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discussions and assistance, and D. S. Bushnell, who

aided in the collection of much of the data.

Tangen' believes his accuracy of the Li{p,y) resonance to be
0.5 percent, but believes his voltage scale has a much higher rela-
tive accuracy. The linearity of his voltmeter scale was tested
with protons and diatomic ions, and he got excellent correspond-
ence with two reactions below 450 kev. As noted previously, he
obtained 339 kev for the F{pn', y) and 162 for the B(p,y) reso-
nances.

The author's value of boron was found at 162.8&0.2 kev and
assuming a linear scale, we get 340.7 kev for the fluorine resonance
when Tangen's value of 339 kev is used. The value actually
obtained was 340.4+0.4 kev, adding weight to the belief that
Tangen's resistor was truly ohmic in character. A linear extra-
polation from the Quorine value, using Tangen's result of 440 kev
for the lithium resonance, gives 441.8 kev. A linear extrapolation
from the boron value gives 442.2 kev, and the average of the two
is 442.0 kev. This is in good agreement with the value 441.4+0.5
kev obtained by Fowler and Lauritsen, " and the value 442.4 kev

obtained by Hudspeth and Swann(' both obtained using the
F(P a', i) resonance at 873.5 irev as recently determined by Herb,
Snowdon, and Salas in an absolute measurement.

Recently, N. P. Heydenburg has informed me he has made
absolute determinations using a new, carefully calibrated resistor
in his high resistance voltmeter. He obtained for 8"(p,y) 161.7
~0.2 kev; for F(p e',y) 339.7~0.2 kev; and for Li'(p, y) 440.8
&0.5 kev. These values are 1.1 and 0.7 kev lower than the ones
made in this laboratory, and 1.2 kev lower than the estimate for
lithium. If an average of these values is taken, one obtains the
following table, in which extra weight has been given to Heyden-
burg's Li'(p, y) value:

11(p ~}
F(p ~',~}
Li'(p, p}
F(p a', y}

kev
162.2
340.0
441.2
873.5

These values are quite close on a percentage basis with the results
from each laboratory, and one has some confidence they are good
to +0.5 kev, a fairly satisfactory situation.

'1 E. L. Hudspeth and C. P. Swann, Phys. Rev. 75, 1272 (1949).
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The Tomonaga-Schwinger theory is applied to the interaction of neutral scalar and vector mesons with
nucleons. The Hamiltonians are derived in the interaction representation and virtual effects are transformed
away. The meson and nucleon self-energies are calculated. It is shown that they are invariant and, like the
electron self-energy, can be transformed away by formal renormalizations of the meson and nucleon masses.
All effects are independent of the direction of the general space-like surface in spite of the occurrence in the
Hamiltonian of terms explicitly dependent on this direction.

INTRODUGTION

HE generalized Schrodinger equation in the inter-
action representation was first given by Tomo-

naga' for a Hamiltonian which commuted with itself at
all points on a general space-like surface. %hen this
condition was not immediately satisfied, it was found
necessary to add certain terms explicitly dependent on
the normal to the space-like surface and then to verify
that this new Hamiltonian led to an integrable equation
and that the generalized equation reduced to the ordi-
nary formalism for a special choice of the general sur-
face. Sy this method the Hamiltonians have been ob-
tained by Myamoto' for the cases to be considered here,
namely, the interaction of nucleons with scalar or vector
mesons. It has been shown by the present author' that
the generalized Schodinger equation in the interaction

'S. Tomonaga, Prog. Theor. Phys. 1, 27 {1946);Koba, Tati,
and Tomonaga, Prog. Theor. Phys. 2, 101, 198 {1947);S. Kane-
sama and S. Tomonaga, Prog. Theor. Phys. 3, 1, 101 (1948).

s Y. Myamoto, Prog. Theor. Phys. 3, 124 (1948).
s P. T. Matthews, Phys. Rev. 75, 1270 (1949). See also T. S.

Chang, Phys. Rev. 75, 967 (1949).

representation can be derived by a development of the
work of gneiss. 4 The Hamiltonians of this equation for
the nucleon-meson interactions are here deduced by an
application of this theory.

The equations so obtained are then transformed by
the methods which Schwinger' used for the interaction
of the electron with the electrodynamic field. Besides
real effects, the transformed Hamiltonians contain
terms which give rise to infinite self-energies of both
types of particle. These are evaluated and it is shown
that they can be transformed away, leaving an equation
in terms of field variables which satisfy the free Geld
equations of the separate meson and nucleon 6elds with
renormalized masses. Thus the observed free particle
is taken to be the "bare" particle plus the vacuum
effects.

The main difference between the electromagnetic case
dealt with by Schwinger and those dealt with here is
that now interactions which contain derivatives of the

4 P. gneiss, Proc. Roy. Soc. A 169, 102 (1938).
~ J. Schwinger, Phys. Rev. 74, 1492 (1948); 75, 615 (1949).
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field variables are being considered. Consequently, even
the transformed Hamiltonian contains terms which de-
pend explicitly on the direction of the general space-like
surface. The most important result of the present paper
is that the transformed Hamiltonian contains a further
implicit dependence on the surface direction which to
the second order in the coupling constants exactly
cancels the explicit term. It follows that all self-
energies and cross sections predicted by the theory are
independent of the surface direction and are thus rela-
tivistically invariant. It will be shown elsewhere that
this independence of the surface direction can be proved
up to any order for any effect.

The integrals in the self-energy calculations are not
regular which has given rise to the different values for
the photon self-energy obtained by Schwinger' and
Wentzel. ' To resolve this difFiculty Pauli' has suggested
a regularizing procedure. The effect of "regularizing"
meson self-energies is discussed.

Only neutral meson fields will be considered. The
introduction of charge will not affect the first-order
self-energies calculated in this paper since for a proton
only the positive, and for a neutron only the negative
mesons will be significant.

in the interaction representation is

(1.7)

where y and P are the Geld variables of the two inter-
acting fields, X,; ~ is the interaction terms of the Hamil-
tonian defined

p v/ZfrÃ v

= —Z —(n B|'./By )(n„y„)

(1 g)

(1.9)

where

P=E 'y, R,

ihcBR/B(r =Xi„.(y, )R

(1.10)

p, is the Schrodinger variable and X~„, is the Hamil-
tonian of the free field. The commutation relations of p
and P are given by (1.2)—(1.6) applied to the La-
grangians of their free fields. Also define the energy-
momentum vector on the surface as

P„=—(1/c))f U„„(x')n„'do.', (1.12)

and P and P satisfy the equations of motion of their
respective free fields. Thus,

I. THE SCHRODINGER EQUATION IN THE
INTERACTION REPRESENTATION

then
(f/h)Ly (x), P„j=(By /Bx„) . (1.13)

Let x„be a general point in space-time, the Greek
sufGx taking the values from 1 to 4, (x4 ixo) ——0(x) i.s a
general space-like surface through x„and n„ is the
normal to the surface at the point x„, pointing to the
future, (no&0, n„'= —1). Consider the field whose
Lagrangian is Z(y, y„) where y„=By /Bx„. The
energy-momentum tensor is defined in the usual way,

Ko = mpc/h, (1.14)

To apply this general theory to the interaction of
neutral scalar mesons with nucleons we will use the
notation of Schwinger' which wiII not be defined here.
The meson potential is y(x) while P (x) denotes the
four-component Dirac spinor of the nucleon field. The
differential Bp/Bx„ is written y„(x). Also

U„„=ZB„„—(BZ/B y„)y„. (1.1) and

Then it has been shown' that the canonical conjugate
of y can be deaned as

x.= (BZ/B y—„)n„, (1 2)

and the commutation relations for points with space-
like separation for Bose statistics are

cm/h, (1.15)

where mo and I are the mechanical proper masses of
the nucleon and the meson, respectively.

The Lagrangian of the free nucleon field is

Zs =
g hctP(rpB/Bxp+ Ko)1$

,'hcp(y„rB/Bx„—-~o)p. (1.16)

The Lagrangian of the free scalar meson field is

(P X
q

7l"P X 80 = SAC8crP) (1.4)

The equations of motion of the free fields are

(1.17)

and for Fermi statistics are

I y (x), m.s(x')I =0 if (x—x')') 0, (1.5)
(y„B/Bx„+ap)/=0;

(7~ B/Bx~ "0)0'=01

P~ X, mP X df7 =ZhCS~P. (1.6)
and

(Q K )y=0. (1.20)

Further, if two 6elds interact the Schrodinger equation The Lagrangian of the interacting fields is

6 G. Nentzel, Phys. Rev. 74, 1070 (1948).
W. Pauli, Rouse Ball Lecture, Cambridge University, March,

1949. The "regularizing" process was dehned and applied to the
derivation of the photon self-energy.

where

=&X+&S+in~,

Z; &
———(1/c) a) y —(1/c~)g„y„.

