz"). The solution for a simple model of this
type is calculated. It is assumed that the elements can
be in only two states, and that two elements in state 1
can interact and both change to state 2 and vice versa.
The matrix Q is then given by

(nznzlQlni »z)

=P {n, (n, 1)b(ni', —ni —2) b(nz', nz+2)

+zzz(nz 1)b(nz', nz —2—)b(n, ', n, +2)
—[ni(n, —1)+»z(nz 1)]b(ni', n—z)b(nz', nz) }, (57)

where P is a constant. It then follows that

P' (n,», }Q}n,'n, ')x, " x, -

ng'ng'

P (nz, zn. 'n, n. , ~, ) = 2— [1+(—) '+"z] — (66)
nf

with mi+m2=n~+n2=iV. Except for the conservation
of parity the binomial distribution is approached for
t—+oo .

(m}Qln)=-', { P ak(;,m,m, b;
sj kl
ij/k, l

X brrlmz —lbrr, ,'. , rrrz+ I brr~, rrr i+1 g brr„mr,
+P ~„„m,,m, gb.„„},(67)

where 2ak~, ;,At, for k, l /i, j, is the probability of a
collision i, j—+k, l in ht and 0.;;, ;, is defined by

The problem of the approach to equilibrium of a gas
with Boltzmann Stosszahlansatz —interpreted as a col-
lision probability postulate —can be formulated in the
same way. The matrix Q is given by

&ax, '-ax, z)
'
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O.kz, ;; haS the prOpertieS

nk);;=0

0'jg), jj Ofkl, ji O'Zk, tg)

nk);; &~0

for k, l / i, j.
We;also assume microscopic reversibility, i.e. ,

l 'l
&kf, tj &sj, k].

(69)

(71)

(72)

APPENDIX I
In order that the right-hand side of Eq. (10) can be interpreted

as a probability it is necessary that all A(l) have non-positive
real parts. This can be shown without using the assumption that
Q can he diagonalized on the basis of Eqs, (3) and (4) only.

Suppose we have solved the system of equations

(m'((})n)( n]B [t) =(m(B) t)A(t),

which may be writ. ten in the form

—(oz
I
8 I l) ."(m I Q I n)+ 5'(m

~
Q, n) (n I 8 [t) = {zzz J 8!t)A{l).

M N

num MQ 11l

The matrix Q can be symmetrized by a similarity
transformation

where E. is de6ned by

5=RQE ', (73)

(74)

To a submatrix of Q which can not be reduced by a
mere interchange of rows and columns corresponds a
similarly irreducible sub-matrix of 5, since an element
of 5 can be equal to zero only if the corresponding
element of Q vanishes. Such a sub-matrix of Q defines a
sublattice of distributions I such that each» can be
reached from any other distribution m of the sub-lattice
through a succession of steps mn', n'n" n'&n, for
which the corresponding matrix elements (nt~Q~N'),
(n'!Q~n") (n&'IQ~n) are different from zero (i.e.
through a sequence of allowed binary collisions).
Equilibrium is reached in the sub-lattice according to
Eq. (10'), since the eigenvalue zero is non-degenerate
under these conditions. We get

p(m/n, ~)=Z«(Z, (C[n) (75)

for aH distributions n which are in the same sub-lattice
as m, where

(4!CI")=(nlc 'llo)("II~'I tt) =bt.X /H n, . ! (t6)
r

(77)

"With these assumptions„ the moments of E(nz;/nt) satisfy a
system of linear differential equations, see Appendix III.

the sum being extended over all distributions in the
sub-lattice.

It would be of interest to see whether assumptions
can be made concerning the matrix n such that the
sub-lattice defined above becomes identical with the
sub-lattice of all distributions with the same energy and
momentum. The attempt to assign a discrete set of
momenta and energies to the cells such that energy and
momentum relations allow collisions between all pairs
of particles lead, however, to number theoretical ques-
tions inherent in the discrete model which seem
irrelevant to the physical problem.

Now we chose among all {m!B,, l')), for a chosen t, one, {rno~B Il)
for which

~

(mo', B(t)
(

&~)(n(!BIt) (
for ail n. This may be assumed

to be real without restricting generality. The equation for this
index mo can be written as

~ (~«i(})n)
{n)8)l)
{ms (!

B
(!
tl

ts+ m{1

Since (rnsIBlt) ~&l (n(!B[!t))&Re{n!Bt)!we see that ReA(t) (0
as required.

APPENDIX II

Equation (23) can also be derived using the independence of
the particles: Let

(k,'(1( k,)+(k,'In(k, )kt

denote the conditional probability that the particle numbered by
~ and originally in cell k, is after an infinitesimal time At. in
cell k '. The conditional probability that particle 0- is in cell k, '

at t if it was in k, at t=o is then given by the matrix

(k '~ eat)k }
and we get for the conditional probability p(klk2 k.y/n, t) that
n;(t) =n;, if the particles are at t=o in the cells kI. k.y

p(k&, k, kv/n, t}= 2 II(k, ')e '~k, )II(n;~1(Z s; s
tr

and for the generating function

g(k, k, ~ /, t) —= Z II,;"p(k k /, t')

Z II(k.'~e '~k, )IIx,z "'

k1' ~ ky' & s

II IIx;sz "'(k.'~e" ~k.)
k r a ~ ekgl

= II(Z (i
~

xe '( k,))

=II[X x, (i[e '~k)]"~.

