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Electronic States in Perturbed Periodic Systems*
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The occurrence in perturbed periodic systems, such as impure
crystals, of localized states with discrete energies is discussed from
both qualitative and quantitative points of view. Semiclassical
considerations, modi6ed in the usual way by wave concepts, make
it clear that impurities will give rise to impurity states above or
below corresponding permitted bands of energy, according as the
ionic charge of the impurity is less than or greater than that of the
ion it replaces. Localized states at crystal interfaces and free
surfaces can be discussed in the same way. Consideration of the
behavior of wave packets leads to formulation of the effective-
mass wave equation of Peckar. Complete solutions of the per-
turbed-periodic wave equation are then constructed by joining
together solutions valid for a single period of the unperturbed
potential. XVhen the perturbation is slowly varying (though not

necessarily small in its total efkct) this approach leads to an
analytic solution of the problem involving errors of the order of
the ratio of the change in the perturbation potential across a
single cell to the total kinetic energy of the particle. The effective-
mass equation appears in connection with an approximate form
of this solution, but the relation of its solution rp{x) to the correct
wave function p(x) is more complex than has previously been
realized. To construct p(x) in any small region one should resolve
q(x) locally into the sum of two exponentials C expI +(i/Ii) pgxI,
multiply each by the appropriate periodic function, and add the
results. A quadradically integrable q(x) corresponds to a quad-
ratically integrable P(x) with the same energy; thus stationary-
state energies determined by solving the effective-mass wave
equation are found to be surprisingly reliable.

I. INTRODUCTION

q I.ECTRONIC states of crystals can be treated only
~ approximately in wave mechanics, by a forced

separation of variables. In many cases, however, one can
with good approximation treat each electron as moving
in a static potential field W(x, y, z) due to the other
electrons, and to all other charges in the system. If the
crystal is ideally perfect and infinite, LV is periodic
throughout all space. The behavior of an electron with
energy E is then described by a solution P of the wave
equation

—(h'/2m) Pf+IV(x, y, z)Q=EQ.

This equation, and its one-dimensional analog,

—(Ii'/2m) Ld'-P(x)/dx'7+ W(x) P(x) =EP(x), (&.I)

have been extensively studied. '
Recent work on the solid state has directed increasing

interest to the behavior of electrons in imperfect
crystals. Electrons in real crystals move in potential
fields which deviate from perfect periodicity for many
rea, sons: imperfections in the crystal, missing or foreign
atoms in the lattice, and in any case, termination of the
crystal a,t free surfaces. These deviations from perio-
dicity, if not too extensive, do not greatly disturb the
band structure of the permitted energy values. Experi-
ment and theory have, however, made it clear that they
may give rise to electronic states with energies outside
the permitted bands —states in which the electron
cannot move freely through the crystal, but is restricted

*This work was supported in part by Signal Corps Contract
%36-039-SC-32020 with the Department of Physics at Purdue
University. It has been circulated in a Signal Corps report in
which the more mathematical parts have a somewhat less general
form.' References to the earlier literature are given in the preceding
paper (H. M. James, Phys. Rev. 76, 1602 (1949)),which establishes
the notation and many of the basic methods and results to
be used in the present one. Familiarity of the reader with this
paper will be assumed, and it will hereafter be referred to as (I).

to a limited range near the surface or crystal cell where
the periodicity is disturbed.

The existence of localized surface states in crystals
was 6rst suggested by Tamm, ' on the basis of study of a
special one-dimensional model. The latest and most
instructive work of this type is that of Shockley, ' who
discussed the solutions of the one-dimensional wave
equation for a potential that is perfectly periodic in a
finite range of x, representing the crystal, and rapidly
approaches a constant value outside (Fig. I (b)). In such
a case one might write the wave equation as

h'/2m(d'P/d— x')+ W(x) P =EP, 0&x &X,
h'/2m(d'P/d—x')+ V(x)f= Ef, x&0, x)I.,

where W(x) is the periodic potential of the crystal, and
V(x) a prescribed non-periodic function. An alternative
approach to the physical problem is that of Goodwin, 4

who used the perturbation method in treating a 6nite
chain of identical atoms. Both methods indicate the
existence of surface states, but closer investigation of
their nature is required.

A quite diferent type of deviation from periodicity
occurs where there is a foreign atom in a crystal lattice.
The potential is profoundly modi6ed in the crystal cell
that contains this atom. In addition, if the net charge
in this cell (due to all charges except the electron under
consideration) is different from that in other cells, then
the periodicity of the potential through the whole
crystal is modihed by the Coulomb potential of the
excess charge. The corresponding one-dimensional wave
equation is

—Ii'/2m(d2P/dx')+ [W(x)+ V(x)7P =EP (I.3)

where W(x) is again the periodic potential. A similar
modification of a periodic potential may arise from

' I. Tamm, Physik Zeits. Sowjetunion 1, 733 {1932).
'%. Shockley, Phys. Rev. 56, 317 (1939).
4 E. T. Goodwin, Proc. Camb. Phil. Soc. 35, 205 (1939).
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FIG. 1. Modified periodic potentials.

ent stationary-state solutions of the general wave
equation, of the form

P~(E; x) exp[ —(i/h)Et)]
=Pg(E; x) exp[i/h(& px —Et)]. (2.1)

Here P+(E; x) are functions periodic with the period a
of the potential, and p is a parameter, the effective
momentum, which depends on E. As defined in (I),
Fig. 4, p is real and positive in permitted bands of E,
and complex in forbidden bands. %hen attention is to
be restricted to permitted bands, one can treat &p as a
real parameter p ranging from —~ to +~, and can
write the above solutions as

P(p; x) exp[ (i/h)—Et)
=P(P; x) exp[i/h(Px —Et)], (2.2)

there being one such solution for every value of p. The
most general physically acceptable wave function is
then expressible as

charges outside a crystal, or on its surface. Figure 1(c)
represents the total potential energy of an electron in
the presence of a foreign ion with excess positive charge.
Figure 1(d) represents the potential energy of an elec-
tron near the surface of a crystal that has a negative
surface charge and a corresponding positive Schottky
layer, where the negative charge density falls below
that existing in the interior of the crystal.

The present paper falls into two parts. The first is
concerned with qualitative considerations that make
clear the existence and nature of localized surface and
impurity states in imperfect crystals. The second pre-
sents a quantitative attack on the solution of Eq. (1.3),
for the special case of slowly varying (but not neces-
sarily small) perturbations V(x). The method here
employed is based on the construction of solutions of
the wave equation valid for all x by joining together
solutions valid for a single period of the unperturbed
periodic potential. ' The same basic idea is suitable also
for the treatment of random and abrupt changes in the
potential, such as arise in very impure crystals and
disordered alloys; such problems will be treated in a
paper now in preparation.

II. QUALITATIVE CONSIDERATIONS

A. Semiclassical Discussion

A semiclassical discussion of the behavior of particles
in perturbed periodic potentials can be based on the
consideration of wave packets.

In a perfectly periodic potential there exist, for every
energy E except the band-edge energies, two independ-

~ In the case of perfectly periodic potentials this method has
been used by R. deL. Kronig and W. G. Penney, Proc. Roy. Soc.
130, 499 (1931), for the special case of square-mell potentials. It
is discussed at length, for more general types of potential, in
reference 1.It has been employed by Shockley (reference 3) in the
discussion of Kq. {1.2).