(1.21)

(1.22)
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and j„are covariant expressions in the nucleon vari-
ables dedned by

4p =~fc(fP fP—),

jp= 21gc(P rpP lP+p lP).

(1.23)

(1.24)

The strengths of the interactions are determined by the
constants f and g (having the dimensions of charge).
Following Pais we will consistently use f for an inter-
action which does not contain di6'erentials of the 6eld
variables and g for one which does. We will speak in this
sense of f-interactions and g-interactions.

The coeKcients in the de6nitions of co and j„have
been chosen so that pp and j;= ( ij —4, ji, j„jz) are
Hermitian. It is this condition which gives rise to the
factor i in the coefBcient for j„and ultimately leads to
the opposite sign for the nucleon self-energy due to the
f-interaction in the scalar and vector meson cases. This
is the basis of the Pais f-field theory. '

To evaluate X,;„t we do not need to consider the
Hamiltonian of the free nucleon field because the inter-
actions do not contain the derivatives of the nucleon
variables and the canonical conjugates of the nucleon
6eld variables are not altered by the interaction. By
(1.17), (1.22), and (1.2) the canonical conjugate of
when there is interaction is

But in the interaction representation the 6eld variables
satisfy the free-field equations and thus by (1.2)
and (1.17)

(1.35)

where

and

z "}(VA (x'))-, A (x) }~~'= ~-p

do p
= —@~do' )

(1.36)

(1.37)

}4-(x), A(x') }= }0-(x),A (*')}

(1.32)

and in the interaction representation

K; 4= (1/c)4p(p+(1/cK)j „p„+(1/2c'K')(j „n„)', (1.33)

which is in agreement with the result of Myamoto. '
By (1.2) and (1.16) the canonical conjugates of P

and g are

zr = ,'hc(g—y„).n„, zr. = ', hc(-y„g).n„.(1.34)

By (1.5) and (1.6) the commutation relations are

zr= ((p„+(1/CK)j „)n„

Thus by (9) omitting the free nucleon field

(1.25)

Also

= }f (x), fp(x') }=0 if (x—x')2) 0. (1.38)

~= l (~ +" ')+ (1/c) +(I/-)i .~.
+ (qp„+ (1/cK)j„)ypnpzzp (1.2.6)

} [q (x), p„(x')]do.„'= ihc, — (1.39)

Since e„ is time-like the tangential part of p„ is

4p„'+ (n„q „)(n, q, ) . (1.27)

This is obvious in the special case when the surface is
x4

——const. since the components of n„are then (0, 0, 0, z)
The normal derivative must be formally eliminated
from (1.26) in favor of the canonical conjugate by
(1.25). Thus

2 {q p + (npq p) (n&p&)

—(m- —(1/cK) j„n„)(zr —(1/cK)j,n.)+Kpqp'}

+ (1/c)4p4p+ (1/cK) }j„qp„+(j„n„)(p.n, )

—(j„n„)(zr—(1/cK)j „n„)}+zr(zr —(1/cK) j„n„). (1.28)

Thus

[4p (x), 4 (x')l = [pp (x), 4 (x')3 =0. (1.41)

The above relations apply only to points with space-
like separation. To obtain the general commutation
relations for points with any separation introduce the
function A(x) such that

~2—Kp)h(x) =0, A(x) =0 if x 2) 0 (1.42)

(86(x)/47x„)dp„= 1. (1.43)

[4p(x), q (x')]=0 if (x—x')2& 0. (1.40)

In addition the commutation relations between the
meson and nucleon field variables are

free+ in ty (1 29) It then follows by the same argument as that given by
Schwinger' in the electron-photon case that

and

K;.4
= (1/c) 4p y+ (1/cK) }j„y„+(j „n„)(zp„n„zr)}—

~4-.= 2 }p,'+ (».p.) (».9 .)+24 + K'p'} (1 3o) [q (x), q (x'))=ihch(x —x').

}P (x), gp(x') = i(y„B/47x„— Kp) pdp(x ——x )

= —iS p (x—x') .

(1.44)

(1.45)

+ (1/2c K )(j n ) ' (1 31) Ap(x) is the same expression as 44'(x) with K replaced by
4 A ppzp Kpzz Npg Akp J v ~pf, Vprg Jzt 19, $ {t947). Kp. By (1.5) and (1.33) the Schrodinger equation in the
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q„„(x)=0, (1.48)

which ensures that the energy is positive definite. If the
Lagrangian of the free 6eM is taken to be

interaction representation is

ihcN/ho= {(1/c)id'+(1/ci~) j„q„
+(1/2g2K2)(j ~ )2I Q (1.46)

Ke now consider the case in which the scalar meson
field is replaced by a vector meson 6eld rp»(x). Denote
the differential 8y»(x)/Bx, by p», (x). The free field
satisfies the equation

( ' —~')~ (x)=0 (1.47)

and in classical theory the relation

and postulate the subsidiary condition in classical
theory

A„„+~8=0.

The Lagrangian of the free field is

(1.57)

i' = —-'{A '+i~'A '+B '+v.'B''I -(1 58)

from which the correct equations of motion for A„and
B follow directly. By (1.56) and (1.57) it can be shown
that p» so defined satisfies the required Eqs. (1.47)
and (1.48).

If the meson field is interacting with a nucleon field
the additional terms in the Lagrangian are

Z„,&
———(1/c)j„(A„+(1/z)B„)

—(1/2c~)m„„(A,»
—A„„), (1.59)

k{2(v'» 0" ) +& 0'» I where j„is defined by (24) with f replaced by g and
1.49

This equation is inconsistent with the commutation
relations defined by (1.3), as can immediately be seen
by taking the surface to be the plane x4 ——const.

The immediate generalization of the scalar meson
theory is to take the Lagrangian

i{+ 2+&2+ 2I (1.52)

with Eq. (1.48) as a supplementary condition on the
wave function

(1.53)

The application of the general theory to (1.52) would
lead to the quantization of q„as independent scalars
and the general commutation relations

then the variation of Z gives the equation of motion

(~/». )(v..—v.») = "v' (1 50)

Differentiating gives Eq. (1.48) and substituting back
into (1.50) yields Eq. (1.47). It is thus not necessary to
introduce (1.48) as a special condition. However the
appearance of the difI'erentials of the field variables in
the Lagrangian in antisymmetrical combinations leads
directly to the equation

m»„= ', igc(P'-r»p„P Py» —y„g). (1.60)

The Lagrangian of the free nucleon field is given by
(1.16) and again need not be considered in the calcula-
tion «Xint

By a calculation similar to that given in the scalar
case it can easily be shown that the Hamiltonian in the
interaction representation is

X; i ——(1/c) j»(A»+(1 /~) B») +(1 /2c~)m»( A„»—A„„)
+(1/2 '"){(.j.)'+( ~ ")'I

= (1/c)J „p„+'(1/2c~)m„„(q „„y„„)—
+ (1/2c2a') {(n»j»)2+ (n»m»„)'I . (1.61)

The general commutation relations follow as before

[B(x),B(x')]=ikcA(x —x'), (1.62)

[A„(x),A„(x')]=i&eh»„A(x x') — (.1.63)

Equation (1.56) is replaced in quantum theory by a
supplementary condition which in the interaction repre-
sentation can be written

(A„„+aB)+=BC =0. (1.64)

Using the commutation relations (1.62) and (1.63) it
can be shown that

[y„(x), v „(x')]=ihcii„„h(x x')—
Thus by (1.54) and (1.47)

(1.54) ( '—~')Q=O,

[ihcb/50(x') —X.(x'), Q(x)]=0.

(1.65)

(1.66)

[q„„(x),q.,(x')]= ihc~'A(x x'), —(1.55)

which is inconsistent with (1.53) since it is required of a
supplementary condition that it commutes with itself
at diferent space-time points.

Both these difhculties are avoided if a form of the
theory given by Stueckelberg' is adopted. Two sub-
sidiary fields are introduced, a vector field A„(x) and a
scalar 6eld B(x) both satisfying Eq. (1.47). V,'rite
BA„(x)/»„as A„,(x) and BB(x)/Bx„as B„(x).Define

q„=A„+(1/»)B„, (1.56)
9 E. C. G. Stueckelberg, He1v. Phys. Acta 11, 225 «', 1938).

[Q(x), Q(x')] =0. (1.67)

These relations show that the supplementary condition
is consistent with the field equations, the equation of
motion and the commutation relations. From (1.56)
and the commutation relations (1.62) and (1.63) the
commutation relations for y„(x) are

[V,(x), ~.(*')]
=ihc(6„„(1/~') 8'/»„—Bx„)A(x —x')

=i bcT„„(x x') (1.68)—.

