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sections. The elastic collision cross section for hydrogen
used in this theory is probably correct within j.0 per-
cent. Calculations of the theory indicated that this will

not introduce more than 2 or 3 percent error in electric
6elds. The excitation and ionization eSciencies are very
dificult to measure and the experimental error in the
best measurements in hydrogen may be as high as 20
percent. These introduce an error of approximately 14
percent in the theoretical electric fields. These effects
combine to give a possible error of 16 percent in theo-
retical 6elds and indicate a need for more precise colli-
sion cross-section measurements. The maximum error
in the experimental electric 6elds in the 10-cm wave-

length region is 5 percent and in pressure is 1 percent.
The derivation of the equation for the distribution
function implicitly assumed that each electron dropped
back to zero energy after an inelastic collision. Since
excitation takes place over a certain range of energy,
this is not exactly correct, but the error which it in-
troduces is small.

Equation (29), calculated from kinetic theory and
using no gas discharge data other than collision cross-
section measurements and involving no adjustable con-
stants, predicts breakdown electric 6elds well within
the limits of accuracy over a large range of pressure,
container size and frequency.
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The theory of the directional correlation of successive nuclear gamma-rays is extended to include transi-
tions in which mixtures of multipoles are present. For such cases interference effects can radically modify
the angular correlation from what is predicted in the usual theory assuming pure multipole transitions.
Correlation functions are tabulated for all possible cascade emissions in which one of the transitions is a
mixture of magnetic dipole and electric quadrupole and the other either dipole or quadrupole. It is shown
that the experimental data on Srs' which had previously seemed anomalous can be consistently interpreted
with the mixture theory developed here, but the agreement with the observed angular correlation in Pd'~ is
not possible if the highest gamma-multipole order is assumed to be quadrupole.

I. INTRODUCTION

HE theory of the directional correlation of suc-
cessive nuclear y-rays has been treated in detail

by Hamilton' and Goertzel. ' Hamilton has given the
basic quantum mechanical theory and has put the re-
sults of his calculations in a form which can be com-
pared with experiment whenever the multipole orders
of the radiation are dipole or quadrupole. (The dis-
tinction between the electric or magnetic character of
the multipole radiation can be made in an angular cor-
relation experiment only if the polarization of one or
both of the y-rays is specified. )"The conditions which
must be ful6lled in order that Hamilton's theory and
tables can be validly applied are:

(1) That the natural line width of the intermediate nuclear
state be much larger than the hyper6ne splitting of that state„and

(2) that the respective y-transitions each correspond to pure
multipole radiation.

*Now at the University of Kansas, Lawrence, Kansas.
t Now at the University of Notre Dame, South Bend, Indiana.
' D. R. Hamilton, Phys. Rev. 58, 122 (1940).' G. Goertzel, Phys. Rev. 70, 897 (1946).' D. L. Faiko8, Phys. Rev. 73, 518 (1948).' D. R. Hamilton, Phys. Rev. 74, 782 (1948).

Goertzel has extended the theory to the case when (1)
is not satis6ed due to the presence of internal atomic
fields or an externally applied magnetic 6eld. However,
he still retains assumption (2).

In view of the absence of any detailed knowledge
of the wave functions and hence charge and current
distributions for nuclear states, assumption (2) proves
to be particularly convenient for angular correlation
calculations since it can then be shown that the correla-
tion function W(8) is independent of the intensities of
the respective y-rays. In fact, it is then possible (as is
done in reference 1) to tabulate W(8) wholly in terms
of "rotational information" such as the spins of the
nuclear states involved and the known angular distri-
butions of the energy radiated for the given multipole
orders of the p-rays. However, comparison of theory
with experiment' 7 shows good agreement in several
cases, but poor agreement in others, notably for Pd'"
and Sr". In these experiments condition (1) is satisfied

' E. L. Brady and M. Deutsch, Phys. Rev. 72, 870 (1947); 74,
1541 (1948).

s M. Deutsch and F. Metzger, Phys. Rev. 74, 1542 (1948).
7 M. Wiedenbeck, private communication.
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TABLE I.Multipole vector potentials in the gauge &=0. The multipole order corresponding to given L is 2~. There are 2L+1 linearly
independent "submultipoles" (L, 3f), M = —L, —(L—1), ~, L—1, L for each electric or magnetic 2~ pole. All potentials are normalized
to 1/m Ak quanta/sec.

Magnetic multipoles, A {L,, M)
M

A, = RI.(kr) Yl..~(8, q)t. "~'

(LWM)(LCM+1) &

( ) ~~,( )L(L+1)

Electric multipoles, A, (L, M)

L(L+M+1)(L—M+1) &
~~ (L+1)(L—M)(L+M) &

(L+1)(2L+ 1)(2L+3) ' + ' L(2L—1){2L+1)

L(LCM+1)(LCM+2) &

Y @~~, (L+1)(L~M—1)(LWM) &

A +~A„=W (L+1)(2L+1)(2L+3) Ry. {kr)YI, l +'(O' 'P L(2L+1)(2L—1)
RL, l(kr) YL l + (8, q) e- ' '

$ eilrr
xvith Rl, (kr) = H 1+~0){kr)~(—i)~ — —for kr)&1.

{kr)& lr kr

as was tested by observing no change in the angular
correlation with strong applied magnetic field. One is
therefore led to examine the modifications in the theory
which result when assumption (2) is not valid.

