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Electrical breakdown of hydrogen at high frequencies has been treated theoretically on the basis of the
Boltzmann transport equation. Inelastic collisions are taken into account as a loss term in the Boltzmann
equation and measured values of the ionization efBciency are used in the integral determining the ionization
rate. The energy distribution function for electrons may be expressed in terms of the conQuent hyper-
geometric function and simple exponentials. The ionization rate and diffusion coefBcient are calculated
using these distribution functions and kinetic theory and are combined with the diffusion equation to predict
breakdown electric fields. These predicted electric fields are compared with experimental values measured
at 3000 mc/sec. They are also compared with older measurements by other workers at frequencies ranging
from 3 mc/sec. to 100 mc/sec. The breakdown equation calculated from kinetic theory and using no gas
discharge data other than the collision cross-section measurements and involving no adjustable constants
predicts breakdown electric fields well within the limits of accuracy determined by these cross sections over
a large range of pressure, container size and frequency of applied field.

HE theory, based on a solution of the BO1.tzmann
transport equation for electrons, which was used

in predicting breakdown in helium, ' has been applied
to molecular hydrogen. The method follows closely
that used in reference 1, but some of the simplifications
used in treating helium are not permissible in the case
of hydrogen. The second-order differential equation
derived from the Boltzmann equation is solved for the
electron distribution function. The ionization rate and
di8usion coeScient are calculated using standard kinetic
theory formulas. The breakdown condition is that the
number of electrons produced by ionization equal the
number di8using to the walls of the container. This
breakdown condition is combined with a solution of the
diffusion equation, the ionization rate, and. di6usion
coefficient to obtain an equation which predicts break-
down electric fields.

I. THE BOLTZMANN EQUATION

The phase space continuity equation for electrons is"

The spherically symmetric term fo is predominant
because co11isions tend to disorder any directional
motion of the electrons. The series is rapidly convergent
and we shall consider only those cases where the first
two terms represent a good approximation to the dis-
tribution function. The limits of theory discussed in the
previous paper indicate those values of the experi-
mental parameters for which this approximation is
valid.

The term C arising from collisions may also be ex-
panded in spherical harmonics, since it may be repre-
sented in terms of integrals over the distribution func-
tion. The r.m.s. value of the electric field is given by E,
and an energy variable u= nw'j2e is introduced; m is the
mass and e the charge of an electron.

On substitution of these terms and separation of
vector and scalar parts, Kq. (1) becomes

Bfo 'V 8
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where f is the electron energy distribution function; C
is the net rate at which electrons appear in an element
in phase space and is calcuiated in terms of f by de-
termining energy changes due to collision; v is the
velocity, a the acceleration, I the time, and V. the
gradient operator in velocity space.

The distribution function may be expanded in
spherical harmonics in velocity,

Elastic collisions are accounted for in the manner of
Morse, Allis, and Lamar, ' who considered collisions as
instantaneous processes and found equivalent energy
loss terms by conserving momentum and energy and
averaging over space at each collision. lt is shown in
reference 3 that these terms are

V' fI
f=fo+ +
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where l is the electronic mean free path and M is the
I Morse, Allis, and Lamar, Phys. Rev. 48, 412 (1935).
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mass of the molecule. The remainder of the Co term
results from inelastic collisions and may be represented

by h—.(II/l) fo h—,(II/1) fo, where h, and h; are eSciencies
of excitation and ionization, respectively. Inelastic
collisions have no angular dependence and therefore
do not enter the higher order terms in the distribution
function.

Each term in the distribution function may be ex-
panded. in a Fourier series in time

f —f 0+f lejNIC+ . .

where ao is the radian frequency of the applied electric
field. The electric field is represented by 42Ee&"' and
in the expansion of Ef„, we must replace the exponen-
tial notation by its real part before taking the product,
so that

RT2Ef =2' oe'~E+Ef„'(1+2e""E)+ . (8)

Combining the results of Eqs. (5), (6), and (8) with

Eqs. (3) and (4) and equating terms in like exponents
of t, we have

vK d—(h,+h;) v,fD' ———V' fP ———(ufo'')
3 3N BQ

m'v El (u fEt )
M'u EIu ( l

v,f/ = vVfD', —

8
(v„+jED)f, '=IIK fDD-
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In these equations, e/l has been replaced by v, and the
terms in fD' have been dropped. The fo' term represents
the first harmonic of the spherically symmetric part of
the distribution function and cannot be generated
physically unless there is either a d.c. field or the
amplitude of oscillation of the electric field is sufhcient
to sweep out electrons from the container each half
cycle.