+(x, t)=
J a(p)P(p; x) exp[i/h(px —Et)]dp, (2.3)

&&exp{i/h(P po)[x —(dE/dP—)pot]I. (2.4)

This has the form of a progressive wave with energy Eo,
momentum po, modulated by a function of x and 3 given
by the integral. If t is increased by /U=na/(dE/dp)ro
and x by Ax= nu, then both P(p; x) and the exponential
are unchanged, and the integral has the same value as
before: after the interval At the form of the wave packet
is unchanged except for an increase Ax in all coordinates.
The wave packet thus moves as a unit with velocity

n= (dE/dP) r po, (2.5)

undergoing (in this approximation) only changes in form
periodic with period u/e.

Equation (2.5) for r is valid both for free particles
and for particles in crystals; in crystals, however, p is a
quite diGerent function of E, and e depends on E in a
quite diferent way. If the periodic variation in the
potential is small, p will approximate closely to the
classical momentum for constant potential, and one
can write

E=p'/2m, (2.6)

except for energies near the band edges. Where this is

E being a single-valued function of p. If a(p) is very
small except in a limited range about a mean value po,
4 may be a wave packet describing a particle with well
defined (but not exactly defined) position and effective
momentum. In the small range about po in which the
integrand is appreciable, one may represent px Et by-
the first two terms of a Taylor's expansion in powers of

(p —po), to obtain
+Ig)

%(x, t) =exp[i/h(P, x—Eat)])I dpi'(p)P(P; x)
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valid the velocity v=p/m of the wave packet is that
of a classical particle with the same energy, momentum,
and mass. Near any band edge one has, however, in
any case)

E E,—= (p —p.)'/2m*, (2.7)

m* being the effective mass of the particle at the band
edge. The velocity of the wave packet,

v= (p —p,)/m", (2.8)

is then that of a "classical" particle with kinetic energy
E E„—momentum p —p., mass m*. Near the bottom
of a permitted band E—E, and m~ are positive, but
near the top E—Eo and m* are negative.

The signi6cance of a negative effective mass becomes
particularly clear when one considers a particle moving
in a periodic potential, but subject to an additional
constant force Ii. This problem was treated, very early
in the development of wave mechanics, by Bloch, 'who
showed that the mean momentum of a wave packet
changes with time in the classical way,

dpo/dt =F, (2.9)
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FIG. 2, Motion of a particle in a periodic potential, subject to an
additional constant force to the right.

' F. Bloch, Zeits. f. Physik 52, 555 (1928).' H. Jones and C. Zener, Proc. Roy. Soc. 144, 101 (1934).' C. Zener, Proc. Roy. Soc. I45, 523 (1934).' W. V. Houston, Phys. Rev. 57, 184 (1940).

except near the band edges. It has been shown by
Jones and Zener, ' Zener, ' and Houston' that as the
momentum and energy of the packet reach those of a
band edge it is split by a partial Bragg reflection; the
particle which it represents may have its momentum
changed abruptly (reversed in sign in the one-dimen-
sional case) or it may continue to increase, with a cor-
responding jurnp in energy to the next permitted band.
The probability of reflection is very great, unless the
forbidden band is narrow. Attention is called par-
ticularly to the work of Zener, who has computed the
probability of transmission using ideas closely related
to those of the present paper.

The motion of such a packet subject to a constant
force to the right is illustrated in Fig. 2. Let its initial

FIG. 3. Potential and band edges in a periodic potential perturbed
by an additional constant force to the right.

energy be near the top of the second permitted band,
and its momentum po positive. Its position on the E, p
diagram and in space are indicated in Fig. 2. by the
numeral 1. As po increases at a constant rate the energy
of the packet will increase, but

~ po —p, ~
and v will

decrease. Thus a force to the right produces an accelera-
tion to the left: the ratio of these quantities, the efI'ective
mass, is negative. As the energy of the electron reaches
the top of the permitted band the packet comes to a stop
(points 2 in Fig. 2) and reverses its direction of motion.
This reversal of p brings the momentum to point 3. As
the packet moves to the left it loses energy; its velocity
increases until, in the middle of the band, it may
approach the classical value for a free electron. As the
energy approaches the bottom of the band the velocity
again decreases and the electron begins to move like a
particle of positive efI'ective mass m*; it comes to a stop
at the bottom of the band (point 4). It now undergoes
a change in its direction of motion, through Bragg
reflection of its momentum to point 5, and its energy
increases as it moves to the right until its original
position and energy are regained. Since the total change
of momentum in the cycle is h/u, the period of the
oscillation will be

r =&/Fa (2.10)

It may be noted that for a cell diameter of 4A and an
applied field of 1000 volts/cm the period of oscillation
of an electron in a crystal would be about 10 "sec., in
the microwave region. However, since the distance
traversed in such oscillations would be of the order of
10 ' cm, much greater than the mean free path in most
real crystals, it may be dificult to observe them in
nature.

Instead of treating this motion as one of variable
energy in a periodic potential 6eld, one can treat it as a
motion with constant total energy in a periodic poten-
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tial 6eld perturbed by the addition of the potential

V(x) = F—x, (2.11)

X r
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FIG. 4. Stable oscillations of a ~vave packet in a perturbed
periodic potential.

from which the constant force Ii is derived.
Assume now that the perturbing potential V(x)

changes slowly as compared with the periodic potential
W(x) of the crystal, though its total effect need not be
small. (If the particle is an electron in a crystal, and the
constant force is due to a field of 1000 volts/cm, V(x)
will change by some 10 ' ev in a cell diameter, whereas
the variations in the crystal field will be of the order of
1 ev or more. ) One can then suppose that the nature of
the band structure, determined by the form of the cell
potential (or, more properly, by the potential in a
limited sequence of cells) will be the same as in the
unperturbed case, but that the bands will everywhere
be shifted up or down by the amount of the perturbation
energy V(x) in that region. This is a suitable basis for
qualitative thinking about such problems (see reference
8). As an illustration of this situation, Fig. 3 greatly
exaggerates the dimensions of the cell and the change in

potential across a cell. A particle with energy E will

be in a permitted band between xi and x2, in forbidden
bands between xo and xI, or x2 and x3. The oscillation
of the wave packet described above is an oscillation
between x& and x2, with speed at any point correspond-
ing to its position in the band at that point. Reflection
occurs with high probability when the packet is about
to enter a forbidden band, but there is a small prob-
ability of transmission to the next permitted band
(splitting of the packet).

The generalization to slowly varying but non-linear
perturbations V(x) is immediate. Figure 4(a) shows a
periodic potential modified by a perturbation V(x)
downward, say the change in potential energy of an
electron in a crystal due to a local excess of positive

charge. A band edge of energy E, in the unperturbed

crystal will then lie at energy E,+V(x). If a wave
packet has an energy everywhere so near the band edge
that Kq. (2.7) applies, one will expect it to move at any
x like a particle of mass m*, kinetic energy E E, —V(x—),
and potential energy E,+V(x). For the energy illus-
trated it would then oscillate between the turning
points x& and x2 where the energy of the particle equals
the energy of the band edge.

Similar stable oscillations of a packet can occur when
the particle is subject to a local repulsive force, if its
energy lies as shown in Fig. 4(b). Its oscillation will be
that of a particle of negative mass m* in a region of
negative kinetic energy E E, V(x—), o—r, in more
familiar terms, that of a particle of positive mass

~

m*~,
positive kinetic energy E,+V(x) E. It ca—nnot pass
outside the range xI&x&x2, for there its energy would
lie in a forbidden band.