The assumption of pure multipole transitions, while
convenient, is otherwise quite arbitrary, for although
the angular momentum and parity selection rules do
limit the possible multipole radiations between two
quantum states, the simultaneous occurrence of two
or more multipole radiations is often consistent with
these selection rules. As an example of such a mixed
transition, magnetic dipole and electric quadrupole
radiation are both possible between states diGering by
0, +1 units of angular momentum and having the same
parity. Moreover, in the case of nuclear y-rays, unlike
atomic optical spectra, electric dipole radiation is often
wholly absent on account of the symmetry of the nu-
clear charge distribution, and higher multipole radia-
tions such as electric quadrupole and magnetic dipole
can occur with comparable intensities. ' "In this paper
we shall treat the theory of the directional correlation
of successive nuclear p-rays when one of the transitions
is mixed, In particular, the tables of reference 1 will be
extended to include all possible W(8) for the case where
one of the transitions is a mixture of electric quadrupole
and magnetic dipole radiation, and the other is either
dipole or quadrupole. It will then be shown that the
experimental data' on Sr"which had previously seemed
anomalous, can be consistently interpreted with the
theory developed here.

II. ON MIXED TRANSITIONS

On first consideration, it might be thought that the
correlation function for successive nuclear y-emissions

' H. A. Bethe, Rev. Mod. Phys. 9, 222 (1937).
'Hulme, Mott, Oppenheimer, and Taylor, Proc. Roy. Soc.

A155, 315 (1936).
'0 A. C. Helmholtz, Phys. Rev. 60, 415 (1941)."M. H. Hebb and E. Nelson, Phys. Rev. 58, 486 (1940).
~E. Segre and A. C. Helmholtz, Rev. Mod. Phys. 21, 271

(1949).

in which the first transition was a mixture of magnetic
dipole and electric quadrupole, say, with respective
intensities (n~' and ~P~', and the second y-ray any
pure 2~-pole, should be simply the weighted sum

~
n

~

'W( )8nI.+ ~ P ~
'W(8) o r, where W(8)o I. is the cor-

relation function for a dipole-2 -pole cascade emission
and W(8) o ~ that for successive quadrupole and
2~-pole y-rays. However, in general this is not the case:
Interference contributions arise from the mixing of the
electric quadrupole and magnetic dipole fields. Such
interference eGects have in fact been observed" for a
single transition in the Zeeman effect for forbidden lines
in the atomic spectra of PbI, and the necessary theory
given by Gerjouy. "In this section we give a resume of
the theory of the interference due to mixtures of multi-
poles in a single transition which will at the same time
serve to introduce the necessary notions and notations
for treating angular correlations with mixtures in
Section III.

(A) Angular Distributions for Multipole Fields

Consider first the classical electromagnetic problem
of finding the angular distribution, i.e., magnitude of
the Poynting vector as a function of angle, for the vari-
ous multipole radiation fields. In general, for any electro-
magnetic field with vector potential Ae '~' one obtains
for the magnitude of the Poynting vector at large dis-
tances from all sources of the field in terms of the
asymptotic form of A:

ck'
n S=—LA A' —(n A)(n A*)]

Sx

where n is a unit vector in the direction S. I'or the elec-
tric and magnetic multipoles, the well-known" spherical

"F.A. Jenkins and S. Mrozowski, Phys. Rev. 60, 225 (1941)."E. Gerjouy, Phys. Rev. 60, 233 (1941). See also Shortley,
Aller, Baker, and Menzel, Astrophys. J. 93, 178 (1941).' W. Heitler, Proc. Camb. Phil. Soc. 32, 112 (1936); W. W.
Hansen, Phys. Rev. 4?, 139 (1935); H. A. Kramers, Physica 10,
261 (1943); G. Goertzel, see reference 2; O. Laporte, Am. J. Phys.
16, 206 {1948).
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n S,."= — [2M2~ I',M ~2

2~r' L(I+1)
+(J. M)(—L+M+1)

i

Yg'»+'i'

It is convenient for later references to dehne the
angular distribution associated with an (LM) pole by:

8~'r'-
I'l. "'(8)= —n Sl.-". (3)

It is then evident that Fr,~(8) is a polynomial of de-

gree L in cos'0 satisfying:

3I(8) —F If (8)—. (3a)

eigenwave solutions of Maxwell's equations, A,(I., M)
and A (L, M) respectively, are listed in Table I.
Inserting these in (1), one obtains for both electric and
magnetic (LM') pole:

if L/L' or M/M' or also if L=L' but one multipole
is electric, the other magnetic. The physical interpreta-
tion of this is that the interference in the radiation
pattern is just a redistribution of the energy radiated;
the total energy radiated is still the same, namely, the
sum of that from each multipole individually. The proof
of (8) follows from the fact that the A(L, M) transform
irreducibly under the three-dimensional rotation group"
and the group theoretic theorem" that two functions
transforming according to diferent irreducible repre-
sentations of a group are orthogonal.

For the case of most interest in nuclear transitions,
a mixture of an (L, M) electric 2~ pole and (L 1, M—)
magnetic 2~ ' pole (the M's must be the same because
of the magnetic quantum number selection rule), (7)
and (3) yield for the interference contribution to the
angular distribution:

((2L+1) (L+M)(L M) ) '—
FL r, y (8)= 4w~

( (2L—1) L'(L' 1)—
X [2M [

I'. ,",~ "-+ (L—M —1) (
I, ,"+')'

F~"(8)dQ=Sx, independent of M, (3b) -(I+M-1)
I
&'~-~" 'I'j (9)

F "(8) independent of g,

This interference term is a polynomial of degree
(3c) (L—1) in cos'8 having the properties:

I'g" (0) =0 unless M= ~i.
I Fr„ I, y (8)d0=0,

J

F M (8) F —.» (8)

(9a)

(9b)
In particular (3) yields for electric or magnetic dipole
radiation:

FP(8) =3(1—cos'8),
I: ~'(8) =3/2(1+cos'8)

and for electric or magnetic quadrupole:

F2'(8) = (5/2) (6 cos'8 —6 cos48)
F2~'(8) = (5/2) (1—3 cos'8+4 cos48)

