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The Rotational Stark Spectrum of Linear Molecules
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In the electric resonance method of radiofrequency spectroscopy various molecular and nuclear parameters
of linear polar molecules may be determined from observations of the 1, 0 1, &1 transition. An equation
is given for the energy difference of these two states which is good to terms in P' up to values of ) =1.0,
where ) is a quantity which is proportional to the electric field strength. From this equation, expressions are
derived for the permanent electric dipole moment and the moment of inertia in terms of experimentally
determined paramet ers.

I. INTRODUCTION

N the investigation of molecular and nuclear struc-
" ' ture by the electric resonance method of radiofre-
quency spectroscopy' ' the practice has been, up to the
present time, to interpret the experimental results with
the aid of Brouwer's equation. ' This perturbation
equation describes the rotational energy levels of a
linear polar molecule which is rotating in the presence
of an electric 6eld. Representing the rotational quantum
number by E. and the electric quantum number by p,
the energy of the E'=1, p=0 state was stated by
Hrouwer to be

~ = 2+ (1/10) X'-' —(73/7900) X'+, (1)

where e is in units of h', /2I, I is the moment of inertia in
g-cm', X=pE/(h2/2I), p is the permanent electric
dipole moment in e.s.u. and E in the electric field
strength in e.s.u.

However, there is an error' in Brouwer's published
value for the coefficient of the X'-term in Eq. (1) and
the correct energy of the 1,0 state, to this degree of
approximation, is given by the expression

I R type of coupling, the equations in this paper can
still be applied. When these terms are small, it is only
necessary to calculate the unperturbed center of gravity
of the split lines. When the quadrupole coupling is large,
this is determined at low 6elds and then the unper-
turbed position of a high field Stark line calculated.

II. ENERGY OF THE 1,0 AND 1, ~1 STATES

To obtain values of Ae reliable to within 0.04 percent,
the exact energies of the two levels which are involved
in the transition have been calculated to seven sig-
nihcant figures by Lamb's equation. ' The results for
values of X between 0 and 1.0, in steps of 0.1, are
tabulated in Table I, together with the corresponding
energies as calculated by Brouwer's corrected equations.

In the analysis of data from observations of the
1,0—+1, ~1 transition, it is desirable to have an
analytic expression for the energy. Lamb's equation for
the energy eigenvalues is in the form of a continued
fraction which is not well suited to rapid use. Therefore,
empirical equations have been prepared which fit
Lamb's equation very well up to P =1.0. For the 1,0

e= 2+ (1/10)X-"—(73/7000)X4+ . (2)
l.200

Hrouwer's equation for the 1, &1 state is given cor-
rectly in reference 1.

In considering the efI'ect of this error on the reported
values for the moment of inertia and the electric dipole
moment of CsF, the author discovered that Brouwer's
equations are not suSciently accurate for use with the
1, 0—+1, &1 transition at values of X as high as 0.8.
It is the purpose of this paper to extend his equations
by the addition of terms in P '. These yield values of A~

for the transition which are good to within 0.008 percent
up to 'A=0.8. The error at X=1 is only 0.04 percent.
These new equations are adequate for the interpretation
of all data collected up to the present and should serve
well for experiments now in progress and being designed.

When there are terms in the Hamiltonian arising
from a nuclear electric quadrupole moment or from an

' H. K. Hughes, Phys. Rev. 72, 614 (1947).
~ J. W. Trischka, Phys. Rev. 74, 718 (1948).' U. Fano, J. Research Nat. Bur. of Stand. 40, 215 {1948).
4 F. Brouwer, Dissertation, Amsterdam, 1930.' The author is indebted to Professor J. W. Trischka of Syracuse

University for communicating this observation.
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Fro. 1. Error in Ae as a function of P.
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TAsLE I. Energy of the 1,0 and 1, ~1 states in units of h'j2I. TAmE II. Values of he for the 1,0 1, &1 transition.