It will be noted that the energy of these stable oscil-
lations lies outside the permitted band for the unper-
turbed crystal —below if the potential is perturbed
downward, above if it is perturbed upward.

B. Discussion in Terms of Waves

In essence, the preceding section applies to the dis-
cussion of perturbed periodic systems a particle picture
derived from the wave-mechanical treatment of perfectly
periodic systems. It is useful for some purposes, and is
commonly applied in discussions of rectihcation at
crystal surfaces. The validity of the method is limited,
however, for it leaves out of account characteristic
wave phenomena that appear in imperfectly periodic
systems: quantization of energy, the penetration of
barriers, and refiections due to potential changes. For
purposes of qualitative argument, these deficiencies can
be corrected by use of the following wave ideas:

1. Let P+(E;x) and P (E, x), as defined by Kq.
(2.1) and discussed at length in reference 1, be wave
functions for the unperturbed periodic potential. If
V(x) is slowly varying, then, in any small region there
V(x)=Vq and the potential is effectively periodic, the
wave equation has good approximate solutions of the
form P+(E Vo, x) and rP (E V—o, x). In a permitte—d
region these are periodic functions modulated by pro-
gressive waves; in a forbidden region they are periodic
functions exponentially attenuated to the right and to
the left, respectively.

2. In a limited region one can express any solution
approximately as

Q=AP+(E V(x); x)+Bf (E U(—x); x), (2.12)—
where A and 8 are constants.

3. In any region, however long, where the perturbing
potential is constant, Kq. (2.12) will give an exact
solution.

4. AVhere V(x) is slowly varying one will have slow
variations in the form of f+ and P, and the appropriate
values of A and 8 for exact representation of a given f
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will also change slowly with x:

/=A(x)P+(F. V(x—); x)+B(x)f (F. V(—x); x). (2.13)

It must, however, be remarked that the problem of ex-
tending solutions of the form of Eq. (2.13) from a per-
mitted to a forbidden region is completely parallel to
the problem of connecting %.B.K. solutions for non-
periodic problems across a classical turning point.

Let us now return to the problem of Fig. 4(a),
a.ssuming that V(x) =0 outside a finite range of x. If P
is to be bounded as x—+~, and thus be physically
acceptable, it is essential that B(x)=0 in the region of
large positive x. For any given E this can be satisfied

by only one independent solution of the wave equation.
If P is to be bounded as x~—~, it is also essential that
A (x) =0 in the region of large negative x. This condition
also can be satisfied by only one independent solution
for a given E. In general these conditions will be incon-
sistent, but for special values of E one can expect to
find a P that satisfies both conditions simultaneously.
Thus one concludes that for discrete energies in the
forbidden band there may exist wave functions that
are physically acceptable. These are exponentially
attenuated away from the perturbation in the lattice,
and represent particles remaining indefinitely in the
neighborhood of the perturbation. One may say that
the particle is trapped in a region where its energy is
permitted, because it is perfectly reQected by the sur-
rounding unperturbed part of the crystal where its
energy is in the forbidden band.

By the same argument one sees that in the situation
of Fig. 4(b) there will be discrete permitted energies
above the permitted band of the unperturbed crystal.

The system of Fig. 3 exhibits the analog of ordinary
weak quantization. For certain narrow bands of energy
there will exist stationary-state solutions of the wave
equation for which B(x) vanishes near x3 and A(x)
vanishes near xo. Such solutions will be oscillatory in
the central permitted region, strongly attenuated in the
forbidden region on either side, and very small in the
permitted regions beyond. Particles known to be in the
central permitted region will have one of these weakly
quantized energies with very high probability. In the
course of time, however, they may penetrate the bar-
riers formed by the forbidden bands and appear in
nearby permitted regions.

The spacing of the weakly quantized states is easily
determined. It is obvious that if P(x) is a solution of
the wave equation of this system for energy E, then
if(x na) is a solut—ion for energy 8 nFa, where e—is
any integer. The spacing of the weakly quantized
states is thus DE= Fu and the frequencies emitted in
transitions between them will be

p= N(Fa/h), (2.14)

as one must expect also from Eq. (2.10).
Figure 5 represents the potential near the surface of

a crystal, with the potential periodic inside the crystal

foasl oo«

x a

FIG. 5. Quantization of the energy of "end states" of a
terminated periodic potential.

(x)0) and having the form of an image force potential
outside. Part of the band structure for the periodic
potential is sketched. Consider first the solutions for
the band-edge energy E,. A solution mell-behaved for
negative x will have exponential character in the non-
classical region to the left, will oscillate in the classical
region near the crystal, and will reach x=0 with definite
slope-to-magnitude ratio. On the other hand, for x&0
there will exist only one (see reference 1) physically
acceptable, periodic solution, say with zero slope at the
edge of the first cell, x=0. (Symmetric cell potentials
are assumed; then the well-behaved solution has at the
cell boundary either zero slope or zero magnitude. )
These two functions cannot in general be fitted together
to form a continuous physically acceptable solution.
As E is lowered, however, the acceptable solution for
negative x will reach x=0 with smaller slope-to-mag-
nitude ratio, whereas the well-behaved solution for
x &0 will have a greater and greater value for this ratio.
For some E these values will become equal, and there
will exist a continuous quadratically integrable solution
of the wave equation, exponentiaHy attenuated as
x—+&~. This represents a discrete energy state in
which an electron is trapped near the surface of the
crystal; it cannot move away from the crystal because
of the image force, and it cannot go far into the crystal,
being perfectly reQected because its energy is in the
forbidden band of the crystal. Such surface states can
occur only for energies in the forbidden bands of
crystals; they may be above or below nearby permitted
bands.

It would be incorrect to infer that localized electronic
states of energy E can arise only when E is a permitted
energy in a region surrounded by other regions where E
is forbidden or less than the potential energy. Figure
6(a) illustrates the termination of a periodic potential
by an abrupt potential jump. For energy E the entire
region x &0 is a non-classical one, and for x&0, E is a
"forbidden" energy. Nevertheless, if E is proper1y
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chosen there may exist a P large near x=0 but ex-
ponentially attenuated as x~&~. This will occur only
if the forbidden band in question has the right character.
A solution well-behaved for x&0 necessarily has a
positive slope-to-magnitude ratio at x=0, and can
therefore be fitted to a well-behaved solution for x)0
only if this well-behaved solution, P+, has a positive
value of o.+.

It is shown in (I), Eq. (2.39), that o+ will be positive
in some forbidden regions, where Np /Np is positive, and
negative where No'/No is negative; all forbidden bands
of a crystal may have one character, or all the other, or
the two types of forbidden band may alternate. At
any rate, these localized states may arise in any band
for which 0+ is positive. The electron is then trapped,
but not in a region where it is to be expected by either
classical ideas or by those derived from consideration
of infinite crystals Sho.ckley's conclusions (reference 3)
concerning the location of surface states in forbidden
bands apply to states of this type, but not to those con-
sidered in the second preceding paragraph.