F~ '-(8) = (5/2) (1—cos48).
(5)

Consider now the radiation field from a charge dis-
tribution which gives rise to two multipole fields, say
A(L, M) and A(L', M'), with respective complex am-
plitudes n and p. Inserting A= nA(L, M)+pA(L', M')
in (1), the resultant angular distribution is found to be:

M+
( p ~

an. S,M'

+[~p*n S„'»-»'+~.c.] (6)

where n SI.J." -' '
is the interference term due to the

mixing of the two multipoles:

n Sr, l.."»' (ck'/8s)A(L M) A~(-L', M——'). (7)

Without recourse to the explicit functional form of
the A(L, M) in Table I, it is possible to state that

n S r. L'» " d Q = 0,

2

FIG. 1. Gain in the forward (8=0) direction for a classical mix-
ture of magnetic dipole and electric quadrupole radiation. as a
function of the mixture amplitude ratio ~P/n~ and phase di6er-
ence, B.

'6 See H. A. Kramers, reference 15, and G. Goertzel, reference 2.
Also H. C. Brinkman, Zur Quantenmechanik der Multipolstrah-
lung, 1932."See E. Wigner, Gruppentheorie I', 1931),p. 124.
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Fz., z z (8)=—0,

Fz„z i (8)=0.
zM'=—(L—I)

(9d)

takes as the vector potential:

( JmILMI'J ~)A(L, M)

where (0JzzzlLMI O'J'm') is the matrix element for the
transition. This matrix element can always be written
in the form!20

In particular for a mixture of electric quadrupole
and magnetic dipole, the only non-zero interference
angular distributions will be:

F2, P'(8) = & (15&/2) (3 cos'8 —1) (10)

and the total angular distributions (6) for such a mix-

ture, with M= ~1 take the form:

F~'(8) =3/2
I nl '(1+cos'8)
+5/2

I P I'(1—3 cos'8+4 cos48)

aR(nP*) (15)&(3 cos'8 —1) (11)

where zz and P are the amplitudes of the magnetic di-

pole and electric quadrupole 6elds respectively.
To show the eGect of the interference term in this

purely classical angular distribution, we have plotted
in I ig. 1 the gain in the 8=0 direction as a function of
the magnitude IP/al and phase 8=argP/a of the
mixture amplitude ratio for the angular distribution
(11) with M= —1. (We define the gaizz" in a given
direction as the ratio of the intensity in that direction
to the average intensity over all directions). It is evi-

dent from Fig. 1 that interference can radically change
the directional pattern for the radiating system from
what one would have for pure dipole, pure quadrupole,
or for an arbitrarily weighted mixture with no inter-
ference: 6=90'. Indeed for pure dipole or quadrupole
fields, the gain would be 3/2 or 5/2 respectively, but
when these are superposed with di6erent phases and
amplitudes, the gain can vary continuously between
0 and 4.

(3) Quantum Mechanical Intensities

The quantum mechanical intensities for radiative
transitions are most easily obtained by the corre-
spondence theory method" of replacing the classical
6eld amplitudes by appropriate quantum mechanical
matrix elements. Thus the probability for emission
of an (IM) pole y-quantum with direction lr(8, y)
in a transition between magnetic sublevels m and m'

of two degenerate nuclear states denoted by their
quantum numbers 0Jzzz and o'J'zzz' (where o, 0' denote
all other quantum numbers than those for the total
angular momentum J and its s-component m) can be
gotten from the classical formula (1) provided one

Ig See J. C. Slater, Microwave Transmission (McGraw-Hill
Book Company, Inc., New York, 1942), p. 225. We depart from
conventional usage in evaluating the gain for e=0 even though
this is not in general the direction of maximum intensity when
mixtures are involved. However, this is more convenient for
the angular correlation application."E.U. Condon and G. H. Shortley, Theory of Atomic Speclra
{Cambridge University Press, London, 1935), Ch. IV.

(oJzzzlLM
I

0J'm') = (oJl LI O' J')( JzllLM
I
J'm') (13)

The matrix element (Jziz
I
LM

I
J'm') = (JL—J'm'I JLzzzM)

is the (real) transformation coefficient2i for the vector
addition of angular momenta: J+L= J', rn+M=zzz',
and depends only on the quantum numbers J, J', I., m,
zzz'M. The matrix element (crJILI &r'J') is independent
of m and m' and hence the same for each component of
a line. In general it will depend on the explicit form of
the unknown nuclear wave functions.

From (12) and (1) one gets that the intensity of the
radiation in the direction 8 for an (LM) pole y-emis-
sion between states o-Jm and 0.'J'm' is proportional to:

I (~J I
L

I
~'J') I'(J~

I
LM

I

J'~')'F'"(~), (14)

so that the relative intensities of the components of the
line which diGer in initial and final sublevels m and m'

are determined by:

(Jm
I
LM

I
J'zzz')'F z~(8). (15)

On account of the degeneracy of the initia1. and final
states, it is necessary to sum (14) over all initial and
hnal magnetic sublevels, m and m', consistent with the
selection rule m'=m+M, to get the total intensity in
the direction 8. Using the group theoretic relations

2J'+1
g (Jml LM

I
J'm')(Jzzzl L'M

I
J'm') = 8z, z, ' (16)

m 2L+1

and (3c), one verifies that the intensity in any direction
due to the sum of all components of the line is inde-
pendent of 8. Another isotropy requirement, following
from (14), (16), and (3a) is that the probability for a
transition terminating in any sublevel m' of the anal
state is the same for each m' provided one averages
over-all directions of emission of the p-ray. If, however,
one does not average over 8 but rather specifms the
direction of emission, then even though the initial
sublevels m are assumed equally populated, the Anal

sublevels m' will not in general have equal probabilities
to be occupied.