Equations (10) and (11) may be substituted in Eq.
(9) to derive an equation for fDD From this .point on,
we shall drop the subscripts and superscripts on f and
understand by f the zero-order term fD' We use th.e
diffusion equation to replace IE'2f00 by —1/A'f&', where
A. is the characteristic diGusion length, depending only
on the geometry of the discharge container. 4 Thus,

2'IÃ II EI (u~f )—v, (h,+h;)f+
MuETuI l 2

lIE s d df E'
f —lu——— (12)

3A' 3u du du (1+ o'/ E')v

M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291 (1948}.
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FIG. 1. Block diagram of experimental microwave apparatus.

where we take only the real part in the last of these
terms, as f is real.

h, +h, =h~, (u —u, ) =9.0X10 '(u —8.9), u &~8.9 volts.

The fact that some energy goes into excitation below the
dissociation level is explained by Ramien on the basis
of wave mechanics.

The ionization efficiency h; is approximated by

hI=h&N(u u;) =—9.4X10 '(u —16.2), u&~16.2 volts.

These efliciencies are to be substituted in Eq. (12) from
which the distribution function is determined. Below
the lowest excitation level, the term in h,+h; is zero
and the distribution function is similar to that found
for helium. Above this level, the differential equation
for the distribution function is diGerent and the solu-
tion must be matched in magnitude and slope to the
previously determined one.

III. THE DISTRIBUTION FUNCTIONS

We let
3mm

P= A Vc")

M e(EA)'.
p=

(V'-/'V '+1

and then Eq. (12) becomes

d'f (3 IEu) df
u—+( +—~—-

du'- E2 P ) du

3p, I 1M'
+f (h,+h, ) =0. (13)

2P P 2mP
~ R. B. Brode, Rev. Mod. Phys. 5, 257 (1933}.
6 H. Ramien, Zeits. f. Physik 70, 353 (1931}.

II. COLLISION CROSS SECTION

In Eq. (12), we must now specify l, h„and h;. As was
the case in helium, the collision frequency for elastic
collisions in hydrogen is constant in energy" to a very
good approximation. Using Brode's data, we obtain
the value of v.=5.93X10'p(sec. ') (p in mm of Hg).

The excitation and ionization eKciencies for hydro-
gen have been measured by Ramien. 6 A linear approxi-
mation to his data gives
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where

(d'y/dw')+I(w) y= 0,
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(20)I= —(A'w 8/w), —

When x is that corresponding to a few tenths of a volt
p(mrn OF Hg j more than 8.9, the first term in Eq. (19) becomes

1~ '1 1 1

Fio. 2. Comparison of experimental electric fields with those negligible and we may write
theoretically predicted from Eq. {29) {3000mc jsec.).

For convenience, we introduce a dimensionless inde-
pendent variable

4P) '
w= —

I
1+—I

u bu=-
P& u'& P

Equation (13) becomes

d'f (1 3&df 3 P M h,
+I -+—

I

—+f — — —=o. (14)
dz2 E b 2m) dm' 2bz p2b' 2m mb

When I&8.9 volts, we transform the dependent vari-
able

1)1
g exp ——

I

—+1 Iw
2Ib )
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1 (hi,MPw, 3i+-I,
b 0 2ns!!b 4)

and in the case of hydrogen, these are numerically,

A' = 1.03(E/P)'I 1/(b'I (31.8/PX)'+1 j)3+~~,

8= 146/b,

and X is the free-space wave-length of the electric
field in cm.

Equation (18) may be written

and tho differential equation becomes

d'g dg (3
w +—

I
—w I-kg=0,

dw' dw&2 whose solution is

d2y 32@—8
y=o

dK'2 'N

1tp1 3q
f=y exp ——

i

I
-+—Idw

2& !b 2w)
(17)

T A. D. MacDonald, J. Math. Phys. 28 {Dctober, 1949); "Prop-
erties of the confluent hypergeometric function, " Technical Re-
port No. 84, Research Laboratory of Electronics, M.I.T., Cam-
bridge, Massachusetts.