Figure 6(b) illustrates another situation of this sort,
as where crystals of two different types meet. There can
then exist quadratically integrable P's for discrete
energies E in the forbidden band for both crystals—
provided the forbidden band to the right is one of
positive uo'/No and the band to the left is one of
negative No'/uo, or conversely. In such cases it is pos-
sible to fit together smoothly at x=0 a solution for
x&0 attenuated to the right and a solution for x&0
attenuated to the left. Thus one can have localized
electronic states existing at ideal crystal interfaces, with

f OI.QLOgK, N

boa, 5&00 E N

pd pt p/8 (3 I)
The local value of p& will then satisfy the relation (see
Eq (2&))

E E, V(x) = p—g'/2—m*. (3.2)

In the semiclassical approximation, the motion of the
particle will be that of a classical particle with mass re*,
energy E, potential energy E,+V(x). We have seen
that this approximation has the defects to be expected
when particle ideas are applied but wave ideas are more
appropriate. It is therefore natural to guess that a more
satisfactory description of the behavior of the particle
would be given by a wave function 4 that satisfies the
general wave equation for a particle of mass m* and
potential energy E,+V(x):
—(h'/2m*) (8'4/Bx')+ I E +V(x) }4

= —Pi/i) (BC/Bt) (3.3).
Ke shall be particularly interested in the solutions with
definite energy E. These have space factors p(x) which
satisfy a corresponding stationary-state equation:

—PP/2m*) (d'4/dx')+ I E.+V(x) }y= E@. (3.4)

These equations will be called the "effective-mass
equations. "

The relation between the solutions 4 and @ of the
effective-mass equations and the solutions 4' and P of
the ordinary wave equations for the same system is
particularly clear when V=O. Equation (3.4) then has
the solutions

@g——exp I W (i/Ii) [2m*(E—E.)]'x }
= exp[a(i/Ii) pox], (3.5)

and Eq. (1.3) the corresponding solutions [see (I),
Section IV]

energies in the forbidden band for both types of crystal.
The existence of such states is easily understood, how-
ever, since the potential deviates strongly from perio-
dicity in the region where the two types of potential
meet; for an electron in this region the forbidden bands
of the individual crystals have no absolute significance.

III. THE REDUCED-MASS WAVE EQUATION

We now turn to the problem of treating in detail
the wave equation for a perturbed periodic potential.
In preparation for a more systematic attack, an intuitive
approach to the problem will first be described, with
attention restricted to cases in which the energy E of
the particle is everywhere near the energy E,+V(x) of
a band edge of the perturbed system, as in Fig. 4.

I.et pi denote the effective total momentum of the
particle, as defined in (I), Fig. 4; let p&. be the value of
p& at the band edge, and let

Pro. 6. Occurrence of localized states in forbidden bands.

&+=expL+(&I&)pox]I' (E; x). (3 6)

Here the 4's appear ln the 4 s as factors modulating
Periodic functions. Further, Fq. (3.3) has been so
constructed that it will have wave packet solutions
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behaving like the wave packet solutions of

—(h'/2m) (8'4'/Bx')+ {W(x)+ V(x) }q
= —(h/i) (8O/R) (3.7)

wherever the ideas of the semiclassical discussion are
valid. The similarity of + and 4 extends, however, only
to the envelopes or modulating functions of the wave
packets; the local wave-length of the packet 4 will be
h/pd, whereas that of 4 will be k/p&. In general, then,
the most that one can expect is that the solutions of the
reduced-mass equation shall play the role of modulating
factors in the true wave functions. They will then give
an incomplete, but perhaps very useful, representation
of the electronic state. In particular, if

y(x) = @(x)P(x), (3.8)

where P(x) is not necessarily periodic but has the same
integral in the square over every cell, then P*@(x) will

give the relative probability of ending the particle in
the several cells.

The relation between P and p is, in general, more
complex than that of Kq. (3.8). One can, however,
make some progress by guessing as to the form of this
relation, and testing the validity of the resulting P as a
solution of the correct wave equation. This has, in
efFect, been the procedure of Tibbs" and of Peckar. "
Their guesses will be described brieQy.

It has been assumed that the energy E is everywhere
close to the energy of the band edge. One might then
try as a solution

4r(x) =4(x)P(E.;*), (3.9)

where P(E.; x) is the uniquely defined periodic solution
of the unperturbed wave equation having the energy
of the band edge:

Pi' d'P(E x)
-+W(x) P(E, ; x) = E,P(E, ; x). (3.10)

2m dx"

@(x)= C exp {W [i/h] pdx }.

Thus, to orders of magnitude only, one has

dP(E. ; x) p„
P(E, ; x—),

Zx

(3.14)

(3.15)

dy/dx = (p&/ii) y. (3.16)

The error term in Kq. (3.12) is thus of the order of
(p&,pa/m)P. The kinetic and potential energy terms in

Kq. (1.3) are, however, of the order of (p&p/2m)p.
Thus the relative error in P& (or, more precisely, in
d'pr/dx') is of the order of 2pd/p«.

A more sophisticated guess as to the relation of p
to P has been made by Peckar. With the unper-
turbed periodic potential each modulating function
exp(i(pq/h)x) is associated with a different periodic
function P(pz, x). If a solution of Kq. (3.4) is expressible
as a sum of such functions,

@(x)=P c(pg) exp[i(pd/h)xj (3.17)

then one may guess that in P each of these exponentials
will appear with the same coeKcient, but multiplied by
its appropriate periodic function:

Pp(x) =P c(Pd) exp[(i/Ii)P„x]P,(P, ; x). (3.18)

By Kqs. (3.10) and (3.11) the terms on the left vanish
identically; 0'& would be an exact solution of the wave
equation if the quantity on the right also vanished.

One can estimate the magnitude of this term as
follows: If the periodic potential were constant, Eq.
(3.10) would have solutions

P(E, ;x)=Cexp{a[i/kjp„x} . (3.13)

If V is locally constant, solutions of Kq. (3.11) may
assume the form

If one ignores the difFerence between the real and
efFective masses of the particle, writing

—(l'i'/2m) (d'@/dx')+ {E,+V(x) }p =Ep, (3.11)
then Kq. (3.9) defines the approximate solution used by
Tibbs. If this were an exact solution of Kq. (1.3) one
would have (substituting Kq. (3.9) into Kq. (1.3) and
rearranging terms),

li'-' d'P(E, ; x)
y(x) ——— — + (IV(x) —E,)P(E,; x)

2f)l f'5x

This is the solution proposed by Peckar, reduced to the
one-dimensional case. If one assumes that the sum
contains only terms with pz so small that Pd(pz, x) can
be replaced by P(E„x),then this solution becomes

Al(x) =4(x)P(E. ' x) (3.19)

identical with Tibbs' except for the use of the reduced
mass in the calculation of p(x). This is the only solution
that Peckar examines in detail. He shows that the errors
in this solution are of relative order pq '/p~, ', where

p,» is the largest value of p~ appearing in an important
way in the Fourier expansion of @(x), Kq. (3.17). Thus
the use of the reduced mass in computing @(x) will
greatly improve the accuracy of the solution fr(x), at
least in cases where p~ is not too large. It will appear
later that Kq. (3.18) defines a still more accurate
solution. Unfortunately, the mathematical and prac-
tical difficulties in the use of such expansions are
excessive.