By (1.61) the Schrodinger equation in the interaction
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II. THE VACUUM

To apply Schwinger's methods to the meson-nucleon
interactions it is necessary to split the field variables
into parts which can be interpreted as annihilation and
creation operators and to define the vacuum. It will

then be convenient to calculate the expectation values
of certain expressions which appear in the later work
and to develop explicitly the singular function h(x) and
the associated functions 6"&(x) and Z(x) which will be
introduced below. Where this work is the same as that
of Schwinger only the results will be quoted.

The scalar meson field can be split into positive and
negative frequency parts

(2 1)

Schwinger' has shown that this can be done in an in-

variant manner. Define

It follows that

Lp&+~(x), «(x')]=ihcb. ' '(x—x'), (2.3)

L&c&
—

&(x), q(x') j=ihch& '(x x'), — (2.4)

representation is

ihcN /l&«= [(1/c)j,&&&+ (1/2c &&)m„„(v&„„—«&„„)

+ (1/2c'~') I (n,„j„)'+(n„m„„)'I ]O. (1.69)

q
'+' (k)%'0 ——0.

This equation is valid for all p&+&(k) and thus

p&+& (x)+0 ——0.

(2.12)

(2.13)

In general 4'(&r) specifies occupation numbers of mesons
in the various free meson energy states on the surface o-.

p&+'(x) and &&&& '(x) are annihilation and creation oper-
ators, respectively. With this definition the vacuum
expectation value of the anticommutator is

(Iv'(x) v'(x) })o=hc~"'(x—x ) (2 14)

A similar treatment of the free meson field yields the
definition of the vacuum

(2.15)

And the expectation value of the commutator in the
Vacllulll is

(L&k-(x), kp(x')3)o= 5'-p'"—(x x') — (2 16)

The above theory can immediately be extended to
the vector meson field. In place of (2.3)—(2.5) we have

~ is positive. Operating with (2.10) on the vacuum
state 00

w p'+'(k)%'p (w——o
—hw) «&&+'(k)%'o. (2.11)

Thus y&+&(k)4'0 is the state with one less meson in the
k energy level and if 0'~ is the vacuum

Lq"'(x) q(x')]=ihcA"&(x x') — (2.5)

where 6&+&(x), 3& '(x), and 5&"'(x) satisfy the same rela-
tions (2.1) and (2.2) as p&+&(x), p&

—
&(x), and &&'"(x).

Then

L&»„&+&(x), «„(x')]=ihcT„„&+&(x—x'),

[p,&-&(x), « „(x')]= ihcT„,&-&(x—x'),

[&t&„&"(x),y, (x')]=ihcI'„„&'&(x x'), —

(2.17)

(2.18)

(2.19)

3"'(x)= 5&'&(—x) A(x) = —3(—x)
where

2.6)

( '—«'-')6&+&(x) = ( ' —&P)A& &(x)
= (

-' —«')5&" (x) =0 (2 7')

The wave function 4(&r) on any particular surface 0.

specifies a state of the free field on that surface. The
vacuum state must be defined to be that for which the
eigenvalue of the ener~ in any frame is a minimum.
Now by (1.12) and (1.13)

Applying (2.8) to a Fourier component of y&+&(x)

give by

« '+'(x) = I q (k) &&(k&,'+ «') expgik„x„jd'k,
—

&|:)&,np, &0

(d'k =dkodkidk2dk3), (2.9)

it follows that

and similar equations hold for T„„& '(x —x') and
T„„"'(x—x'). The vacuum is defined by

«&„&+&(x)@o——0. (2 '-1)

DifFiculties of the false vacuum do not arise as in the
electromagnetic case because the supplementary condi-
tion does not exclude longitudinal mesons when ~NO.
The vacuum expectation value of the anticommutator is

(I q„(x), y„(x') I)0= hcT„„'"(x x'). (2.22)—
AVe proceed to develop the expectation values of vari-

ous expressions in the invariants co, j„, and m„„. It
follows from the definitions that

co(x) = 2ifc&&g (x), P&&(x)5(—if'&&& ) =M"&(—x), (2.23)

T,„&+'(x x')—
=

I &&„„—(1/&&')(8'&Bx Bx ) I 5'+&(x—x'), (2.20)

v"+'(k)w —w&c' '(k) = hw&»'+'(k) (2 1o) j„(x)= ',ifcfp. (x), p&&(*))(q,)s.=—M-&o(.), (2.24)

where w= —rs„P,c and w= —n,k„c are expressions for
the energy and frequency in the arbitrary frame speci-
fied by the time-like vector n„Since —n„k„).0 by (2.9),

and

~"(x)= -2iacL&-(x), A(x)3(7.7.)p-=hI"&(x). (2.25)
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I et, r, g be suffixes which take the values 0, 1, 2 and ([j„(x),m, (x')])o ——4ifgc'(f'&„g „—g „o»)
define L" y by

X (ho&" (t)&o,(t)+&o,"&($)&o($)). (2.39)

so that

L&o&) p ig p

(L"')-p= (v.)-p

(L"&)-p= (v.v.)-p

(2.26)

(2.27)

(2.28)

M'"'(x) = oi—gc[y (x), lPp(x)](L")p . (2.29)

To select out the one nucleon part from an operator of
the type I M& "&(x), M&'&(x) } the spinors P must be split
into annihilation and creation operators. It is conveni-
ent to consider the nucleons in positive energy states to
be carrying a charge e. Then the antinucleons, corre-
sponding to the positrons in electron hole theory, will
carry a charge —e. The charge-current vector is

Note that in (2.2&&) g must be replaced by f if M'"'
occurs as a factor in an f-interaction. It then follows

after some manipulation of the operators that

[M&"&(x), M" (x')]

', ig'c-'([&l p(x), P.( x)]( L' 5( x x')L') p—.
—[gp(x'), &&«.(x)](L'5(x'—x)L")p.), (2.30)

,'ig' —c([P( )x, P(x' )L'S(x' x)L"]—

j„'(x)= ,'iec—(&f—y„P Pp,—P) . (2.40)

The total charge on the surface 0. is the integral of the
normal component

Q = —— j„(x)&o„do.

C

,'ie—
J

I —(&&t'(x)v„&i'(x) P( —)xv„'P( )x)do„(.2..41)

[L"5(x —x')L'P(x—'), P(x)]). (2.31)
Hence

(=x—x', (2.33)

This is a general formula for any commutator of the
invariants o&, j„,and m~„. By (2.16) and (2.30),

([M&"'(x) M" (x)])o

= -'i g'c'(Tr[5"'(x' —x)L"5(x—x')L']
—Tr[5&"(x—x')I.'5(x' —x)L']), (2.32)

where Tr[ ]denotes the trace. Introduce the notation

x, = —e x. (2.42)

When applied to an eigenstate of the total charge,

Q4(x)+(Q') = (Q'+ )0(x)+(Q') (2 43)

Thus P has the effect of increasing the total charge.
Therefore, P either creates a nucleon or annihilates an
anti-nucleon. Similarly P either creates an anti-nucleon
or annihilates a nucleon.

Now in the expression

(~/~t. )~o(~) = ~o, (~)

By evaluating the traces it follows from (2.32) that

,'M& "&(x), M&'&(x') } = —-'g'c-'(L') p(L') o

(2.34)
X I[P.(x), &t p(x')], [4,(x'), A(x')]}, (2.44)

co x
&

0) x 0

= 4of'c'[~o&, "&(k)~o&(k) —xo'~o'" ($)~o(k)]

(Lj.(*),j.(x')])o

4ig'c'[6o„—&'& (&)Ao„(P)+ho, &"($)&o,($)

(2.35)

the terms in P and P are the same as those in

I j„(x),j„(x')} which has been evaluated by Schwinger. '
The selection of the one-particle part of the operator can
be taken over unchanged and leads to the general result

f M"(x), M'(x') } =-'g'c'I [&t(x), L"S&'&(x—x')L'P(x')]

&.,(~o~"'($—)~o&,(k)+ ~o'~o"'(k)~o(&)), (2.36)

fpzpp x ) 7s&p x o

= -4 g"'[g„(~..&'&(~)~o.(&)+~.."'(t)&.-(t))

+&.,(~o,&"(t)~ (k)+o~o, "&(5)&o,($))

—~,.(~o.&"(5)~o.(~)+~o "'(&)~o.($))

~..(~.,'"(~)~..(~) +~o."'(~)~.,(~))

+ (4,&- ~.,~..) (~o~&"(&)~o~(E)

+ [P(x') I:5&'&(x' —x)L", P(x)]}. (2.45)

e(a) = a/ }
a I .

For a vector variable,

(2.46)

The one-particle part of any anticommutator of the
invariants &o, j„,and m„„can be obtained from (2.45) by
substituting for L" from the definitions (2.26)—2.28).