~=-'L1—(1/b) j.
Equation (15) is the diiferential equation for the con-
Quent hypergeometric function; therefore, we may write
the two independent solutions

g!™(ak w) g2=w 'M(a —2;k; w) (16)

Hereafter, for brevity, we shall use the notation

M(o!; -', ; w) =M!(w)
w IM(o! '„-'„w)—=-Mg(w).

Tables of the conQuent hypergeometric function are
available. 7

For u greater than 8.9 volts, we transform Eq. (14) to
the reduced form by letting

ai a2
y e—.4to~B/2' $+ + +. . .

K' K'
(21)

We shall drop the term in a2 at this point; although the
nature of the final result for the ionization coefFicient
will indicate how this term affects the answer.

Combining Eq. (21) with Eq. (17), we have

(22)

where S=A+(1/2b) and T=(B/2A) 3/4. The solu-—
tion in Eq. (22) is valid for u a few tenths of a volt
above the lowest excitation level, so we extrapolate the

The series converges rapidly for all values of x which
are necessary, and in most cases, a2 is completely
negligible. a~ and a2 are given in terms of A and 8;

a,= L1—(73/2A) jB/4A'
and

a! 8(3 Bia!=——
I
-+—I-2

4A 3 E2 4A)
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f= [Mz(w)+CMz(w)]exp[ —w(1 —xza)]

Ol )
Rwrl 1+= Iexp( wS)

wl

n& 9.5 volts
(23)

u&9.5 volts,

where the constants E. and C are to be determined by
the boundary conditions that the distribution function
be continuous in value and slope when I=9.5 volts.

If we let

solution in Eq. (16) to zz=9.3 volts and use Eq. (22)
for N&9.5 volts.

%e are now in a position to write down the distribu-
tion function

The diffusion coefficient, D, is determined from the
equation

2zr t'2eg 'tz

zzD=
I
—

~l f«'t 'dzz. '-

3v, ( zzzP

After substitution of the distribution function from
Eq. (23), the expression for nD becomes

2~ z 2etI y
"-

zzD =
(
—

~

w"'- exp t
—w(1 —-,'a) ]

3v„, im„h&

X [M, (w)+CM. (w)]dw

, (+If il w'e '~i 1+—idw ~ (28)
I

)
4' wv wv (1+ez/wv)

these conditions give

(24)
The conH. uent hypergeometric functions in the erst
part of the integral in Eq. (28) have been integrated'
and those in the second integral result in incomplete F-
functions. The total integral yields

Mz(w, )—C [M, '(w„) —(1—-', a)M, (w, )] 3 w

(2S)
— —exp[-w, (1-3 )]

4 [M,'(w„) —Mz(w, ) (1—', a)] -M, (—w„) 2a (1—~3a)

«p[ —w, (1—
z a)][Mz(wv)+CMz(«v)]

R= (26)
e- "w [1+(a, 'w )]

rvhere m„ is m corresponding to I=9.5 volts, and M'
denotes diGerentiation with respect to ~.

IV. THE BREAKDOWN CONDITION

X [Mz'(w„) —-', aMz(w, )]

1
+C M. '(w„) —=;aMz(w„)+-

2w&

El' . AQl

+ — 1—I(I', Z„)+ [1 I(V —1, Z„)—]—
$T'+1 t7

AVe next compute the ionization rate nu by the use
The high frequency ionization coefficient4 ( is then
given by

zzv = 8z(r'e—/m )z(zz/z) v, h;fdzz

= —16zr(e '2m)"-'(t3/zzb)'"v, R9.4 10 '
600
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Evaluation of this integral gives
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where Z, =sw„, V= T+2~, I(x, p) = [I',(p+ 1)/1'(p+1)],
and & (p+1) is the incomplete I'-function. Extensive
tables of the I functions are available. 8