5' d6 dP(E. ; x)
(3.12)

m dx dx
'0 S. R. Tibbs, Trans. Faraday Soc. 35, 1471 (1939)."S.Peckar, J. Phys. U.S.S.R. 10, 431 (1946). The author is

indebted to Dr. K. I.ark-Horovitz for calling his attention to this
paper.

k'-' d'@
+P(E„x)—— + (E,+ V(x) E)y-

28s dx
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IV. CONSTRUCTION OF COMPJETE SOLUTION
BY JOINING CELL SOLUTIONS

We now apply to the treatment of the perturbed
periodic wave equation the method, developed in (I),
of constructing a complete solution of the wave equation
by joining cell solutions. This leads to an analytic
solution closely allied to that of Eq. (3.18), but of more
convenient form, and to other solutions that are still
more accurate and more generally applicable.

A. De6nitions

We shall assume that the potential consists of two
parts, a periodic potential W(x), which for simplicity
we shall take to be symmetric about the center of each
cell, and a slowly varying potential V(x), which can on
occasion be treated as constant within any single cell.

Since the total potential varies from cell to cell, the
special cell solutions of the wave equation, as discussed
in (I), will diGer from cell to cell. For the nth cell,
na&x&(n+1)a, we define the y solutions of the wave
equation y»(E; x) and y2„(E;x), such that

y& (E;x)=y&(E V„;x—n—a), [na&x& (n+1)a], (4.9)

P„p(E;x) =Pp(E V„;x),— (4.10)

(by the periodicity of P~), and

p.=p(E V-)- (4.11)

In the above notation all quantities appear to depend
on two parameters, E and n; in fact, however, they
depend on a single parameter. If the perturbing potential
in the eth cell is treated as constant, equal to V„,then
the special functions defined above are solutions of

h'/—2m(d'f/dx')+ W(x) P = (E V„)P—. (4.8)

Since W(x) is the same in every cell, the forms of the
cell solutions, and the values of the constants derived
from them, depend only on E—V„.Let the solutions of
the unperturbed problem in the zerothcellbey~(E;x) ~

the periodic functions P~(E; x), the associated con-
stants p(E), p(E), and so on. Then all the quantities
defined in the preceding paragraph are given by rela-
tions of the form

y»(E; na) = 1, y»'(E; na) =0,
y2„(E;na) =0; y2 '(E; na) = 1.

We define also the self-matching solutions

f„~(E;x) =y&„(E;x)ao.+y2„(E;x)

such that
f„~'(E;na) f„~'(E,(n+1)a)

f„~(E;na) f„~(E,(n+1)a)

(4 1)

(4 2)

(4.3)

In a detailed calculation all quantities could thus be
determined with reasonable ease, even by numerical
integration, for any special form of W(x).

It is now a simple matter to define the numbers and
functions considered above as continuously variable
with x. Ke shall write

p(x) =p(E—V(x)), ~(x) = o (E—V(x)), (4.12)

gOn +on
pn=

gonlon

(goo NO+') '
&n= &n+= )

(go So

(4.4)

(4.5)

rn+ =
~~pn

=exp[a(i/h) p„a]. (4.6)

The subscript + is here dropped in the case of 0, as
having no further value, since on = —0.„+will not
appear; p or p„will denote the reduced momentum of

(I), Fig. 3. Finally, we define the functions P„~(E;x),
periodic with period a, which have in the nth cell the
for m

Since the perturbing potential within each cell can be
treated as constant, we can define the solutions g„(E;x)
and n„(E;x), symmetric and antisymmetric, respec-
tively, about the center of the nth cell. For each cell we
define the quantities cs;&"', gong gon y +ony Non ~ pny ~n+y

a +, p, and pq„, all of which depend on the energy
and satisfy, for each n, the relations given in (I). In
particular, we note that

thus defining continuous functions which take on at
the center of the nth cell the values p„and o„,respec-
tively. Treatment of p and 0 as functions of E V(x)—
corresponds to the assumption, made in the preceding
qualitative discussion, that the perturbation every-
where displaces the band edges by an amount V(x).
Similarly,

P~(x) =P~(E—V(x); x) (4 13)

-will be functions which change form slowly from cell to
cell, taking on the value 11 at the left edge of each
cell, and within that cell approximating very closely to
the periodic functions P„+(E;x) defined for that cell.
As in (I), Eq. (4.10), we also define the functions

where 0&p& h/4a,
'

Pd~(x) = exp(+in-x/a)P~(x), l (4.14)

where h/4a & p & h/2a.

At every band edge Ed+ and Eq approach a common
form, the form of the periodic solution at that band
edge, which is periodic with period a or 2u, according
as p is there 0 or h/2a.

Since p changes slowly, one can write

P„~(E;x)= exp[a (i/h) p„(x na)]f„~(x), —
[na& x& (n+1)a]. (4.7)

(n+1)a

r„~=exp a[i/h] f pdx . (4.15)
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One can also write

r„~'=exp w[2i/h5)
na

pddx , (4.16)

P= A „yi„(x)+B„y,„(x),
na&x& (11+1)a,

(4.17)
n=o, &1, &2

because the coeKcients A „and8 give direct and useful
measures of the magnitude of the wave function. By
the definition of the y cell solutions they are, respec-
tively, the magnitude and slope of tP at the left edge of
the eth ceH. Together, they give a fairly precise measure
of the local amplitude of tt: if 1P can be treated as
locally sinusoidal with wave-length X=h/Pi LPi being
the total effective momentum of Fig. 4, (I)5, then one
has

yi(x) = cos(21rx/X), yo(x) = (X/21r) sin(21rx/X), (4.18)

ip,„'=A.'+ (X/21r)'B.'. (4.19)

These virtues are not shared by the coeScients ap-
pearing in other such expressions for |t. For instance,
the coefFicients a and P„in the alternative expressions

0=~.f-+(x)+P-f. (x), -
ip =n„expL(i /h) p„(x ria) 5P„+—(x) (4.20)

+p„expL—(i/h) p„(x—Na) 5P„(x);.
are not always satisfactory measures of the magnitude
of 1P because the functions f„~,P„~may change strongly
in amplitude, tending to become inhnite at band edges
~here 0 becomes in6nite.

Continuity of P and its first derivation at x= (n+1)a
requires

A. „+g——Cii(")A „+Ci2(")8„,
(4.21)

~n+I ~21 ~n+ ~22 ~n.

By Kq. (2.17) of (I), these relations can be expressed as

An+1 {10ngQn+gOn NOn}An {2110ngOn }Bnr&

Bn+1= {2NOn gOn }An+ {NOn gOn+gOn NOn}Bni (4 22)

on further use of Kqs. (2.14), (2.36), and (2.39) of (I),
they become

1 1
A„+,=-(r„++r„)A„+(r„+—r„)B„,

2 20~
(4.23)

since a change of the integrand by —h/2a does not
aftect the value of this quantity.

B. The Connection Formulas

An arbitrary wave function P can be expressed within

the nth cell as a linear combination of any pair of
independent cell solutions. A particularly useful ex-
pression of this type is

It is evident from Eqs. (4.21) and (4.22) that the coef-
ficients in these relations all remain 6nite, even at
band edges where r may vanish or become inhnite.