We next consider the singular functions D(x) and
b."&(x). First consider the function which for a scalar
variable a is defined,

—..'~.&'&(&)~.(r))], (2 37) e(x) = xo/} xo}. (2.47)

([j.(x), ~(x')])o=0 (2.38) If z and o' are any two space-like surfaces through x
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and x', respectively, de6ne

e(a, )r') =&1, (2.48)

according to whether cr' lies before or after 0.. Then
e(a, a') can be replaced by e(x—x') in an integral over
x' if the integrand is zero outside the light cone of x. By
considering the integral

Hence

(1
4 2m- j

a(k) exp(ik„x„)B(ka'+k"-)d'k, (2.58)

f(a) (de(a)/da) da
a

(x) =
{ { „~" exp(ik„x„))3(k„'+ ')))d4k. (2.59)
E 2)r)in the two cases when the origin does occur and does not

occur in the domain of integration, it can easily be
shown that

da(a)/da= 2B(a),

and hence

It follows from (2.57) that A(x) =0 if xa=0. It is then

(2 49) easy to prove that

(BA(x)/Bx„) = ,'e(—x)—(BA( )x/B x) .(2.60)

Be(x)/Bx, = —2iB(xa)) Bc(x)/Bx„=0, P=1, 2, 3. (2.50)

Define

Z(x) = ——,'S(x)~(x).

-'a(x) = ,'a(x—) —'A(x)—(BA(x)/Bx„) (B~(x)/Bx„)

——,'D(x) '«(x),

'Z(x)+ 2iB(xo) (Ba(x)/Bx )

III. THE SCHWINGER TRANSFORMATION

It follows from the above development of the held
variables that the Hamiltonian in the interaction repre-
sentation contains terms of the first order in the coupling
constants which have matrix elements for the absorp-
tion or emission of mesons by free nucleons. These
processes cannot occur with conservation of energy and
momentum which suggests that they should be removed
by a transformation. Following Schwinger, ' make the
unitary transformation

+ia(x)(BB(xa)/Bx4),

g ~ c(x)D(x)+id(xa) (B&(x)/Bx4),
ivhere

+(a) )e's"4 (a) (3.1)

+ (1/g) j,(x') v „(x') ) e(a, a')da)'. {3.2)

where the last term has been integrated by parts. By S(a)=(1/2kc') {a)(x')a(x')
(1.43) in the "natural" coordinate system (with time
axis in the direction rs„},

Thus

Now

(»(x)/Bx, ) =iB(»)B(x-)B(x,).

(
'- —:-)Z(x)= —iB,(x).

t»' r"
B,(x) =

{
—

{ il exp[ik„x„]d'k

(2.53)
This leads to an equation of motion for the new
%(a) from which all first-order transitions have been
eliminated.

ikcN {o.)/Ba(x) = (i/4kc') [a)(x'}p(x'}

Therefore

A(x) =
{
—

{
I' exp[ik„x„]/(k '+ ))')d'k (2.56)

( 1 ) 4

(2x)

+(1/ )j.(x') v.(x'), (*)v(x)

+ (1/~) j„(x)y„(x)]a(a-, a')da)'

+ (1/2c'K') (j„(x)m„)' +(a), (3.3)

where the principal value is taken at k„'+~'=0. Per-
forming the integration over

where

= {BCi'(x)+3Cg'(x)+Kg'(x)

+3C4'(x)I 4'(o), (3.4)

E.2+)
'" exp[i(lr x)] sin[xa(k'+ «'}&]

X
~

d'k. (2.57)
(lr'+ z') &

&& a(a-, a')da)', (3.5)
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ac~ (x)=(—~'/4&"") " Lj.(x)~.(x), j (x')&.(x')]

X c(o, o.')dco', (3.6)

x~'(x) = ( i—/4kc'~)J (Lj„(x)&o„(x),co(x')co(x')]

—[j„(x')&o„(x'),co(x)(p(x)])e(o, o.')dco', (3.7)

There is an additional contribution to the nucleon g
self-energy and Yuirawa potential from BC4'(x). It will
be shown how this combines with X22'(x).

3C~.'(x) = (i/8 '
chic)J (Lj„(x),j„(x')]

X(cP/»», )A&i'(x x—')+i{j„(x),j„(x')}

X (&'-/», »,)a(x—x')) e(x—x')d~'. (3.11)
and

Xc'(x) =
{ } (j„(x)ic„)-'.
E 2c-'x-')

Consider the terms arising from 36~'(x).

(3.S)
e(o, o') has been replaced by e(x—x') since the inte-
grand is zero outside the light cone. In the second term
the e factor can be taken under the differential and the
additional terms subtracted explicitly. These can be
evaluated in the "natural" frame by (2.50) and (2.53)
and it follows that

X2'(x) = (—i/Shc'&c') J' (Lj„(x),j„(x')]{q„(x), &o„(x') }

+ {j (x), j.( ) }L&o (x), &v ( ')]) ( )"

= (—i/S)i~") "(Lj.(x), j.(x')]({&.(x), & .(x') }

—({& .(x), ~.(x') }))

+ )ice„(x), j„(x')](c)'/c)x„c)x„')6&"(x x')—
+i bc{j„(x),„„(x')}(cP/clx„cjx„')A(x —x'))

X e(o, o.')dco', (3.9)

= ( i/Shc—'K")
J (([-j„(x),j„(x')]

-(Lj.( ) j (*')])o)({~.( ), &.(-')}
—({&c.(x), & .(x') }).)
+)ice„(x),j„(x')](c)'-/c)x„c)x„')6&'&(x x')—
+chc{j„(x),j„(x')}(c)j'»„&x„')D(x x')'—
+ (Lj.(x), j.(x')])o({v .(x), &o.(x')}

—({&o,(x), &,(x') })o))~(o,o')d~', (3.10')

where (1.44) and (2.14) have been used. The first three
lines of (3.10) which will be denoted by K~, i*(x) are zero
unless some of both types of particle are present and
have matrix elements for real eGects of meson scattering.
The next two lines, K2~*(x),are non-zero when no mesons
are present and give part of the nucleon g self-energy
and part of the g-interaction Yukawa potential. The last
two lines, K2i'(x), are non-zero when no nucleons are
present and account for the meson f self-energy. The
other ps, rts of the Hamiltonian 3C&'(x) and 3C3'(x) can be
split up in the same way and the notation introduced
above can obviously be extended. Thus, for example,
the scalar meson f self-energy will arise from the last
two lines of Ki'(x) to be denoted by Ki3'(x).

—-',
,'j„(x), j„(x')}e(x—x') (8'-'/&)x„c).i.,)A(x —x')

= {j„(x),j,(x') }(cp/c)x„», )Z(x x')—
—2(j„(x)e„)(j„(x')m„') 54(x x') —(3.1.2)

The second term on the right-hand side is just that
required to cancel 3Cc'(x). Thus

X-'(x)+Xc'(x) = (i/Sc'x')) Lj„(x),j,(x')]

X(&P/Bx clx )6&&'(i —i..') e(x—x')dco'

+(1/4c' ') J~{j„(x),j„(x')}

X (cP/c)x„&x„)Z(x —x')dco'. (3.13)

By (2.45) the anticommutator in the second term is a
function of 5&"(x—x'). By (2.31) the commutator in the
first term is a function of S(x—x') which by (2.51) and
(2.60) combines with o(x—x') to give a function of
E(x—x'). Thus the whole integrand can be expressed in
terms of Z(x —x') and 6&&'(x—x') and the integral is an
invariant independent of the particular choice of n„.
This is the extremely satisfactory result discussed in
the introduction. It will now be shov n that there are
two similar eGects in the vector case.

The reader is reminded that in the above treatment
of the scalar meson interaction a suKx p, or v attached
to the 6eld variable &v(x) denotes differentiation. In the
vector meson case only the second suflix v in &o,„(x) or
A„„(x) denotes differentiation. To avoid confusion, in
any equation in which this notation is used a suKx
s (seals, r) or o (vector) will also occur to distinguish
the two cases.

A transformation similar to (3.1) on the wave equa-
tion for the vector interaction (1.69) leads to

ihcM /iio(x) = {K,"(x)+3C2"(x)

+BC'"(x)+X4"(x)}4'(o) (3 14)
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X,"(x)=( i/16 'hc')

Virtual meson e6'ects in the g-interaction in the vector
meson case can be expressed in terms of the subsidiary

3'z'(x) = (—i/4hc') ~[j.(x)o.(x),j.(x') o.(x')] field A„(x). Thus

X,( . )d (3 15) m„„(x)(o„„(x)—o „„(x))=m„.(x)(A„„(x)—.4„„(x))

= 2m„„(x)A„„(x). (3.22)

XJ"[z»"(x)(o.,(x) —o,.(x)), »m"(x')

X (p,.(x') —p-.(*'))]fl(~, ~')d~' (3 16)

Xfl"(x) = (—z/Szzhc')

X ~ (Lm .(x)(p. (x) —p (x)) j.(x')v. (x')]

—[m"(x') (~"(x') —
v ..(x')), j.(x) o fl(x)])

X o(o., a')dzo', (3.17)

&4"(x) = (I/2c'~') {(j„(x)zz„)'+(m„„(x)zz„)'}. (3.1S)

Hence

3C. "'(x) = (—i/Shczzzz)
J~ ([m„,(x), »z, (x )]

X({A„„(x),A, (x') })o+i{m,„(x),m, (x') }

X [A „„(*),A,.(*')])o(~, ~')d~'

= (i/Sc'zfl') ([»z„„(x),»z.„(x')](8'/Bx„Bx.)