This expression depends only on the number mk of particles in
cell k at time t =0 and not on the individual values k, . Ke have,
therefore,

g(kr. kn/x, t)=G (x, t)= II[Xx, (e ');s]"~
k

from which (22) follows using the de6nition (21). A still simpler
derivation is obtained by introducing the random variables nk ~,
with nI, ~ =1 if particle a is in cell k, and zero otherwise. The
generating functions for these variables are

Z(O, O, "., 1, 0" /n&'), t)IIx;-& &=Ex,(e '),,
with the unity on the left-hand side in the kth place. Since
n;=Z n;, the above result for G (x, t) follows from the inde-
pendence of the particles.

APPENDIX III

The role of the non-linear Boltzmann equation in this formalism
can be demonstrated by deriving the equation for the average AI, .
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%'e define the generating functions Q„,(x) and G„,(x, t) by Eqs.
(15) and (16) and obtain

Q~(x) = $ I g ~ki;i&migs&xi~& &x ~& &xk~&+&xi~&& II x ~
ij kL rgb, k, L

ij+kl

this can be written as

dA,

ij Qks

{Al, q () (n n j }AV Ai) ks(nkns)AV) ~

aa
+Ra;;„;m,m; IIx„" I =g 2 xkxiakf;; II x, ~

ij r ijkL &xi Bxg'

and, therefore,

DG, (x, t} 1, r3'

Bt 2;;kf dX;Bx;

For the averages

This becomes the Boltzmann equation

dn,
LAs, i(&a'+g ~i)k, nk@,»j

ij Qks

if the correlations

(n&n),~AV &1m) = ((n~ ni) (Pl) 'A) ))Av

one obtains

s ~ lI ~~
I

f

~

~
~~ ~ ~ ~~I

8G
'6',,(t) =

xt =x2.

rln, .—'= ~ ~k, , ;,(n;n;)A,
ij, k

are neglected. Similar linear expressions can be derived for the
time derivatives of higher moments. The non-linear Boltzniann
equation is thus an approximation to the first one of a "hierarch&"
of linear differential equations.

using Eqs. (68~ and (70). Since

~kg, ka = ~ ~a jks)
ij (ij +ks)

"This equation for the ensemble averages is thus in agreement
with the transport equation for time averages derived by J. G.
Kirkwood, J. Chem. Phys. 15, 72 (1947), from essentially the
same principles which underly the Stosszahlansatz.
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Structure of the Mercury Bands &2540 and &2476

S. MRozoxvsKI
Department of Physics, University of Chiacgo, Chicago, illinois

(Received August 22, 1949)

The structure of the band of Hg2 at X2540 and of the group of bands of Hg + at 3 2476 was investigated
under high dispersion. The band )2540 was found to be limited by heads trom both sides and to possess a
number of sharp peaks on the long wave-length side. The bands at X2476 i~ ere found to form a sequence
with a gradually changing difference of the rotational constants of the upper and the lower energy states
from negative to positive values. A number of peaks similar to those in X2540 and hand heads on both ends
of bands are observed. An interpretation of the results is given in terms of the expectefI energy states of
molecules of Hg~ and Hg +.

HE structure of the well-known mercury bands
at ) 2540 and ) 2476 has been investigated under

high dispersion. The photographs were taken several
years ago and a short report on the results was made
sometime later. ' In this paper a more detailed account
of the experiments will be given.

Both bands were investigated under very high reso-
lution obtained in the second order of the 30-foot Uni-
versity of Chicago grating. The dispersion was about
0.44A per mm and the resolving power about 300,000.
Unfortunately the mercury bands cannot be obtained
under conditions which would give the full benefit of
such a high resolving power. Due to temperature and
pressure limitations the band )2540 can be obtained in

absorption with su%.cient intensity only under condi-
tions when the interesting finer details are wiped out
to some extent by the temperature and pressure broad-
enings. In emission however the author succeeded in

*Now at the Department of Physics, University of Buffalo,
Buffalo, New York.

' S. 'Mrozowski, Phys. Rev. 73, 1233 (1948).

observing both bands under much more favorable con-
ditions, and many hne details were obtained. The re-
solving power of the grating was still not utilized to the
full extent (about the half of the resolving power would
be sufficient to observe all details).

The band ) 2540 was observed in absorption using a
hydrogen discharge tube as a source of the continuum.
The absorption tube (about 1 foot long) containing a
few drops of mercury was sealed o6 under vacuum. A
series of pictures was taken for different pressures of the
saturated mercury vapor. The curve 3 in Fig. 1 gives
the structure observed in absorption at temperatures
below 200'C. At higher temperatures the band is
more and more suppressed by the increasing continuous
absorption extending from the resonance line X2537
toward the longer wave-lengths and the structure be-
comes gradually wiped out. The gap in the absorption
between X2539.6 and X2539.8 is very characteristic and
was partly obtained by former investigators, as can be
seen from a comparison of the curve 3 with the curves 1

and 2 in Fig. 1. Curve 1 was given in a paper by Wood