Consider now a transition between the same two
degenerate states with emission of a mixture of 2 ~(L, M')

~' See C. Eckart, Rev. Mod. Phys. 2, 305 (1930).Also E.Wigner,
reference 17, p. 264.

"See Condon and Shortley, reference 19, pp. 73—78, or %'igner,
reference 17, p. 206.

~This theorem has been used by H. B. Casimir, Archives
du Musie Teyler, Series III, Vm, 274 (1936), to show that the
total probability for internal conversion in a 6eld which is a
superposition of two multipole 6elds is the sum of the probabilities
due to each separately. For a formal proof of (16) see G. Breit and
B.T. Darling, Phys. Rev. 71, 405 (1947).
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T~r.E II. Q and E. for dipole-mixture correlation.

aj=O

Q=13J[aI'+(5j21)(55J—6) [PI'+(2/3)(15J(J+2)}&Re(aP*)

R =J [ n [
s+ (5/7}{J+6) [ P [

s —2 (15J{J+2))

&Re�

(aP *)

Q= J(14J+13)[ u
I
'+ (5j21)(58J'+ 67J—6) [ P ['—(2/3) (15J{J+2))&(2J—1)Re(aP*)

R= —J{2J—1) [a['—(5/7){J+6)(2J—1) [P['+2(15J(J+2))&{2J—1)Re(aP*)

Q=(26J'+67J+40) [a['+(5/21)(110J'+269J+174) [P[s+(2/3)(15J(J+2))&(2J—1)Re(uP*)
aj= —1

R=J(2J—1) [a['+(5/7)(J+6)(2J —1) [P[s—2(15J(J+2))&(2J—1)Re{aP*)

zj=O

~J= —1, aj=O

Q= (2J—1)(14J+1)[a ['+{5/7){36J'—20J+5) [P ['—2(5(2J—1)(2J+3)}&Re(uP*)

R= —(2J—1)(2J+3) [
a ['+ (5j7)(2J+5) (2J—3) [ P ['+6(5{2J—1)(2J+3))&Re(aP*)

Q= (12J'+12J+1}In['+(5/7)(20js+20J —5) [P Is+2(5(2J—1)(2J+3))&Re(aP*)

R=(2J—1}(2J+3)[a['—(5/7)(2J —3)(2J+5) [P I
—6(5(2J—1)(2J+3))&Re(aP*)

Q= (2J+3)(14J+13) I u I'+(5/7)(36J'+92J+61)
I
P[s—2(5(2J—1)(2J+3))&Re{uP*)

R= —(2J—1)(2J+3)fa f'+(5/7)(2J —3)(2J+5)
I
P['+6(5(2J—1)(2J+3))&Re(aP")

Q= (26J' —15J—1)
I
a ['+ (5j21){110J'—49J+ 15) [P ['—(2/3) (15(J'—1})&{2J+3)Re(aP*)

R= {J+1)(2J+3)I a[s+(5j7)(2J+3)(J—5) [P Is+2{15(js—1))&(2J+3)Re(nP*)

Q= (7+1)(14j+1)[aI'+ (5/21)(58J'+49J —15) [P fs+(2/3){15(js—1))&(2J+3)Re(aP*)

R= —{7+1)(2J+3)
I
a[' —(5/7){2J+3)(J—5) fP[s—2(15(j'—1))&(2J+3)Re(aP*}

Q=13{J+1)[a fs+(5/21)(55J+61) f P I' —(2/3}(15(js—1)}&Re{aP*)

R=(J+1}[u['+{5/7)(J—5) [P['+2{15(J'—1))&Re{uP*)

electric multipole and 2~ '(L—1, M) magnetic multi-
pole radiation. The appropriate vector potential is now .'

A=(aJ[L['J')(Jmf'L/[I[ J'~~')A, (I„M)
+(aJ[L—1[a' J)( Jm[L—1, /l/I[I'm')A„(L i, m). —

Denoting the unknown nuclear matrix elements
(crJ[L[iT'J') and (0J[L, 1[r'J') by n and p—respec-
tively, s' the quantum mechanical analogue of (6) for
the intensity of the component m~m'=m+M in the
direction 0 is of the same form as the classical expres-
sion (6):

~ Strictly speaking, a and p are not the usual multipole matrix
elements but are implicitly de6ned by Kq. (17).Summing over-all
initial and Qnal degenerate sublevels m and m', and over-all direc-
tions of emission, one gets for the total intensity of the line
(using (3b}, (9a) and (16)}:8s(2J'+1) I [a[s+ [P[sj. Hence [a s

and j p j~ determine the absolute intensities of the two multipole
radiations and must, except for a common proportionality factor,
be the same as the Einstein coefficients for spontaneous emission
for the respective multipoles. One may, therefore, interpret m

and p as phenomenologically renormalized matrix elements whose
absolute value squared are the respective Einstein probabilities.
The phases of a and p are de6ned to be the same as those of the
associated nuclear matrix elements. Experimentally one can take
j 0. j

~ and j p j' as the number of quanta emitted by the respective
multipoles; actually only their ratio is needed here.

n S =
[

['u(J [mLM[ J'm')'Fr, (t})+
[t}['(Jm[I—i, m J'm')sF'~, ~(e)
+(nP*+a"P)(Jm L/tI[J'm')

X(Jm[L 1, /tf[J—'m')F.
, . . (t}), (i7)

where Fr,"v(P) and Fr„r q'r(t}) are given by (3) and

(9), respectively. Hence, here too the interference term
will vanish when averaged over 8. But in addition, even
for specified 8, the mixture contribution will vanish
when summed over all initial and final sublevels, m and
m', in virtue of (16)! How then is the interference
observable?