XA'"(x x')+—i{m (x) m (x') }

X (8'/Bx„cjx.)h(x —x')) o(x—x')dzo'. (3.23)

The various parts of the Hamiltonian can be split up The final term combines with the second term, K4z"(x),
ss above. Consider BCio"(x) obtained from X,'(x) as of Ko"(x) to give an integral of the required form

Xzz'(x) was from aCz'(x).
X'iz x +BC49 x

3Czz" (x) = ( i/Sc—') l ([j„(x),j,(x')]T„,&'&(x x')—
+i {j„(x),j„(x')}T„„(x—x'))o(zr, o')dflfl', (3.19)

= (—i/Sc') J"([j.(x), j.(*')]~o'(x—x')

+i {j„(x),j„(x')}D(x x')) o(x x')—doz'—

+ (i/Sc')
J ([j.(x), j.(x')]

X (8'/Bx„Bx„)6&'& (x x')+ i {j„(x),—j„(x')}

X (8'/ax„ax„) h(x —x')) o(x—x')doz'. (3.20)

= (i/Sc'zzz) l [m„„(x),m. „(x')]

X (8'/Bx„Bx,)A~" (x—x') o(x—x')doz

+ (1/4c'zc') {m„„(x),m, „(x')}(8'/Bx„Bx.)

X E(x—x')d~'. (3.24)

IV. THE MESON SELF-ENERGIES

The f self-energy of the scalar meson is determined by

The second term of (3.20) can be expressed in terms
of Z(x —x'). The third and fourth terms are identical
with BCzo'(x) and combine with the first term, X4i"(x),
of Xo"(x). Thus

Xzz"(x)+X4z"(x) = (—i/Sc') Jl [j„(),xj„(x')] where

= {V (x), n(x) }i, (4.2)

X {Ip(x), Ip(x ) }ifl(0, zT )doz, (4.1)

X&~"(*—x') o(x—*')dko' —(1/4c'-')

xJl {j„(x),j„(x')}z(x—x')dflfl'

zz(x) = (—i/Shc') "([oz(x), oz(x')])o

X «(x —x') o (x')dflo'. (4.3)

—zzooDo ' (x—x')Zo(x —x') }oo(x')doz' (4 4)

+(i/Sczzzz) Jt [j„(x),j„(x')] It must be shown that rz(x) is a multiple «oo(x). &y
(2.35) and (2.51)

X(il"Bx Bx )A~" (x—x'). o(x—x')doz'

( /, ) l {
.

( )
. (,)} ( z)z=x( f'/hc) JI {dfl &—'&(ixx')Zo&(x —x')

X (8'/Bx„Bx„)D(x—x')dflfl'. (3.21)
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= (—fP/kc) K(x—x') pp(x') d pp',

J

= (—P/kc)(1/2x)P ~ K(k)

(4.5)
(1/(pi. —q~)'+ «p')

,'i—Jr—exp[ibI(pi —gq)'+ «,
"f]-c(b)db .(4.16)

Xexp[pkp xp xp ]pp(x )dpp d k, (4.6) S b t't ti i (4 14)

K(x) = (1/2 pr)')tE (k) exp[ik„x„)d'k.

If q(x) is evaluated for a particular Fourier component

pp(p) exp[ip„x„) of y(x) then with f defined, by (2.33),

p11'i
K(p)=l —

l

— ~rd'~jrd Jrdb p[ ( '+ .')
E2prl 2 J

+ibt (Pg —0&)'+ «,'I)P(b)[A(P„—q„)+«p']. (4..17)

, f
q(x) =(—f'/kc)(1/2 ) ~ Z.(k) exp[ik„&„)p (p)

Then

V =Q+(b/a+b) p' (4.18)

Xexp['Lp& x&—$p]dppzd k,

= (—f'/kc) q (p) exp[ip„x„]

x rK(k)b (k„—p, )d4k,

K(p)=l —
l

— ' d4Q da tdb
(»'i, t

&2~) 2J
ab

Xexp i(a+b)Q&, '+i Pq'+i( +ab) «pP

a+b
= ( f'/kc) ~(- -)K(p) (4.8 l

Since &p(p) exp[ip„x„] is a Fourier component of p(x),
by (1.20),

(4.9)

ab 8—b
X p(b) —pg'+Q), pi

(a+b)' a+ b

—Q)P+ «p' . (4.19)

Now

K(x) = Dpi"" (x)Zpg(x) —«p-'6 p&" (x)Zp(x). (4.10)
exp[iaQi"-]O'Q = (i /air') p(a),

And by (2.56) and (2.59)

(*)=I —l

~
exp[is.x.]b(~'+ «p')dPn (4»)

Q„exp[iaQq']d'Q = 0,

Q„Q„exp[iaQ,']d'Q = —b„„(x'/2a') p(a),

f' 1 q
'

r exp[i(p„—q„x„)]
dp.

E 2 pr l ~ (pg —
g&,)'+ «p'

(4.12)

Q„' exp[iaQ)')d4Q = —, (2pr'/aP) p(a).
J

Thus integrating with respect to Q,( 1 )' p exp[ip„x„)

(2pr I & (pi, —qi)'+ «pp 1 f l ab
K(P) =

i da db exp i(a+b)«pP+i PiP
X[—Vi(p~ —Vi) —«p')d'pd'V, (4») 32''. " a+b

( 1 ) ) b(q„Py P)

(2pr) J (pi, —qi)'+ «pp

X[—qi(pi —q~) —«p']d'q.

p(b) p(a+ b) ab 2i
X p) —&0 +

(a+b)' (a+b)' (a+b)

Symmetrizing with respect to a and b,
(4.14)

p(b) =
p (p(a)+ p(b))

(4.21)

(4.22)

8(qy-'+ «p-') = (1/2pr))t exp[i(gi, '+ «p')a)da, (4.15)
Making the substitution,

a= ps(1+&), b = ps(1 —y). (4.23)
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Then
e(s) «» lyl &1,

s(e(a)+ e(&)) =
lyi&1,

dadb = —',se(s) dsdy. (4.25)

Therefore,

("f'i f-Ii
n(x) =

o (x)
f i4 hci iS )

X (1—6p') log +f. t. . (4.35)

1 f 1 q' f+' q" e(s)
K(p)= —

(
—

~
dy i

64i2orJ k
~ „s And by (4.2),

where

Xgo'(X) = 2Kkk, I ko-'(X)}k, (4.36)

1—
Xexp is( kko-'+ pq'

~

4

8i
X —(1—y') p,' —4kko'- . (4.26)

f'qf —1l 1
~

(' —6~")»g +' ' (43'i)
i4xhci i Ss. ) ykoo

The scalar meson g self-energy is given by

Let
co ao

P= (Ko, kk). (4.2s)

r~
X (x) =(-i/Shee. e)~~ ([& (.) & (*')])

Then substituting for p~'-' from (4.9),
X I q „(x), y„(x')I,e(o., a')dko' (4.3S)

k-' ( 1 ) ' +' Siy'-'

K(kk) =—
i

—
i i dy

64 i2vrl ~
k ko

4p,"+I

=
I P„(x), q„'(x)I k,

where by (2.36),

(4.39)

1 f 1 —y'-) ~„'x(x) = ( i/Shc'—kk ')
~

(L'-2'„(x), 2', (x')])o
dko—exp iko~ 1—

~
(4.29)

/kof ( 4P' )
X oo, (x') e(o., o')dko' (4.40)

x' (1 )- t-+' f kB)
d»l;f+ —

I

64 E2x) = (g-'/hckk') [ao„(x—x')5 '"(x—x')

where

X dko exp Licko], (4.30)

2 = 1—y-' —4y' B= 8p' C = 1—(1—y-')/4p'. (4.31)

The imaginary terms in the integrand are odd and can
be regarded as giving no contribution to the integral.
Thus

+so„(x—x') &o.'"(x—x')

—S..I no~(x —x') ~o~'" (x—x')

+ kkopZo(x —x') 6o'" (x—x') I ]ko„(x')dko'

= (g"-/hckk') K„„'(x x') ko„(x')dkd'. — (4.41)

i8y
I
.1+—

~

—expLiC~]d~

Evaluating for a particular component of oo(x),

g„'(x) = (g'/hckk')(1 /2x)'J dkoe')I d'hK„„'(h) s (p)i p„

XexpLiP~x~] exp[i(, h, P.]—
= (g'/hc kk-') q (p)i p„exp[~p&x&)K„;(p)

= (g'/hc '-) &p„(x)K„„'(p).