0.0
0.1
0.2
0.3
0.4
O.S
0.6
0.7
0.8
0.9
1.0

8roll weI
correcteci

2.0000000
2.0009990
2.0039833
2.008916
2.015733
2.024348
2.034648
2.046496
2.059729
2.074158
2.089571

1,0 state

Lamb

2.0000000
2.000999fl
2.0039834
2.008917
2.015739
2.024369
2.034710
2.046647
2.060057
2.074807
2.090761

Kq. {3)

2.0000000
2.0009990
2.0039834
2.008917
2.015738
2.024367
2.034706
2.046642
2.060054
2.074817
2.090811

1, 2=1 state
Lamb and

Brouwer Kq, (4)

2.0000000 2.0000000
1.999500 1.999500
1,9980005 1.9980005
1.995503 1.995503
1.992009 1.992009
1.987521 1.987521
1.982044 1.982044
1.975582 1.975581
1.968139 1.968138
1.959723 1.959720
1.950339 1.950334

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Brouwer
corrected

0.000000
0.001499
0.005983
0.013413
0.023724
0.036827
0.052604
0.070915
0.091590
0.114435
0.139232

Lamb

0.000000
0.0014990
0.0059829
0.013414
0.023730
0.036848
0.052666
0.071066
0.091919
0.115087
0.140427

0.000000
0.001499
0.005983
0.013414
0.023729
0.036847
0.052662
0.071062
0.091918
0.115099
0.140482

Ae= 0 19'—0.010768A4+0 00125k ' (5)

The error in Eq. (5) rises to a maximum of 0.0076
percent at about X=0.6, drops to zero near A, =0.8 and
thereafter increases steadily. At X=1.0, the error is,
however, stil1 only 0.039 percent. In comparison with
these figures, the error in Brouwer's corrected fourth
degree equation rises steadily and is 0.85 percent at
) = 1.0. Figure 1. shov s the error in Ae as a function of ) .
It is seen clearly that the best value for the coefFicient
of the X'-term depends upon the range in X covered
by any particular set of experimental data. The value
0.00125 is the best compromise for values between 0
and 0.9. Values lower than 0.00125 raise the error
moderately at lower values of X but improve the fit at
the upper end.

III. QUADRATIC APPROXIMATION TO Aa//2'-'

Aver a limited range of A. or when the precision of the
experimental data does not justify the labor of fitting
a sixth degree equation, it is convenient to draw the
best straight line through the points of a Ae//X' vs. X2

plot. The line may also be fitted by the least-squares
method.

I.et two constants, a' and P', be defined by the equa-
tion

state, we have

e= 2+ (1/10)V —(73!7000)X'+0.00124K'. (3)

Up to 'A=0. 8 a somewhat better fit is obtained using
0.00126 as the coefFicient of the X"-term.

For the 1, &1 state, values of e derived from the
equation,

a = 2 —(1/20) X'+ (19/56,000)X'—5 10 'V (4)

are identical, to seven significant figures, with those
derived from I.amb's equation.

Values of A~ are given in Table II. The last column
is computed from the equation

p'= 300'h'(n/n')'(P'/P)

I= (h/4~) (pl p') (~'/~)'

(8)

(9)

In reference 1 the values of 0; and P, derived from a
series of experiments between X=0.1 and 0.8, were
reported as follows: a=448&5.4 and p= (1.91~0.23)
)&10 '. Inserting these values and the values of a' and
P', derived above for this range, into Eqs. (8) and (9),
there is obtained:

p, = 7.42&0.47 debye,

I= (180&22)10 4' ~-cm'-

The inter-nuclear distance, r, derived from I is

column of Table II. Over the range X=O.i to 0.8,
n'=0 1499.and P'=0.00998. Between the limits of 0.5
and 0.8, the best 6t is obtained with a'=0.1498 and
P'=0.00966. These values are to be compared with
a'=0. 1500, P'=0.00958 for Brouwer's original equation
and with cx'=0.1500, P'=0.01077 for the corrected
version. It is readily seen that the incorrect equation
actually gives the better fit to the true values. o.' is
changed but little by varying the range; P', however,
does show a significant dependence on this factor.

IV. EQUATIONS FOR THE MOMENT OF INERTIA
AND THE ELECTRIC DIPOLE MOMENT

The data in experiments based on the electric reso-
nance method of radiofrequency spectroscopy consist
of values of the electric 6eld strength in volts per cm
and the corresponding resonant frequency in cycles per
second. From these, two experimentally determined
constants, a and p, defined by the equation

f/E' = a pE'+ yE4— (7)

are derived by the least-squares method. From Eqs. (6)
and (7) the following expressions are obtained for the
electric dipole moment, p, in e.s.u. and the moment of
inertia, I, in gm-cm"-.

(Ae/X') = n' —p'X'. (6)
r= (2.55&0.16)10 ' cm.