If one considers only those transitions m~m' charac-
terized by fixed M= nz' —m, then the interference
term need not vanish. %hen a strong magnetic field
is present so that those components with different M
differ in frequency, as in the atomic Zeeman effect,
the interference contributions to the angular intensi-
ties are detectable as reported in references j.3 and 14.

Interference effects are also detectable in angular
correlations. In this case the individual components of
a line are distinguished not by their frequencies, which
are all the same, but by different statistical weights.
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ALE III. Q, R, and S for quadrupole-mixture correlation.

Q=87J[al +5(17J+2}IPI —6{15J{j+2))&R{aP)
R= —9J[a['+5(j—2) I Pl'+18(15J(j+2))&R(np*)
s= —(20/3) {2j+5) I PI

c

Q = (3/2) J{55J+61) I
a I'+(5/2) (35jc+35J+6)

I P I'+ 3{15J{7+2))&(J—5)R(nP*)

R= (9/2) J(J—5) I
a['—{5/2)(17J'+17J—30) I P ['—9(15J(j+2))&(j—5)R(aP*)

S=(40/3)(2J —3)(2J+5}I Pl'

Q=3J(36J'+92j+61)[n['+5(20J'+52J'+41J+6)
I P ['+2(15J(J+2))&{2J—3) (2J+5)R(aP*)

R=3J(2J 3}(2J+5)[ale+5(2J 3)(2J+5)(5J 2) IP[c 6(15J(j+2))&(2J—3)(2J+5)R(nP*)
S= —(80/3)(2J —3)(2J+5)(J—1) I

pic

hj= —1

Q=(3/2)(J+2}(110J'+269J+174)lal'+(5/2){70jc+289J'+374J'+188J+24) IP['
+3(15J(J+2))&(J+2){2J—1)(J16)R{eP*}

R=(9/2) J{j+2)(j+6)(2J—1)[a['—{5/2)(2J—1){17J'—18J'—164J—24) I pic—9(15J(J+2))&(J+2){2J—1)(J+6)R{ep*)
S= (40/3}(J—1)(2J—3)(2J+5)(2J—1) I p ',

'

dj= —2

Q= {3/2)(j+2){58jc+139J+84)[n['+(5/2)(34J'+159J'+224J+96) I Pl' —3(15J
(J+2})&(J+2)(2J—1)Ra(P*)

R= —(9/2) J(J+2}(2J—1) I a[c+(5/2) (2J—1)(jc—16J—12)
I P Ic+9(15J{+2))&(j+2)(2J—1)R{aP*)

S= —(10/3)(J—1)(2J—1}(2J—3) I pl'

hj=2
Q = {3/2){2J—1)(26J—3) I

a
I
c+ (15/2) (2J—1)(6J+1) I P I

'+ 9 (5(2J—1)(2J+3))&R(nP *)

R= {9/2)(2J—1){2J+3)I
a['—(15/2)(2J+1}(2J+5}I Pl' 27(5(2J— 1)(2J+—3))&R(nP*)

S= 10(j+2)(2j+5}IP Ic

Q = (3/2) {2J—1)(58&+49J—15) I
n

I
~+ (15/2) (20J'+8J' —31+3) I p I'

—9(5(2J—1)(2J+3))&(J—5)R(a.p*)

R= —(9/2)(2J —1)(2J+3)(J—5) [ale+(15/2)(2J —3)(2J+5)(5J+7}IP[c
+27(5(2J—1)(2J+3))&(J—5)R(aP~)

S= —40(J+2)(2J—3)(2J+5) I
pl'

aJ=O aj=0

Q=15{2J—1)(2J+3){4jc+4J—1}[a['+15(2J—1){2J+3)(4J'+4J—1}I
Plc—6(5(2J—1)(2J+3))&(2J—3) (2J+5)R(a[8*}

R= —3(2J—1)(2J+3)(2J—3){2J+5)[ale —15(2J—3)(2J+5)(4J'+4J—7) [PI'
+18(5(2J—1)(2J+3})&(2J—3) (2J+5}R(uP*)

S=80(2J—3}(2J+5)(j—1)(J+2}I pl'

aj= —1

Q= {3/2}(2J+3}(58J'+67J—6) I
n['+ (15/2}{20jc+52J'+41J+6)[Pl'—9(5(2J—1){2J+3))&(J+6}R{aP*)

R= —(9/2)(2J+3)(2J —1)(J+6)la['+(15/2)(2J —3)(2J+5}(5J 2) [PI'
+27(5{2J—1)(2J+3))&(J+6)R(aP*)

S= —40(2J—3) (2J+5)(J—1)
I p I

'

Aj= —2

Q=(3/2)(2J+3)(26J+29) [nl'+(15/2)(2J+3)(6J+5} IP ['+9(5(2J—1){2J+3})&R(nP~)
R= (9/2) {2J+3}(2J—1)

I
nl' —(15/2) (2J—3}(2J+1)

I P ['—27(5(2J—1){2J+3))&R(aP*)

s=io(j-1)(2J-3}IP[c

Namely, if, say, the second transition is mixed, then
by specifying the direction of emission of the irst
quantum, the end states for this irst transition which
are the initial sublevels for the second transition are

unequally populated. Hence, Eq. (16) is no longer ap-
plicable, each m for the initial sublevels of the mixed
transition being weighted differently, and the inter-
ference cross terms in (17) need not vanish when aver-
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TAsl.E III.—Continued.