In addition to (4.9), there is the relation

and

( ] ) ~ 41

K.(.) =—
(

—
(

~ (a —Bc)
32 I 2xl

cosCM
= 2 (A BC) dko 2BC, (—4.32)—

Q (d

(4.42)

t 1
X~ log —logC

~

—BC dy
P.P.o (P) P pL P

(4.33) = —K'y(p)i p„exp[ipxxx] = —K'ko„(x). (4.43)

K 1
(1—6y') log +finite terms .

327r2 PMQ

Thus for terms in the integrand of K„„'(p),
(4.34)

P„P„=—kk'5„„. (4.44)
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K„,'(p) can be integrated by the same method as K(p).
Introducing the variables a, b, and Q and integrating
over

Now

(r) or(x)/i)x„) =Qik„ooi+&(k) exp[i(k„x„—koxo) j
1

K»'(p) = I da~ db
32m' ~

and
+ik, q

&
—

&(k) exp[i(k„x„+koxo)$, (4.55)

ab «(b)
—«(a+ l&)

)(exp o(a+b)Ko + l p«'
a+ b (a+ b)'-'

X b„+- p&,
'-—«'-

(a+ b) (a+ b)

p.p.— , (445!
(a+ b)'

Introducing variables y and «o and eliminating p«by
(4.9) and (4.44)

(«& io(x)/c&x&) =P—ko ioi+& (k) exp[i (k„x„kpx—p)]
Thus

+hot' '(k) exp[i(k„xr+koxo)] (4..56)

So that the g self-energy of the scalar meson can also be
written in the form

X»' ——2&o, «{q'(x) j,.
The Schrodinger Eq. (3.4) can now be written

(4.58)

{oo„'(x)I,=P (k„'-—kp')oo'-'(k)oo'+&(k)

= —«'{p'(x) I i. (4.57)

«- (1 $o r+' —4ip'
K„„'(x)= —

{
—

{ b„, (~ dy —4p'+1 —y"- where

and

ihcb%/ho= {'X,'(io)+X '(q) I%',

X„'(oo)= 2(«,+ xo) «q'(x),

(4.59)

(4.60)

&& ~) doo exp ip&{ 1— {, (4.46) X.( ) X 8(~)+X s( )4~' &-
+Xo'(oo)+X4'(o) —X '(oo) (4 61)

which can be evaluated like (4.30) with

In this case A —BC=0, giving the finite result

(4.47)

The field variable q of which the various expressions
X(y) are functions, satisfies the equation of motion
of the free meson field determined by the Hamil-
tonian (1.30). To obtain an equation from which the
self-energies X („) have been eliminated make the
transformation

X»'(*)= —2(«./«) {o.'(x) I i

xvhere

(4 50) where

+(o) = Uo(o)4 (o),

ihcbUo/brr=X '(rr&) Up

ihcN'/bo=X, '(o)4,o

q =Uo 'q&'0.

(4.62)

(4.63)

(4.64)

(4.65)

(4.51) Define R«(o) by the equation

ihcbR„/bo =Xi„,'(vr, )R„, (4.66)

o (x) =P o &+'(k) exp[i(k„i „—k,x,)]

where
k =(k '+«"-)~. (4.53)

+ oo(
—

&(k) exp[i(k, x„+koxo)j, (4.52)

X&„,'(or, ) being given by (1.30). The variables oo can
be regarded as the Heisenberg variables of the free field
and E„is the transformation which takes them into the
Schrodinger variables of the free fieM by the relation

{ o'(x)Ii=2 o' '(k)o' '(k) (4.54)

Consider {oo'(x)Ii as an expression in terms of oo(k).
Since it is a term in an energy density, only terms with
zero exponential in the space variables need be in-
cluded. Also {oP(x) {i operates on one meson which must
be annihilated and subsequently recreated by the two
operators oo(x). Thus the exponential in the time factor
Is also ze10 and

where
p= V '(p, V,

V=R„Z p.

By (4.63), (4.66), and (4.69),

ihcbV/bo=Xr„, '(or, ) V+RP&, (oo) Uo

= {Xr-.'(o .)+X-'(o *)) V

(4.67)

(4.68)

(4.69)

(4.70)
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Thus by (4.68), p satisf'ies the equation of motion deter-

mined by the Hamiltonian X&„,'+X '. But by (4.60)
and (1.30) this is equal to Xi...' with x replaced by
x+ Ki+ Kp. Tllils 'the 6eld variable of Eq. (4.64) from
which the meson self-energy terms have been eliminated
satisfies the equation of motion of the free meson field
with the renormalized mass x+xi+xp (Ki, K2 small).
This is only a formal renormalization since I(:~ is given
infinite by the theory. The renormalized mass is put
equal to the observed mass since it is the "bare" particle
plus the vacuum e6ects which is actually observed.

The vector meson f self-energy arises from

Thus

}c1)- 8 1
K "(a)=—

~

—
~
8»„——log +2 ~~ (1—y"-}

32}2~) 3

1—y'-'y 4
Xlog~ 1— —~dy+8}i-"—— (4 79).

t 4p' ) 3

alld

1
—log +f. i.

167r 3 QMO

(4.80)

(~'f'~ p
—1~ 1 1

(x) = rp»(x)
~ ) ] ~

log +f. t. . (4.81)
&4prfic) E 4m. ) 3 ypip

&( I pp„(x), p„(x') I ip(o. , o.')der' (4.71) Hence
Xip"'(x) =2c~pI p„'-(x'}I„ (4.82)

=
I p.(x), V»"(x) I i, (4.72)

where

g, "(x)= (—i/8&c') J' (Lf.(. ), i (- ') 3)o

X pp„(x') p(x —x') dpp'

= (f'/hc)
J

K„„"'(x—x') p, (x'}d(o'. (4.73)

Kp= K( [ ( )

—log +f. t. . (4.83)
(4prhc) (47r ) 3

In the particular case when I(:=0 the only non-zero
term in Xip"(x) comes from the term 8p' in the square
bracket of (4.79). Then

zpP(1 )
KP P K Ofay

4 } 2x)

K„,"(x) is the same expression as occurred in (4.41) in

the scalar g self-energy. As for (4.8),

which leads to

, }' f' &1-
Xip" (x) = xp'~

~

—
I q, '(x}I i.

&4prfic) 2m.
(4.84)

n, '(x) = (f'/&c)K, ."(p) p .(x).

From the supplementary condition

(4.74)
This is the finite value for the photon self-energy
obtained by Kentzel. '

The strongest singularities of the 5-functions are
(8 q „/c}x„)+=0, ip„(p„(p) exp[ipixi)4 = 0 (4.75.)

Thus, in this case, for the terms in the integrand of
K""(p)

(4.76)

This relation replaces (4.44) in the scalar g case. Equa-
tion (4.45) is still valid. Introducing the variables y and
oi and eliminating p&, by (4.9) and (4.76),

~+i — 4ip2
K.„„(.) =—

~

—
( ~„„dy —4p-' —1+ y-'

64} 2pr) J i co

y, t dpi exp pp~~ 1—
I

. (4.i/)
J tp„( . E 4ii')

This integral is of the sts, ndard form (4.30) with

Z(x) = (—1/4x) b(x„')+, (4.85)

5&'&(x) = (—1/2xx ')+ (4.86)

Thus the integral of a product Z(x)A&'&(x) through the
origin is not regular and will give different values for
diGerent methods of integration. For unobservable
effects such as meson self-energies, which are to be
transformed away, only the form of the expression is
really significant. However, for observable eGects some
precise definition of the integrals is necessary. The vec-
tor meson f self-energy is an observable effect when
~=0, since it then reduces to the photon self-energy
which must be zero. Pauli' has proposed a procedure
for regularizing the integrals which will be given here
in some detail.