' K. Pearson, Tables of Incomplete I' Function (His Majesty' s
Stationers, I,ondon, 1922}.
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I'ro. 3. Comparison of theory of this paper with experiments of
Githens (1940) at frequencies of 5 mc/sec. and 11 mc /sec.
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~ $ $ t f 1l/ I I I I 11lTl and 4, C and E are defined in Eqs. (24)-(26). The
breakdown condition is that &=1/A'E', so that we ob-
tain the breakdown equation by setting i computed
from Eq. (29) equal to 1/A'E'. This produces a trans-
cendental equation which is very difIicult to solve and
which is done in practice by successive approximations.

lO

io

HQMpsoN

x GlTHENS

where
Sag
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Sag
/=1 I(V, Z;)+-—[1—I(V—1.Z;)]

V

z ' 5a)
1—I(V—1, Z;)+ —[1—I(V—2, Z;))

t/ V—1 1

3S'+' exp[ —(1——,'n)w ]F—
2ag(1 ——~) V t

6=w„'" Mg'(w„) —32nM, (w„)

C
+C[M~'(w„) —-', aM2(w, )] +—exp[w, (1—-', n)]

2

16.2bu[1+ (31.8/pX) )
/p)'

1.52(10 ')
b= 1+(8/p)'

(p~)'[1+(31.8/pX)']

a =0.75 (b 1/b)—
S=A+ (1/2b)

1
A'= 1.03(E/p)' +-

b'[{31.8/pX)'+1) 4

V= ',[(146/A b)+3—)

at ——[1—(8/2A))8/4A'
8= 146/b

6 , i a i g s i ~ lsl i L i I I Ill
lO ioIO lO

E VOLT
~gj ~cmmn OF ~~

I'ro. 4. Experimental g-curves of Thompson (1937), Githens
(1941) and the present work. The data cover a frequency range
of 5 to 3000 mc/sec. and a range of diffusion length from A= 0.0505
cm to A=0.50 cm,

V. EXPERIMENTAL RESULTS

Breakdown electric 6elds have been measured at
microwave frequencies using the experimental appara-
tus shown in Fig. 1. The details of the experiment are
similar to those of the helium breakdown measure-
ments. ' Microwave power with a free-space wave-
length of approximately 10 cm generated by a c—m

magnetron is coupled to a microwave resonant cavity
through coaxial transmission lines. A known fraction
of the power delivered is measured by a bolometer, The
power absorbed by the cavity is combined with the
cavity Q and the known field configuration to determine
the electric field by standard methods. '" The cavities
in which breakdown takes place are made of oxygen-
free high conductivity copper and connected through
Kovar to an all-glass vacuum system. The vacuum
system holds at a pressure of better than 10 ' mm of Hg
for a period of about two hours with the pumps turned
o8. A single series of breakdown measurements takes
about this time. The pressure is measured by an ioniza-
tion gauge. Air Reduction Company spectroscopically
pure hydrogen was used. Measurements were made in
cylindrical cavities having heights of 0.1586, 0.476, and
2.54 cm. The experimental data are presented in Fig. 2,
which gives breakdown electric 6eld as a function of
pressure. On Fig. 2 are also drawn theoretical curves of
E computed from Eq. (29).

The theory of breakdown derived in this paper is not
restricted to microwave frequencies but applies to any
high frequency discharge in which electrons are pro-
duced by 6eld ionization and lost by diGusion to the
walls of the container. Theoretical electric fields have
been computed for electric field wave-lengths of 6000
cm and 2730 cm. On Fig. 3, these are compared with
the experimental data obtained by Githens in 1940."
Figure 4 presents ionization coefBcients experimentally
obtained by Githens, " and Thompson, "as well as the
experimental data of this paper.

VI. DISCUSSION

Breakdown electric 6elds at high frequencies have
been derived theoretically on the basis of kinetic theory,
the only experimental data used being collision cross

'S. C. Brown, et a/. , "Methods of measuring the properties of
ionized gases at microwave frequencies, "Technical Report No. 66,
Research Laboratory of Electronics, M.I.T., Cambridge, Massa-
chusetts.

'0 C. G. Montgomery, 3Eicromuve Technjp~es (McGraw-Hill
Book Company, Inc. , ¹wYork, 1948)."S.Githens, Phys. Rev. 57, 822 (1940).