Q= (3/2) (I—1}{58J'—23J+3) i ni'+(5/2) {34J' 57—P+8J+3) i
Pi'+3(15(J'—1))&(j—1)(2J+3)R(nP')

R= —(9/2)(J —1)(2J+3)(J+1)i a['+(5/2){2J+3){J'+18J+5)i P['—9(15(J'—1))&{J—1)(2J+3)E(0[.[8)
~

S= (10—/3)(2J+3)(j+2)(2J+5) [P['

Q = (3/2) (J+1 ) (J—1)(110J2—49J+15)
i
n i

~+ (5/2) (70J'—9J'—/3 J'—2 7j—9) i P i

'
—3(15(J~—1))&(2J+3)(J—5)(J—1)R(42tP*)

R—(9/2)(j+])(J—1)(2J+3)(J—5) i
n[2 —(5/2) {2J+3}(17j'+69J' —7'U —105) I Pl'

+9(15(J'—1))'(2J+3)(J—5){J—1)~(~P')

S= (40/3)(2J+3)(2J —3)(2J+5)(J+2)
i
Pi'

Q= 3(J+1){36J'—20J+5}i a[ 2+5(20J8+8J2—3J+3) i P i
I—2(15(J2—1))&(2J—3)(2J+5)R(aP~)

R=3(J+1)(2J—3)(2J+5}[a['+5(2J—3)(2J+5){5J+7)[P['+6(15(J'—1)}&{2J—3)(2J+5)R{nP*)

5= —(80/3) (1+2) (2J—3)(2J+5) i p i

'

Aj= —1

Q = (3/2) {J+1)(55J—6)
i
a[2+(5/2}{35jm+35J+6) i P i

2—3(15(J2—1})&(j+6)R(aP")

R=(9/2){J+1)(J+6)[a[2—(5/2)(17J2+17J—30) [P[2+9{15(j'—1))&(j+6)R(aP*)

S= (40/3) (2J—3)(2J/5) i P i'

Q= 87(J+1)
i
n

i
2+5(17J+15}

i P i'+6(15(J2—1))&R(nP')

R= —9(J+1)[a['+5(J+3)[P['—18(15(J'—1))&R(ap*)

S= -(20/3) {2j-3) [P [2

aged over all initial and final states (see Eqs. (18a)
or (18b)).

III. ANGULAR CORRELATION WITH MIXTURES

A rigorous quantum mechanical derivation of the
angular correlation function W(8) requires a second-
order time dependent perturbation calculation begin-
ning with an initial system of excited nucleus plus
quantised radiation field. Hamilton' has given such a
derivation in a form suKciently general to apply to
mixed transitions as well. If the successive nuclear
states involved have spins J", J and J' with s'-com-

ponents ns", nz and m', and if the 6rst emission is a
pure 2~' multipole and the second a mixture of 2~
electric and 2~' magnetic multipoles, then the angular
correlation function W(8) for the relative probability
that the second y-ray be emitted at an angle 8 with
respect to the first p-ray may be written in either of the
equivalent forms:

W(8) = Q L(J"m" [L'M'[ Jm)'F~ "'(0)]
77S && AS, 772 & &

Xn S„„(8) (18a)

771 g 77?f P7

X[n S,„„,(0)j (18b)

according as the direction of emission of the first or
second y-ray is taken as the z-axis, 8=0. Here n. S (8)
is the relative probability for the p-ray in the second

mixed transition to be emitted in the direction 8 in the
component m~m' as given by (17). On expanding
(18a or b), W(8) takes the form:

W(8) =
[
a

[
Wt. , r,(8)+ [ P [ Wl. , z y(8)

+28(nP*)Wr(8) (19)

where Wr, 1.(8) is the angular correlation due to suc-
cessive 2z' and 2z multipoles (and similarly for Wz, r, &)

while Wr(8), the coefficient of aP*+n*P=2R(nP*) is
the interference contribution due to the mixed multi-
poles in the second transition.

The explicit evaluation of W(8) thus requires know-

ing [a[', [P[', R(o.P*), Fz (8), Fz.r r (8) and the
matrix elements (Jm[LM[J'm'). When both transi-
tions are pure multipoies, either u or P is zero, say P.
Then it is not necessary to know u since W(8) is a
relative probability and the common factor [a[' can
be dropped. For the mixture case both a and P are non-
zero. On dividing (19) by [n[', only the ratio P/o.
enters in W(8). Since this ratio is a complex number in
general, one has to specify both its modulus and argu-
ment. Physically this means that both the relative in-
tensiHes of the mixed multipoles and the relati ve

phases" of their matrix elements must be given.
The angular distributions Fz (8) and Fr., I.—r (8) are
given in a form easy to evaluate for any L by Eqs. (3)

"For the atomic Zeeman effect considered in reference 14,
a and P are simply matrix elements involving radial vvave func-
tions and hence both real. For the nuclear case n and P could be
evaluated theoretically if one chose some particular model for
the nucleus, such as liquid drop.
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and (9). General formulas for the normalized transfor-
mation coeKcients are available" but these have been
tabulated" only for L=2 and 2."Hence the correla-
tion functions have been worked out in detail' only for
dipole and quadrupole p-rays, and accordingly, we
have confined our explicit evaluation of mixture corre-
lations to the cases when the pure multipole transition
is either dipole or quadrupole and the mixture multi-
poles are electric quadrupole and magnetic dipole.

It should be noted, that although for L or L'= 2 or 2,
the Wr, z, (8) must be equivalent to those obtained by
Hamilton, it is not correct to insert Hamilton's results
directly into (18), for his correlation functions are not
properly normalized when mixtures are taken into ac-
count. This is shown in the Appendix. Except for this
normalization, the actual procedure used in obtaining
the Wr, 1.(8) completely parallels the method outlined

by Hamilton. The interference contribution (19) can be
reduced, using (3a, d) and (10), to the form:

Wr (8) = (15'/2) (3 cos'8 —1) .