Although these connection formulas are of simple
structure, they do not dehne a particularly simple
behavior of the coeKcients A„and 8„;even when
V(x) is constant, and one can write O.„=o,r„+——r+,
one has as the solution of Eq. (4.23)

1 1
A„= (r~n+r —")AO+ (r+"—r—")Bo,

2 20'

0 1B„=(r~" r-")AO+—(r~n+r -")BO.
2 2

n —1

4(x) =C-+ II '+ f-+(x)+C= II '- f--(*),(423)
r=o

(ria&x& (n+1)a),

one can be sure that the coefficients C„+will be constant
throughout any region where V(x) is constant. " One
might also expect that they will vary slowly wherever
V(x) varies slowly. This is not the case, however, in
the neighborhood of band edges where o, f„+,and f„
become inhnite.

This difhculty can be avoided in the following way.
Let such a band edge occur in the zeroth cell: 00= ~.
Since, by Eq. (4.2),

{f-+(x) f. (x) }=yQ-(x—)-
2a„

'
J

(4.26)

fn
—1

1
n —1

l II " + i f +(*)+ II " —f (x), (42&a)
2 l. ~=0 v~0

ma &x& (ri+ 1)a,

(I=0, y1. ). (4.24)

In studying the variation of A„,B„,and p with Oo and
x it is therefore convenient to shift attention for the
moment to parameters that are constant when V(x)
is constant and change only slowly a,s V(x) changes
slowly.

In (I) the functions f+(x) have been so defined that
when V is constant the coeificients n„and P„ofEq.
(4.20) change from cell to cell by factors r+ and r,
respectively. Thus, if one writes

&n
B„+1= (r ~ r)A + (r„++r—„)B—. —

2 2
~ This notation does not express mell the situation for n&0, but

the generalization is obvious.
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n —1

F.-(*)= II "+ f-+(*)
20~ & 0

II r, f„(x), (4.27b)

do not tend to become infinite as e—+0 and the band
edge is approached. If, then, one writes Eq. (4.25) as

P(x) =D„+F„~(x)+D„F„(x),—

no&x& (n+1)a, (4.28)
where

D„+=C„p+C„,D„=a„(C„+—C„), (4.29)

one can expect D„+and D„ to vary slowly when V(x)
varies slowly, even at the band edge. Comparison of
Eqs. (4.17) and (4.28), with use of Eqs. (4.26) and
(4.27), shows that

dDg
D„+1+—D„~—~

z=(n+1) a

We write also

(4.35)

possibly near the band edge, n=0, where 0 may vanish
or become infinite. It is easily verified that they remain
small even at the band edge.

C. Replacement of the Connection Formulas by
Differentia1 Equations

Ke shall now replace the difference equations that
define the numbers D„+by differential equations de-
fining continuous functions D+(x) and D (x) such that

D-+= D~([n+k3a) (4.34)

with good approximation, for not-too-long ranges of
integration. Since D+(x) and D (x) vary slowly, we
can write

1 n —1 n —1

A.=- II r.++ II r,— D.'
~=0 ~=0

&++1 urn —u—(lna)
z=(n+1)a

(4.36)

' t--
+ -

) II '+—II r.-1D--,
20~ j r=p 7=0

0~ n —1 n —1

~-=—II r.+—II '- D-'
2 ~=o ~=o

1 n —1+- II, +II, D.—,
v=0 v=p

(4.30)

factors multiplying this expression vanish at the band
edges, where the approximation may not be good.
Finally we treat the upper limit in the integrals of Kqs.
(4.32) and (4.33) as continuously variable. " We thus
obtain the de'erential equations

dD+ 1 d 2 f*=-—(lna) cos — pddx —1 D,
dx 2dx 5 &0

idr(1) 2———
1

—
(

sin —
I padx D,

2dxI a)
where D„+and D„canbe expected to vary slowly so
long as V(x) varies slowly. This result is an obvious
generalization of Eq. (4.24) to the case of variable
potential, except in that it is essential to treat as the
zeroth cell any cell wherein 0 = ~.

Substitution of Eqs. (4.30) into Eqs. (4.23) yields
the connection formulas for the D's. By Eq. (4.16),
one has

& (4.37)
dD 1da 12= ———Sln ' —

~ pe& D+
dx 2dx la J,

1 d 2--—(lna) cos — p~dx -1 D
2dx a, 1

)
(a+) )a

II r,~'=exp w-
e=0 k~0

The connection formulas can then be written as

(4 31) This cumbersome relation can immediately be replaced
by a much simpler one.

We define functions A(x) and B(x) by the relations

&++1—&n
+ D +—

II(a+oa
cos

20„+1 k ~0

1p„dx —1 D„+ A(x)=D (x) cos —
~ p,dx
0

i (a.+)—a.) t 2 (
("+')

+— sin —
~~ pddx D, (4.32)

Z 1
+ D (x) sin — p,dx,

a(x) 5 ~o
» (4.38)

~ (n+1)a

D„+, D„=——(a„+&—a—„)sin —
~l pddx D +

r
B(x)= ia(x) D~(x) sin —

I padx
k&0

~
(n+1)a

cos
h 0

padx —1 D„.(4.33)— 1
+D (x) cos —

~ padx .
5~0

It is evident that the coeScients on the right are small,
and the variation of the D's is relatively slow, except

"In the interior of a pass band the integrals change rapidly
with n, and this step can be justi6ed only because these terms are
negligible.
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A„=A(na), (e even). (4.40)

(The small change of D+(x) in the distance a/2 ha, s
been ignored. ) If n is odd, changes in sign may be
required in Eqs. (4.40), but this is a matter of little
interest, since the magnitude of P is suKciently indi-
cated by the values for even e.

When Eq. (4.38) is substituted into Eq. (4.37), ex-
tensive cancelation of terms occurs, and one obtains
simple equations for A(x) and B(x):

dA i pg(x)
8 (4.41a.)

dx /i a(x)

dB—=—pd(x)a. (x)A.
dx A

(4.41b)

The coeflicients p&(x)/0(x) and pz(x)0(x) are every-
where finite; their values at the various types of band
edge are given in (I), Eqs. (5.26) and (5.27).

From Eqs. (4.29), (4.38) it follows that if

These relations are the continuous analogs of Eqs.
(4.30). If m is even,

rs Rc z rISQ n —1

exp &— p~dx=exp &— pdx =Jr,~; (4.39)
5~0 5~0 7=1

if m is odd, the exponentials are identical if pq
——p, but

differ in sign if p~
——p —(Is/2u) Th.us one has in any case

These cell functions are approximated within every cell
by the continuous functions (see Eqs. (4.10), (4.13))

Z

tP~(x) = exp &— Pdx Pg(E—V(x); x)
k~0

=exp +— pox Pq+(E —l'(x); x). (4.45)

Similarly, the functions F„+(x) are approximated
closely in every cell by

F+(x) = L4+(x)+0-(x)7/2
F-(x)= Lf+(x)—0 -(*)7/2~(x).

(4.46)

P(x) =C+(x)P+(x)+C (x)tI' (x), (4.48)

or

Pg+(E l'(x); x)+—Pg (E V(x); x)—
P(x) = A (x)

2

Since D„+and D are closely approximated in every
cell by D+(x) and D (x), one can replace the cell-by-cell
representation of P in Eq. (4.28) by a closely equivalent
continuous representation:

P(x) =Di(x)F+(x)+D (x)F (x). (4.47)

By use of Eqs. (4.42), (4.44), and (4.46) this can also be
written as

D (x)
~D„(x)+

(r(x)

B(x)
A (x)+

o.(x)

0 (x)
C (x)=- D„(x)—

2

I. (4.42)

Pd+(E, U(x); x) Pd —(E, V(—x); x)—
+B(x) — — ———— — . (4.49)

2a (x)

Of these representations the last is the most convenient.
It has been shown that the functions A(x) and B(x) by
themselves give a good indication of the amplitude of P.
Unlike g+ and tP, the quantities in brackets are
everywhere finite; the forms which they assume when
E V(x) =E, are giv—en in (I), Section V.