It can be shown that both Z(x) and 6&'&(x) are func-
tions of ~'x„' so that a regular function K can be ob-
tained from K(~'x»') defined by

3 = —I+y'-' —4p' 8= —4p, "-

C= 1—('1 —y')/4p"-. (4.78)
K=

J
p(cx}K(clx )ljcl,

0

(4.87)
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where

and

p(n)da=O.
~0

np(a)da=0. (4.89)

1 1 I+'
K„„(p)=— —

I dy t dzp(s)
32 2 If

By symmetrizing with respect to u and b and intro-
ducing the variables y and s

(4.88)

Also
l (n)=b(n- «")+c I(n), (4.90)

d R(s)
X

ds
exp —(1—y'-') p«"-.-

n~

(pl(a)/n) dn =0. (4.91)

and pI(n) =0 for finite n and p, (n) is such that in the
limit

R(=)
+ p (P«'b, .—p,p.) (1—y')—

l 2

Xexp =(1—y')P«'sIf p(n) is expressed in terms of discreet masses

pI(n) =P C;5(n «P)-. (4 92)
1 1 t+' t" (—dp(s)q

(4.93)1++C;=0,

«'-+Q C;K'=0.
and

(4.94)
R(z)

X i exp -(1—y')p«'z
zt 4

R(s)
+l ( )(P 'b, .-p,p.)(1-.'-')-

1
X exp —(1—y')P«'s . (4.100)

By (2.49) the first term is

—2i(R(s)(s), p
———2R'(0).

This is zero by (4.97). Thus
(4»)R(x) =

) p(n) expLpnx]dn,
1 1 '

p(=) t
+I

K„„(p)=—— ds R(z) dy(1 —y')
32 4Ir'-'~ „swhere by (4.88) and (4.89),

The regularization of the matrix element for any
effect can thus be regarded as subtracting the matrix
element for the same eGect due to an interaction with
similar particles with masses corresponding to A:; and
weight factors C; and in the final limit letting the masses
of the subsidiary particles tend to infinity. The pro-
cedure is thus a generalization of the ideas of Podolsky"
and Feynman. " In this case, however, the subsidiary
fields are introduced purely as a mathematical device
with no suggestion of physical reality.

To regularize a term e xp[i x«'p] in «„„ it must be
replaced by

Also

R(0) =0,

R'(0) =0.

R'(x) =
)j inp(n) expLinx]dn

(4.96)

(4.97)

(4 98)

Xexp —(1—v'-) p«'-." (b„.pg' p„p.)-—
4

1 1
(b"P" P.p )R(p~')—

32 4m'
(4.101)

Thus a terlll Kp" exP[ix«p ] occurring in K„, is regular-
ized by replacing it by —iR'(x). Applying this procedure
to (4.45) gives

1 t p p(a) p(a+b) ab
K„„(p)= ' da ~~ db exp sP),'

32m & & (a+b)' . a+b

ab
X b„, )

— + p.'- (R(+b)
I a+b (a+b)-' J

2ab
+iR'(a+b) p,p„R(a+b)—. (4.99)

(a+ b)'

' F. Podolsky, Rev. Mod. Phys. 20, 40 (1948).
'I R.. P. Feynman, Phys. Rev. 74, 1430 I',1948).

f'1
= ———

~

—
~
.'R( —")p„(x).

hc 32 (2IrJ
(4.103)

This is zero in the photon case («=0) as required and is
infinite in the meson case (KWO).

Taking the regularized form of K„„(p) by (4.9)
and (4.44)

Il, '(x) =0. (4.104)

Thus the regularized scalar meson g self-energy is

f'1 (1~'
It "'(x)= p„(x)——

i
—

i
(b „Pg' P„P„)F(p«P) (4.102)—

jic 32 E2Ir)
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zero. The scalar meson f self-energy and the vector
meson g self-energy remain infinite with or without
regularization, unless extra conditions are imposed.

The vector meson g self-energy is given by

3&'.g«"'(x) = ( i/—Shc«')) ([m„„(x),m, (x') j)0

X {q,„(x), q,.(x') }&e(x—x')des' (4.105)

Introducing &g and substituting for p« from (4.9),
(4.108), and (4.109)

«' (1 )2 &.+'
K...«'(«) = ——

{
—

} ~l dy(4g'+1 —y')
64 t.2xi

I'

X
~

d~ exp i~{ 1-
4p' i

where

= {q "("),n"'(x) }&,

= (g' kc «') K„„.,"'(p) q „(x).

g„„"(x)= (—i/Skc«'-))" ([m„„(x),m. „(x')j)o

X q,.(x') e(x—x')da&'

= (g'/kc «'-) "K„„.,"(x—x') q „.(x')der'

(4.106)

(4.107)

X (5,„8 .—&1 „b„). (4.114)

This is of the sta, ndard form (4.30) with

.4=4/'+1 —y' 8=0, C=1—(1—y')/4«&' (4.115)

and yields

1
K„, ,"(p) = (3+2@') log +f. t

32 QMp

X(8p„5,—8 „8«„). (4.116)
For factors in the integrand of «„„,"(p), Eq. (4.9) is

stiH valid and in place of (4.44),
Thus

( g"-
& (11

n„'(x)= —
{ }{—} («+2u')»g +f. t.
44m. hci «Seri y&00

(4.108)p p„= —«'8 „.

X(q "(*)—q "(*)), (4117)
(4 109) and

Also from the supplementary condition, in the integrand
of «„„„"(p)effectively

From (2.37),

K„..."'(x) = b, „K.„'(x)—5,„K.,'(x)+ b.„K,„'(x) where

3&'»"(x) = —2(«/«) {(q "(x)—q "(x))'}~ (4 118)

—8 „Kp„'(x)+(8p„6 „—6 „8,„)K(x), (4.110)

where K(x) is de6ned in (4.10) and, with the notation
(2.34),

I' g' I&r11 1
«=«{ I]

—
} (1+2~')»g +f t (41»)

(4~kci t.gxi

Now
r „„'(x)=so„&»(x)So„(x)+so„&»(x)Zo„(x). (4.111)

By the usual method

~+)
K.„„'(p)=—'

dy I dz~(z)
64x2

q„(x)=P q„(k) exp[ik„x„7

As in the case of (4.57)

{q. '(x) }&=Z k'q. & '(k) q. '+'(k)

(4.120)

Xezp ~z{ «o2+ p«

and from (4.26),

E'b„„1—y'-

X — p„p„, (4.112)
2$

= —«'{ q „'(x)}&. (4.121)
Similarly

{q "(x)q "(x)}&=2 4k. {q. '+'(k) q. ' '(k)

+ q. ' '(k) q.'+'(k) } (4 122)

But by the supplementary condition

+],

K(p)=- lt dy I" d.~(z)
64m' ~ Thus

k„y„&+'(k)=0, and k„q „& '(k) =0. (4.123)

y2

Xexp izl «0'+ p )
2~ « ' (1—q-')

X ———— p«2 . (4.113)
4z

{(q"(x)—q "(x))'}&

=2{q „„'(x)—q„„(x)q„„(x)},= —2«'{q„'(x) },. (4.124)

By a similar argument it can be shown that

«'2{ qt 2(x)},= «2{/ '(x) &,+ &P{2l~(x)} (4 125)
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which is of the form of the mass dependent terms in The last equation defines Kz(x —x ). As for (4.8)
Xzgpp (x) by (1 58) Define

tz(x)=if' (*)Kz( ).
Xp (x) 2 (K ) K IPp (x) (4 126) Since p ( ) ss t jsfies the D jrac Fq (1 1 8)

(5.6)

Then by replacing the label s by the label e in the deriva-
tion of (4.64), the wave equation can be transformed
into

ihcb%'/bo =X,"(y„)+, (4.127)

which is free from the inanities due to meson seH-

energies and in which the meson field variables satisfy
the equations of motion of the free 6eld with renormal-
ized mass, ~+ fats+ ~4.

The cross terms which arise from Xp'(x) and Xz'(x)
have not yet been considered. These give rise to the fg
meson self-energy through Xzz'(x) and Xzz"(x). From
(2.38) it follows immediately that Xzp'(x) is zero. It can
be shown after a short calculation using the properties
of the A-functions, (2.6), and (2.39) that Xzz"(x) is
also zero.

V. THE NUCLEON SELF-ENERGIES

The nucleon f self-energy caused by interaction with
scalar mesons is the one-nucleon part of Xz p'(x) which
is given by (3.5), (3.10) and the discussion following
these equations.