P {{(J"zzz —1)1.', 1[ Jm)' +( J" I+1 )

I', —1[Jzzz)']
m=J

XL(Jm~1, 1~ J'zzz+1)(Jm{2, 1~ J'm+1)

(Jzzz—(1, —1[J'nz —1)(Jzzz( 2, —1[J'zzz 1)g}—.

The evaluation of the indicated sums of products of
normalized transformation coefFicients presents the
only new computational task for the preparation of
Tables II and III which are for dipole —(mixture) and
quadrupole —(mixture) correlations, respectively. The
notation of Hamilton is used throughout. Successive
nuclear states have spins J—Aj, J, and J+0J. The
correlation function has the form:

W(8) = 1+R/Q cos'8+S/Q cos'8.

Factors common to Q, R, and S are dropped in these
tables. When a=0 or P=O, each entry in the tables
reduce to the corresponding entry in Hamilton's tables
for pure multipole transitions which provided a check
on our calculation. The same tables may be used to ob-
tain the correlation functions when the 6rst transition
is mixed and the second pure dipole or quadrupole.
This is illustrated in the following discussion.

IV. DISCUSSION AND APPLICATION
TO EXPERIMENT

We now apply the preceding theory to the experi-
mental y —p angular correlations is Sr" and Pd'"
which were measured by Deutsch' and which are not in
satisfactory agreement with the theory as given by
Hamilton.

' See reference 17, p. 206.
~ See reference 19, pp. 76, 77.
~7 A table for 1.=3 has been prepared but not yet published by

one of us (D. I,. F.).

The measured correlation function for Sr" can be
adequately represented by W(y) =1+R/Q cos'8 with
R/Q= W(zr) —W(zr/2) = —0.08. From Hamilton's ta-
bles, this value of R/Q can be obtained only if the spina
of the ground, intermediate and initial states are,
respectively, 2, 2, 2, or 3, 2, 2, or 2, 2, 3. However, Sr"
being an even-even nucleus, its ground state wouM be
expected to have spin 0. In fact, Peacock, ' on the basis
of internal conversion measurements proposes a dis-
integration scheme for Sr" in which the spins of ground,
intermediate, and initial states are respectively 0, 2, 2.
Which this choice of spins if both transitions are dipole
theory gives R/Q=+0. 077, while if the erst transition
is quadrupole, the second dipole, R/Q=+0. 429. These
are the only possible combinations of pure dipole and
quadrupole radiations consistent with Peacock's as-
signment of nuclear spins and the observed cos'9 de-
pendence of W(8), and neither of these R/Q values
agrees with experiment. One is, therefore, led to ex-
amine the possibility that one of the transitions may
be mixed.

Since quadrupole radiation is forbidden for the second
(1—+0) transition, it must be pure (electric or mag-
netic) dipole and we take the erst (2—+1) transition as
the mixture of magnetic dipole and electric quadrupole
radiation. Tables II and III are prepared for the case
when the 6rst transition is pure and the second mixed.
However, on account of the Hermiticity of all matrix
elements in W(8), the correlation function must be
the same for any direct process as its inverse. Hence the
angular correlation for the proposed decay scheme in
which the first y-transition is mixed, the second pure
with 6j=2 J= —2, J= 2 is the same as that tabulated
for the case when the erst transition is pure, the second
mixed with Aj=AJ=+2, J=2. From Table II, one
has from the 6j=5J= 1 entry after division by

~

a
~

'.
1+5

~
P/a

~

'—13.4R(P/a)
R/Q=

13+11.7
~
P/a }'+446R(P/a).

This function, R/Q is plotted in Fig. 2 for various values
of the magnitude and phase 8 of the mixture amplitude
ratio P/a. The intersection of these curves with the
line R/Q= —0.08 gives the locus of values of P/a which

yield agreement with experiment. It is seen that for
any 0&b&58, there are two admissible values of
P/a. For example for 8=0, i.e., P/a real, the suitable
values of P/a are 0.18 and 2.0 corresponding to a
quadrupole to dipole intensity ratio of 0.032 or 4.0
respectively. The arbitrariness in the choice of the rela-
tive phases and magnitudes of n and P which can satis-
factorily explain the observed y —y angular correlation
could be removed if the same mixed y-transition also
gave rise to internal conversion electrons. Then the
same a and p would enter in the internal-conversion—

&'%. C. Peacock, unpublished, quoted by Deutsch, reference 5,
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y-angular correlation and a6ord a consistency check
on the assignment of the complex parameter p/a.

It is instructive to consider in more detail the in-
Quence of the interference term on the angular correla-
tion as shown in I'ig. 2. The curve for 8=90' gives the
values which R/Q would have if there were no inter-
ference present; in this case R and Q for the correlation
with mixed transition are simply the weighted average
of the expressions for pure transitions. It is clear from
the figure that the correlation can be radically affected
both in magnitude and sign by even a small mixture
ratio. Roughly, the relative change in the angular
correlation due to interference is of the same order of
magnitude as the ratio of the multipole amplitudes,
rather than their intensities, in the mixed transition,
for the ratio of the interference term to the intensity
of the dominant multipole will be of order

I apI/I cxI2

-IP/~l if
I
~I'&

I
PI-' Although Fig. 2 is drawn for

t.he special choice of nuclear quantum numbers in the
proposed decay scheme for Sr', it is evident from its
similarity with Fig. 1 that one may expect the same
general behavior due to interference whatever the
particular nuclear states involved. Indeed one might
say that although the existence of an angular correla-
tion is itself purely a quantum mechanical efkct, the
interference eGects in the angular correlation have a
purely classical origin in the interference contributions
occurring in the classical angular distribution (6) or
(11) due to a, mixture of multipoles. In fact, the sum-
mands n S „(0) for m'=m~1 occurring in the cor-
relation function (18b) are to within a proportionality
factor (if one absorbs the transformation coe%cients
into the'definition of e and P) just the gain in the
0=0 direction, as defined in Section IIA and plotted
in Fig. 1, for the angular distribution (17) resulting
from the m —m' component of the mixed transition.