The least-squares method has been applied to the deter-
mination of 0.' and P', using the data in the third

8, the rotational constant, is:

8= (1/hc) (h-'/21) =0.156 cm '.
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[t is likely that these figures which are weighted

averages for the unresolved vibrational states, cor-

respond approximately to those for the v=1 or v=2
vibrational states which Trischka' resolved.

V. ACKNOWLEDGMENTS

I wish to thank Professor P. Kusch and Professor
Charles Townes of Columbia University for suggesting
improvements in this paper.

t' lE YSI(:AI. R EVE EW V 0 I U M E'. 7 6, NUMBER 11

On the Interactions of Mesons with the Electromagnetic Field
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By means of the formalism of DufBn and Kemmer there is
constructed for mesons interacting with the electromagnetic Geld
a theory that is manifestly Lorentz invariant and also gauge
invariant and invariant under charge conjugation. The transfor-
mation to an interaction representation is accomplished by a
procedure necessarily somewhat more complicated than that used
by Schwinger for t,he quantum electrodynamics of electrons. The
longitudinal components of the electromagnetic field are elimi-
nated in a covariant manner.

The resulting interaction Hamiltonian is analyzed into terms
corresponding to self-energies and terms describing interactions.

By a suitable interpretation of ambiguous expressions, the photo»
self-energy is shown to vanish. Expressions are found for the
polarization of the mesic vacuum by a given electromagnetic field.
In the case of mesons of spin 1, not only the term proportional
to the original current, but. also that proportional to its
d'Alembertian has an infinite factor. A formal procedure for the
unambiguous exclusion of such infinite contributions is suggested.
Explicit expressions are found for the self-energies of scalar and
vector mesons. These self-energies can be eliminated by renormal-
ization of mass.

INTRO DUCTION
'

N the last few years the theory of quantum electro-
- ' dynamics, or the interaction of electrons and posi-
trons with the quantizecl electromagnetic field, has
been advanced into a rather satisfactory condition.
The new developments of the theory have been found
to agree well with the latest experimental results.

Although precise experimental data on electro-
magnetic eftects are available only for electrons, there
is good reason to believe in the existence of charged
mesons of spin 0, and there is at least considerable
speculation about similar particles of spin i. Thus an
appreciable interest attaches to the various theoretical
discussions of such particles.

In the present. paper the theory for mesons of spins 0
and 1 is developed throughout on the basis of Kemmer's
formulat. ion of the wave equations of these particles.
In this formulation the equations of motion and the
expression for the current are formally precisely like
those for the Dirac electron, and charge conjugation
can. be definec1 in a very similar way. Ke thus have
the possibility of developing the theory in the closest
possible analogy to Schwinger's treatment of quantum
electrodynamics.

There are a number of necessary differences in the
treatment, and in all such respects the electron case is
the simpler. A main source of additional complication
is the fact that in the Kemmer case not al. l components
of the wave function are dynamically independent.
AVhen properly formulated, the commutation relations

* Now at. Institute for Advanced Study, Princeton, New Jersey.

involve only the dynamically independerit parts of the
wave function. The remaining part of the wave function
is expressed by means of space-like clerivatives of the
dynamically independent part.

The introduction of an interaction representation,
which is accomplished in the Dirac case by a unitary
transformation, here requires, in addition, a redefinition
of the particle wave function. Because the interaction
Hamiltonian density involves space-like derivatives of
the dynamically independent wave function, a more
precise statement of the meaning of di6'erential oper-
ators in various representations is necessary. The
interaction Hamiltonian density in the Kemmer case
is not precisely the negative of the coupling term in the
Lagrangian, as it is in quantum electrodynamics.

The Kemmer case resembles the Dirac case in that
it is possible, by identical physical considerations, to
resolve the ambiguities inherent in the interpretation
of divergent integrals in such a way that the self-energy
of a photon is found to vanish. The elimination of the
longitudinal components of the electromagnetic fielcl

is also accomplished in essentially the same way in
both cases.

A major difference in the results appears in the
polarization of the vacuum due to fluctuations in the
vector meson field. The possibility of the simple
procedure of charge renormalization depends on the
absence of higher order derivatives in the polarization
kernel, and is thus an accidental feature of fields of
spins 0 and ~~. For the vector meson case an unambig-
uous procedure for eliminating the infinite polarization