1 B(x)=- A(x)—
a(x)

1
exp +— pgdx E. Generalization of the E6'ective-Mass

Equation

then
C-+ =C+([~+l7o). (4.43)

z

=exp w —
I pox P,„+(x).

k

D. Continuous Representations of g
Using the functions just defined, one can now replace

the cell-by-cell representation of P by a continuous one.
By Eqs. (4.7), (4.14), and (4.15), one can write

n —1 rg r,~ f„~(x)=exp a—
I pdx P„+(x)

s=0 0

[na&x& (~+ 1)a7 (4.44)

We shall now derive and interpret the effective-mass
equation, as it appears in the treatment of problems
such as are illustrated in Fig. 4.

We assume that the energy E to be considered lies
everywhere closer (in p) to one band edge than to any
other, thus avoiding the possibility that pg will be
discontinuous at any point. The quantities pz(x)/o(x)
and pq(x)0. (x) which appear in Eq. (4.41) will then be
continuous everywhere, and, as follows immediately
from (I), Eq. (5.20), both will have zero derivative at
the band edge. One of these quantities will also vanish
at the band edge Lsee (I), Eqs. (5.26), (5.27)7. We shall
assume that this quantity is p~(x) 0 (x) (i.e. , that g,

' or
u.'=0); when pq(x)/0(x) vanishes the roles of A(x)
and B(x) are simply interchanged.
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By Eq. (4.41a),

d'A i P„(x)d8 i d f'P(x)~
+ B-—

Idx' h o(x) dx h dx(o(x))
(4.50)

Fig. 4), one sees easily that the effective potential
V,«(x) tends to be larger than the real perturbing
potential. In this more general case, Eq. (4.54) is
replaced by

The last term will vanish at the band edge and be
small everywhere, if V(x) varies slowly. We therefore
neglect it. Using (4.42b), we obtain

(d'A/dx')+ (p o'(x) /h') A =0. (4.51)

If E is everywhere so close to E,+V(x) that Eq. (3.2)
is valid, Eq. (4.51) becomes identical with the effective
mass equation, Eq. (3.4), and one can write

and, by Eq. (4.41a),

A(x) =@(x) (4.52)

h o.(x) dp
&(x)=-

i pg(x) dx

Then, by Eq. (4.49), one has

f(x) = P(x)Q(x)+ (dy/dx) R(x)

(4.53)

(4.54)
where

Q(x) = [Pd+(E V(x); x)+P—g (E V(x); x))/2,—('4.55)

h Pgi(E V(x); x) Pg—(E V(x—);x)—
R(x) = —. (4.56)

Spy 2

We have thus shown the applicability of the eBective-
mass equation to problems in which there is a well
defined effective mass, but have arrived at a new and
more precise interpretation of its solution p(x).

At the same time, Eq. (4.51) defines a solution of the
perturbed periodic problem that is not limited by the
assumption that the energy E is everywhere so close to
the band edge that Eq. (3.2) applies. For any periodic,
unperturbed potential one can in principle determine
the function pd'(E) In treating . a given perturbed
problem, for a particular energy E, one can determine

pg'(x) =pg'(E V(x)), —(4.57)

and can define a function V.«(x) by the relation

E E, V,ii(x) =pd'—(x)/2—m*, (4.58)

where m* is the effective mass at the neighboring band
edge. Equation (4.51) then becomes

h 'd'A (x)-
+ {E+V ff(x) }A (x) =EA (x). ,(4.59)

2m* dx2

A(x) is thus a solution of a one-dimensional wave equa-
tion involving an effective perturbation energy V,ff(x)
that is in general different from V(x); in particular, it
may depend on the E considered, as well as on V(x).
Since po' increases more rapidly than E E, { (I), —

iP(x) =A(x)Q(x)+(dA/dx)R(x). (4.60)

In principle, f can be determined still more accu-
rately by integrating Eqs. (4.41), without neglect of the
last term in Eq. (4.50). These solutions will not be
discussed here.

F. Signi6cance of the New Solutions

The structure of the wave function given in Eq.
(4.60), and of its less accurate counterpart Eq. (4.54),
becomes clearest when it is written as

1 fs d.A
4(x) =- A(x)+ —.

—P~+(x)
2 zPg dx

dA
+— A (x) ———Pg (x) (4.61).

2 ipse dx

(Note, however, that in this expression the two quan-
tities on the right become infinite at the band edge. ) In
any very small region one can regard po(x) as constant
and can write A(x), a solution of Eq. (4.51), as

A(x) =C, exp{(i/h)pox}+C2exp { [i/h)pox—}, (4 62)

a linear combination of special exponential solutions;
thus,

', {A(x)+-[h/ipojdA/dx }=Ci exp {[i/h )pox} (4.63a)

and

—,
' {A(x) {h/ip—o)dA/dx} =C2 exp{ (i/hj—pdx} (4.63b)

are the locally determined exponential components of
A(x). In each small neighborhood P(x) can then be
formed from @(x) or A(x) by resolving that function
locally into real or complex exponentials of the form
exp{&$i/hjpox}, multiplying each exponential by the
appropriate periodic function Pd+(x) or P& (x), and
adding the results.

It will now be shown that the P(x) of Eq. (4.54),
constructed from p(x), is essentially the solution Pp(x)
LEq. (3.18)7 proposed but not discussed by Peckar. This
solution is not precisely defined unless one specifies the
normalization of the functions Po(pq, x). For sim-
plicity, we shall here assume that the band edge is one
at which the periodic functions defined in this paper
remain finite; specifically, one where g,'=0. From Kq.
(5.22) of (I) and Eqs. (4.55) and (4.56) of this paper, it
follows that

Pg(pg, x) =Q,(x)+ (ipd/h)R, (x)+O(pg'), (4.64)

Q.(x) and R.(x) being the forms assumed by Q(x) and
R(x) at the band edge. Neglecting second-order terms
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in p~, one can then write

tPp(x) = {Pc(Pq)exp[(i/h)Pdx]}Q, (x)

+ {Pc(pz)(ipse/Iz) expL(i/Iz) pdx] }R(x). (4.65)

The erst of the sums on the right is just the initial ex-
pansion of @(x),and the second is dp/dx if (as assumed
by Peckar) one can operate on the expansion term by
term. Thus,

Pz (x) = @(x)Q,(x)+ (dy/dx)E, (x), (4.66)

which agrees with Eq. (4.54) to within terms in pd-'.

The less accurate approximation actually discussed
by Peckar, fzr, in which @(x) appears merely as an
amplitude modulating a periodic function, is obtained
by neglecting the last term in Eq. (4.66). From Eq.
(5.22) of (I) it follows that

Q (x) = g (x)/g (0& & )E.(x) = L(o/2) —x]g.(x)/g. —(o/2)N. (x)/N. ;

R,(x) differs in magnitude from Q, (x) by a factor of
the order of a. The term neglected by Peckar is thus of
order a(dp/dx)/p= Ap/P compared to the term
retained, Ap being the change in p across a cell. This
ratio will be small if E is near a band edge, but it is not
a direct measure of the local errors in ter as a solution
of the wave equation; the magnitude of these has been
indicated previously.

order of a, as has been shown in the case of Q.(x) and
R,(x) at the end of the preceding section.