Xf,,'(x) = (—i/8c')

X t Epz(x) pz(x')]6&" (x—x')p(x —x')dhp'
J

Z rpPp= KP, (5.7)

2
ff

2
x 0 ~

Kz(&) = y~E~(&)~ ~p"'(k)+~"'(5)~p«(&)]

K'E—~(&)~o'"(f)+~'"(()~o(l) 3 (5 )

Substituting for 5 and 3'" from (4.11) and (4.12),

~(qK'+ Kp')( 1
K (p)=} —

} i"d q
- (PK

—
qz )'+ ~'

b((PK —
qz, )'+ K')

+ —(iy«q« «p) —. (5.10)
Ift), + KP

This can be evaluated by the transformations (4.15),
(4.16) (4.18), and (4.23) used for the meson self-energy.
Eliminating p«by (5.7) and (5.8),

t-+'
K, (KII) = dy(3 —y) I dzp

64m' ~ z ~ }zP[

}f'11y$ '
&&exp izd

} } + . (5.11)
2 ) 2z-'

Expanding the S-functions, it follows from (5.5) with
the notation (2.34) that

By (2.31 and (2.45)

X D(x—x')dpp'. (5.1)

—(1/4c'-') l I zp(x), cp(x') } z

No'5
1 d

(3—y) =——(7—y) (1+l ).
2 dp

Integrating (5.11) by parts,

(5.12)

X~-'(x) = (f'/8) I EW(x) 5'"(x—x') 0 (x')]~(x—x')
Kz(«p) =— I'p p cosa@

6 — d(d
32 pl" ~ p pz

where

+Ek(x) ~(x—x') 4 (x')3~"'(x—x')

+EIP(x')5&" (x—x'), IP(x)]z(x—x')

+EIP(x')8(x' —x), IP(x)]A"'(x—x') }dQI' (5.2)

= 4EW(x), 1z(x)3+Et z(x), 0(x)j,

t-+I (7 y) (1+y) I (1—+y) zI'-' —1 }+, — —dy (5.13)
(1+y)'-zz'-+ 1—

y

p

6 log +f. t.
327l P4)p

(5.14)

since the integrand in the second integral in (5.13) is
finite. Thus

t
f" i 3 1

j z(x) = —hc«p} —}
—log +f. t. IP(x) (5.15)

&4zrhc) 8zr yzpp

+8(x—x')5'"(x—x') }IP(x')dpp' (5.4)
where

= —hc«p'"IP(~1 (5.16)

f'Jl Kz (x x') IP(x') dpp
-''— (5.5)

f'-'
y

-3 1
—

}
—log—+ f. t. . (5.17)

E47I hc& Sm ycop
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This term can be eliminated from the Schrodinger
Eq. (3.4) by the same transformation as was used for
the meson self-energies, (4.62) and (4.63), with X„'(x)
replaced by XI.,'(x). By the same argument as that
which lead to (4.70) the new field variable P will satisfy
the equation of motion determined by the Hamiltonian
Xi...(x)+X~„(x).But the mass terms in Xi„,(x) are

k&«p(4(x) 4(x) —0(x)4(x)),

as can be seen from the Lagrangian (1.16). Thus the
new field variables will satisfy the equation of the free
field with the renormalized mass Ko+ Kot".

The nucleon g self-energy due to scalar mesons is the
one particle part of Xp..'(x)+X4'(x) which was derived
in (3.13).The required commutators are given by (2.31)
and (2.45). A calculation similar to that outlined above,
complicated slightly by the additional y„ factors, gives

X„.'(x) = —,'«~p&" g (x)P(x) —P(x)g (x)), (5.19)

where Kf)" is finite and remains finite in the limit p,—4
that is, when the meson mass becomes infinite. The
scalar fg nucleon self-energy can be shown to be zero
by a similar calculation.

The vector f nucleon self-energy is the one-nucleon
part of Xip"(x)+X4i"'(x) which was derived in (3.21).
This splits into two parts, one containing pure 6-func-
tions and the other containing double diA'erentials of
6-functions. The latter is identical with the scalar g
nucleon self-energy which is finite. Thus the infinity is
contained in the first part. Substituting for the com-
mutators from (2.31) and (2.45) and evaluating as
above,

,1C;„,"'(x)= —,'«i~, &'&(P(a)P(x) —P(x)P(x)), (5.20)

where

~P &-3
Np"' ——~p~ (

—log +f. t. .
&4xhc) 4pr ycpp

(5.21)

It is important that Ko~" and Ko(3) differ in their in-
6nite term only by a factor —-', so that 2KO&')+K0~3) is
finite. This is the basis of the Pais f-field theory' in
which a finite electron self-energy is obtained by adding
a scalar meson field to the photon field with the coupling
constant,

(5.22)

Also, since the infinite part of Ko " is independent of K

and the finite part remains finite when K~~, a finite
electron self-energy is obtained by subtracting a vector
meson fit.'M with coupling constant

=e. (5.23)

This is the basis of the theories of Podolskym and

Thus by (5.3)

&i,.'(x) = 2»'Kp"'(4(x)4(x) —4(x)lt(x)) (5 18)

where

Xf.-'(x) = p««'"(0(x)4(*)—4(x)k(x)), (5 25)

t' g
'pi4i='pI

I I
8+—

I log +f. t, (5.26)
(4' ki.c) 47'- E p') y~o

tfgi
~p'" ———

vp~
~

log +f. t. . (5.27)
k 4pr«) 2xp y&pp

All the nucleon self-energies are of the same form as
(5.18) and can be eliminated from the Schrodinger
Eqs. (3.4) or (3.14) by transformations of the type
described in the discussion following Eq. (5.18). The
new nucleon field variable, P(x), will satisfy the equa-
tion of motion of the free fieM with renormalized mass,
in the scalar case,

Ko= Ko+ Ko + Ko (5.28)

and in the vector case

Ko = K()+ Ko(~)+ Ko(4)+ Ko&~). (5.29)

These are equated to the experimental mass.
The transformations for eliminating the meson self-

energies and the nucleon self-energies are independent.
If X„'(x) is defined by

X.'(x) =XI.,'(x)+X„,'(x), (5.30)

and both transformations are performed, the Schrod-
inger equation for the transformed state vector,
+(0), is

where

'here/S~(i) =X (x)e(.),

X'(x) =X '(x) —X '(x)

(5.31)

(5.32)

X,'(x) is defined by (4.61). The matrix elements of
X'(x) are free from infinites. X' is a function of the
transformed variable &p(x) and P(x), each of which
satisfies its respective free-held equation with renormal-
ized mass. A similar equation can be obtained in the
vector case. Since all the integrals for the mass re-
normalizations are independent of the choice of e„, this
is an invariant result. The transformations do not alter
the form of the supplementary condition.

Feynman. "DifFiculties arise over the interpretation of
the meson field if it is regarded as having any physical
reality since the theory necessarily involves either nega-
tive energies or negative "probabilities. "

The vector g and fg nucleon self-energies, given by
the one-nucleon parts of X»'(x)+Xpp"(x), (3.24), and
X»"(x), respectively, are

Xp.„"(x)= -', «Kp&'& (P(x)P(x) —P(x)P(x)), (5.24)



1674 P. T. MATTHEWS

VL THE YUKAWA POTENTIALS

One real effect which of course has not been elimi-
nated from (5.31) is the Yukawa potentials between
nucleons. These have been known for many years but
it is of interest that the derivation of the expression
for the potential in con6guration space from the inter-
action operator in 6eld theory, which has previously
been rather awkward, is very neat when the theory is
developed in this Schwinger form.

The f scalar nucleon interaction is the two-nucleon

part of Ktz'(x) (5.1). Since, by (2.31), [to(x), to(x')] is a
one-nucleon operator, only the second term need be
considered.

IIlut'2

( 1 p
'

t exp[ik x—x']
d3k

I 2orJ J lkl'+tt'

1 exp[-.,lx-x'll
=~(l x—x'l), (6.V)

4tr
l
x—x'l

and

4'( )0(*)0( )4'(*)=P(*)k*(*) V(*)ttt'(*) (6 g)

where ye operates on P(x) and y, ' on P(x'). Thus

SC„., (x)

= —(1/4c'))" {eo(x), to(x') I za(x —x')dto'. (6.1)

~i -~'(x) =(f'/2)~ 0'(x)P(x')v4veV(x)4(x')

XJ(l x—x'
l )d'x'. (6.9)

Now to(x) can be expressed as

oo(x) =fcP(x)P(x)+c. number.
Thus

(6.2)

= (f'/2) 4 (*)4(x')0 (x)4(x')

XZ(x —x')dco'. (6.4)

In the second equation a one-nucleon term has been
dropped. Substituting for A(x —x') from (2.56),

'(t)x= (f'/4) —{0(x)4(x) 0(x')4(x') l 2
4

X D(x—x')dto' (6.3)

This 6eld theory operator expresses the interaction
between nucleons in terms of annihilation and creation
operators. The Yukawa potential in configuration space
is that from which XI; &'(x) can be derived by the
process of second quantization. If V(x—x') is the
Yukawa potential then

3Ct;,t(x)d'x

1
"P*(x)P*(x')V(x—x')P(x)P(x')d'xd'x'. (6.10)

Thus by (6.9)
f't'I)' 1, ,X,;., (x)=—

l

—
l ) dx')"du

2 (2n)
Vf'(x —x') =f r& r&'I(

l
x—x'

l ), (6.11)

&,'+ ~0"

which agrees with result given by Kemmer. " The g
exp[zko'xe xo ] scalar and the f and g vector potentials can be derived

similarly. Exchange effects have been neglected.

If recoil is neglected, P(x')P(x') is independent of xo'

and the integration over xo and ko can be performed

~t;„,'(x) =—
l

—
l

~~ d'x', d'u
2 E2n& &
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