'~ J. Thompson, Phil. Mag. 23, 1 {1937).
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sections. The elastic collision cross section for hydrogen
used in this theory is probably correct within j.0 per-
cent. Calculations of the theory indicated that this will

not introduce more than 2 or 3 percent error in electric
6elds. The excitation and ionization eSciencies are very
dificult to measure and the experimental error in the
best measurements in hydrogen may be as high as 20
percent. These introduce an error of approximately 14
percent in the theoretical electric fields. These effects
combine to give a possible error of 16 percent in theo-
retical 6elds and indicate a need for more precise colli-
sion cross-section measurements. The maximum error
in the experimental electric 6elds in the 10-cm wave-

length region is 5 percent and in pressure is 1 percent.
The derivation of the equation for the distribution
function implicitly assumed that each electron dropped
back to zero energy after an inelastic collision. Since
excitation takes place over a certain range of energy,
this is not exactly correct, but the error which it in-
troduces is small.

Equation (29), calculated from kinetic theory and
using no gas discharge data other than collision cross-
section measurements and involving no adjustable con-
stants, predicts breakdown electric 6elds well within
the limits of accuracy over a large range of pressure,
container size and frequency.
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The theory of the directional correlation of successive nuclear gamma-rays is extended to include transi-
tions in which mixtures of multipoles are present. For such cases interference effects can radically modify
the angular correlation from what is predicted in the usual theory assuming pure multipole transitions.
Correlation functions are tabulated for all possible cascade emissions in which one of the transitions is a
mixture of magnetic dipole and electric quadrupole and the other either dipole or quadrupole. It is shown
that the experimental data on Srs' which had previously seemed anomalous can be consistently interpreted
with the mixture theory developed here, but the agreement with the observed angular correlation in Pd'~ is
not possible if the highest gamma-multipole order is assumed to be quadrupole.

I. INTRODUCTION

HE theory of the directional correlation of suc-
cessive nuclear y-rays has been treated in detail

by Hamilton' and Goertzel. ' Hamilton has given the
basic quantum mechanical theory and has put the re-
sults of his calculations in a form which can be com-
pared with experiment whenever the multipole orders
of the radiation are dipole or quadrupole. (The dis-
tinction between the electric or magnetic character of
the multipole radiation can be made in an angular cor-
relation experiment only if the polarization of one or
both of the y-rays is specified. )"The conditions which
must be ful6lled in order that Hamilton's theory and
tables can be validly applied are:

(1) That the natural line width of the intermediate nuclear
state be much larger than the hyper6ne splitting of that state„and

(2) that the respective y-transitions each correspond to pure
multipole radiation.

*Now at the University of Kansas, Lawrence, Kansas.
t Now at the University of Notre Dame, South Bend, Indiana.
' D. R. Hamilton, Phys. Rev. 58, 122 (1940).' G. Goertzel, Phys. Rev. 70, 897 (1946).' D. L. Faiko8, Phys. Rev. 73, 518 (1948).' D. R. Hamilton, Phys. Rev. 74, 782 (1948).

Goertzel has extended the theory to the case when (1)
is not satis6ed due to the presence of internal atomic
fields or an externally applied magnetic 6eld. However,
he still retains assumption (2).

In view of the absence of any detailed knowledge
of the wave functions and hence charge and current
distributions for nuclear states, assumption (2) proves
to be particularly convenient for angular correlation
calculations since it can then be shown that the correla-
tion function W(8) is independent of the intensities of
the respective y-rays. In fact, it is then possible (as is
done in reference 1) to tabulate W(8) wholly in terms
of "rotational information" such as the spins of the
nuclear states involved and the known angular distri-
butions of the energy radiated for the given multipole
orders of the p-rays. However, comparison of theory
with experiment' 7 shows good agreement in several
cases, but poor agreement in others, notably for Pd'"
and Sr". In these experiments condition (1) is satisfied

' E. L. Brady and M. Deutsch, Phys. Rev. 72, 870 (1947); 74,
1541 (1948).

s M. Deutsch and F. Metzger, Phys. Rev. 74, 1542 (1948).
7 M. Wiedenbeck, private communication.