Consider now the case of Pd"'. We have shown else-
where" that if one assumes the highest multipole radia-
tion present is quadrupole and the ground state of this
even-even nucleus has spin 0, then the measured' ' cor-
relation function forces the spin of the intermediate state
to be 2 and that of the initial state, 1, 2, or 3. The most
general set of transitions consistent with these require-
ments is one in which the first transition is a dipole—
quadrupole mixture and the second is pure quadrupole
radiation. Ke now show that even the use of mixtures
cannot explain the experimental y —y-angular correla-
tion, and therefore one of the p-rays in the Pd' transi-
tions must be at least octupole.

The observed W(e) has the form W(8) = 1+R/Q cos'8
+5/Q cos'0 with R/Q= —1.66 and 5/Q= 2.16. If the
initial nuclear spin is 1, then Aj= 1, 2 J= —2, J=2.
Since the order of the mixed and pure transition is the
reverse of that for which the tables are calculated, one
must use the 6j=2, 3J= —1 entry in Table III with

~ D. S. Ling, Jr. and D. L. Falko6, Phys. Rev. 76, 431 (1949).

J=2 which gives:

—94.5+787.5
I P/~I 2-423R(P/~)

R/Q=
283.5+ 157.SIP/n I'+ 141R(P/cx)

—840Ip/uI'
~/Q=

283.5+ 157.5I P/u I'+ 141R(P/n)

(20)
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FIG. 2. E/Q as a function of ~P/n~ and 8 for a mixture-dipole
angular correlation xvith 6j=M= —1, 1=1. The dotted line
represents the experimental value —0.08 for Sr".

Equating these to the observed values one obtains
two simultaneous linear equations for the two real un-
knowns

I
P/nI' and R(P/n) The.se have a unique solu-

tion, but it is not physically admissible since one gets
IP/nI'= —0.425 while it should always be non-nega-
tive. (More directly, in this particular case, one can
easily see that no matter what value of p/a is used in

5/Q in Eq. (20), S/Q will always be negative, in con-
trast to the experimental value of +2.16.) This dis-
agreement is well outside the experimental error. Simi-
lar inconsistencies occur if one assumes the initial
state to have spin 2 or 3. Thus the observed angular
correlation in Pd'" cannot be explained either with
or without mixtures when the highest y-multipole order
is assumed to be quadrupole.

This negative result shows also that the presence of
two additional parameters in mixture angular correla-
tions is by no means a guarantee that a suitable mixture
can be found to explain any correlation which eludes
the pure multipole tables. On the contrary, a fit may
not be possible at all, as with Pd'", or only for re-
stricted values of p/u, as for Sr". The essential differ-
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ence between these two cases is that for Sr" the ob-
served correlation requires that the non-mixed transi-
tion be pure dipole. Hence only one number, E/Q,
need be given to determine W(8). Any point of inter-
section of the line R/Q= —0.08 with the curves of
Fig. 2 yields admissible values for

~
P/n

~

and 8=argP/n
However, for Pd'", the observed correlation having a
cos48 as well as cos'8 dependence requires the speci6ca-
tion of two constants, E/Q and 5/Q. For such correla-
tions, as shown above, there is no reason to expect
that the solution of the resulting simultaneous equa-
tions should be physically admissible. If, however, a
consistent solution exists it will also be unique.

Ke conclude with a remark on mixtures in other
nuclear processes. Evidence for mixtures of multipole
radiation in internal conversion has often been cited. ~"
As remarked by Casmir~ interference effects from such
mixtures would not ordinarily be detectable in a single
transition. However, they would be detectable in
internal conversion —internal conversion or internal
conversion —y-angular correlations. "Mixtures of ma-
trix elements also arise quite naturally in the theory of
forbidden P-decay" and interference eBects of the type
discussed here will, therefore, also occur in the P—y-
angular correlations. The theory of the P—y-correla-
tion has been treated by one of us" and will be discussed
elsewhere.
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"The theory of angular correlations involving internal con-
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APPENDIX

Ke indicate why it is not correct to merely substitute Hamilton's
tabulated correlation functions for 8'L, L, (8), I., I.'=1 or 2, in
Kq. (19). For a dipole —{magnetic) dipole correlation, IV{8) has
the form: (a) lVj, l{8)=Q»+R» cos'8. Since this is a relative
probability, it can equally well be written as (b) IV»(8)=1
+R»/Q» cos'8 which is the form tabulated by Hamilton. Simi-
larly a dipole —(electric) quadrupole correlation could be written
as either: (a'}W'~2{8)=Q~~+Rl2 cos'8 or (b') W~2(8) =1+RE~/Qig
cos 8. When the second transition is mixed, and if for simplicity
we assume that R(aP*) =0 so that the interference term vanishes,
then (19) yields for the correlation with mixtures:

wls) = ~l'w»(s)+ I Pl'8'»(~)
= I: I

~
I 'Q»+ I )s I'Q»3+ L I

» I'~»+ I P I
'~»l «s'e

which is the weighted average of IV~~(8) and W~2{8) when taken
in the form (a) and {a').This can now be written in the form:

W{q)= 1+R'/Q cos'8
with

lal'z„+lpl'z„
l~l'Q»+ I II'Q»

which is correct but clearly not the same as one would get by
substituting the forms (b) and (b') of reference 1 into (19}.The
argument is the same when interference is taken into account,
only one get additional terms with coeScients R(O.P*) in R and Q.

Another respect in which the calculation of correlations for mix-
tures differs from that for pure multipoles is the necessity to
retain the normalizing factors in the transformation coeKcients
Only those factors common to both multipoles can be dropped.