Now the functions

f+(x) = expL&(i/)z) p~x]Pd~(E; x) (4.70)

are exact solutions of

f"=—(2zzz/Iz')(E W—(x) V—)f (4.71)

for constant V and pd. It follows easily that, under the
same conditions,

22p(f
Pj„"(E;x)a Pd~'(E; x)

251 Pd= ——E—W(x) —V——Pdp(E; x) (4.72)
A2 2m

and that
pd

Q"(E—V; x) =2—R'(E—V; x)
I-2

2m pd——E lV(x) ——V——Q(E—V; x), (4.73)
I22 2m

R"(E V; x) = —2Q'—(E,—V; x)

2m Pd——E lV(x) —V———E(E V; x). (4—.74)
PL2 2m

LdQ(E- V('); -)]/d.'= Q+Q'. (4.68)

Considered as functions of E V(x) or pq, Q and—R can
be expanded in powers of pq'a'/4Iz', with the multi-
plying functions of x having the same order of mag-
nitude. Thus near a band edge 'Q is a small quantity
of the order of

dV d (p~'a'q nz* u'dV

dx dE( 4h') 2 Iz' dx
(4.69)

whereas Q' is much larger, of the order of (p~/Iz)Q
t.zq (3 15)].& and its derivatives are smaller than Q
and its corresponding derivatives by a factor of the

G. Accuracy of the New Solutions

The accuracy of the solutions derived here can be
tested by substituting them into the perturbed-periodic
wave equation, and observing the magnitude of the
non-vanishing terms. For this purpose it is convenient
to make more explicit the dependence on x of the terms
in Eq. (4.60):

f(x) =Q(E—V(x); x)A (x)+E(E V(x); x)A'(x). (4—.67)

We shall distinguish the derivatives of Q(E—V(x); x)
with respect to x in the 6rst and second arguments by
'Q and Q', respectively; a similar notation will be used
with R. Then

Equations (4.73) and (4.74) remain true, in the notation
introduced above Eq. (4.68), even when one treats V as
a parameter varying with x. When pq varies with x
one has

and

pp(x)
,I II

I2'-'

1

dpi'-

'pg'(x)
A — A'.

Ei' dX I2'

(4.75)

(4.76)

On substituting Eq. (4.67) into the perturbed-periodic
wave equation, and using Eqs. (4.73) to (4.76), one
6nds, after extensive cancellation of terms,

2m
P"——{$V(x)+V(x) E,}P-

A'-

1 dp&'
AX+ 2A('Q')+2A'('Q)+-A ("Q)

I2' dX

2pd
A ('R)+ 2A '('E')+A'("E). (4.77)

E2,
-'

The local error in the solution is measured by the
terms on the right. Of these, all but the 6rst vanish if
one neglects the slow variation of Q and R with varying
V, in taking derivatives. As compared with the in-
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dividual terms on the right, this term is of relative
magnitude:

1 dpi''- 2m,
A R —

I W(x)+ V(x) —E I A Q
A' dx

m* t' a(d V/dx) y
(4.78)

m ~lV+&' —Z)
since

(4.79)

near a band edge, where the effective mass is dehned.
The erst of the remaining terms is the largest of these,
and can be shown to be of the same order of magnitude
as the term just considered. It thus appears that Eq.
(4.67) gives a solution for which the error terms in the
wave equation are small, in about the ratio of the

change in perturbation energy across a single cell to
the true value of the local kinetic energy. For a slowly
varying perturbation the solution is locally very ac-
curate indeed; the long-range eGect of accumulated
local errors cannot be discussed here.

Perhaps the most interesting qualitative result of
this analysis is the confidence it gives in the use of the
effective-mass wave equation for the calculation of
stationary-state energies, when V(x) varies slowly. To
each quadratically integrable solution p of this equation
there corresponds a quadratically integrable P with the

same energy, providing a good approximate solution of
the perturbed-periodic equation. The error in the
energy E as an approximation to a stationary-state
energy corresponds to the small error in this P, and not
to the roughness in the arguments usually employed in
arriving at the eGective-mass equation.
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The Radiation Spectra of Barium"' and Lanthanum'"
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The radiations of Ba"' and La"' have been measured with a small 180' spectrometer. For the case of
Ba'" three gamma-rays are present, all of which are converted, with energies 0.16, 0.31, and 0.54 Mev. The
beta-ray spectrum shows the presence of two groups with maximum energies of 0.48 (40 percent) and 1.022
{60percent) Mev.

The radiations of La"0 are complex. Six gamma-rays of energies 0.0932, 0.335, 0.49, 0.82, 1.60, and 2.5
Mev are present, the first three being internally converted. The beta-ray spectrum is resolved into three
groups with end points at 1.32 (70 percent), 1.67 (20 percent), and 2.26 (10percent) Mev. Decay schemes for
these isotopes are suggested.

I. INTRODUCTION

~ 'HE radiations of 12.8-day Ba"' and its daughter,
40-hour La'4', have been re-investigated with the

aim of formulating the mode of decay of these ele-
ments. These isotopes have been studied by numerous
workers' ' and their results tend toward consistency
insofar as energy values are concerned. However, pre-
vious investigations have been fragmentary and no
integrated survey has been reported.

The present work was carried out with a small 180'
spectrometer and very thin window 0-M tube detec-
tion. Equilibrium samples of Ba" and La" obtained

~ Now at Cornell University, Ithaca, New York.
**Now at Tulane University, New Orleans, Louisiana.
W. Rail and R. G. Wilkinson, Phys. Rev. ?1, 321 (1947).

2 D. W. Engelkemeir, Plutonium Project Report CC-1959
(Ausust 1944).

«H. J. Born and W. Seelmann-Eggebert, Naturwiss. 31, 201
(1943).' V. A. Nedzel and M. B. Sampson, Plutonium Project Report
CP-2160 (September 1944).' R. K. Osborne and W. C. Peacock, Phys. Rev. 69, 679 (1946).' L. C. Miller and L. F. Curtiss, Phys. Rev. 70, 983 (1946).' A. Wattenberg, Phys. Rev. 71, 497 (1947).

from Oak Ridge were used. Beta-ray sources were of the
order of 0.1 mg/cm' in thickness. Photoelectron spectra
were obtained with a lead radiator 30 mg/cm' thick.
The procedure consisted of measuring the beta-ray and
photoelectron spectra initially with equilibrium sources,
and Anally with chemically isolated sources of Ba"'
and La'4'

II. EQUILIBRIUM MEASUREMENTS

The composite radiations were erst measured by
using sources in which the constituents were in equi-
librium. Since the gamma-radiation of La"' is complex
and the half-life relatively short, equilibrium photo-
electron measurements furnish more reliable values of
the energies. Subsequent runs with separated sources
were, of course, necessary to identify the gamma-rays
with the correct isotope.

Figure 1 shows the equilibrium photoelectron spec-
trum. The E and L photoelectron peaks associated with
Ave gamma-rays are superimposed on a pronounced
Compton-electron distribution. The photoelectron lines
may be resolved into gamma-rays of energies 0.335,


