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It is shown that the motion of an electron in a periodic potential, such as is found in a solid, plus a slowly
varying perturbative potential, can be derived from the energy in the periodic lattice alone, as a function
of momentum or wave number. A Schrodinger equation is set up, in which the Hamiltonian is the sum of
this energy in the periodic lattice —the momentum being replaced by a differential operator —and of the
perturbative potential energy. The resulting wave function modulates atomic functions to provide a solution
of the perturbed problem. This method is applied to give proofs of simple theorems in conduction theory, to
discuss the energy levels of impurity atoms in a semiconductor, and to consider excitons; all are problems
which have been considered before, but which are treated more straightforwardly by the present method.
Applying the method statistically, the combined Poisson s equation and Fermi-Dirac statistics is set up for
impurities in metals and semiconductors, and for the theory of rectifying barriers.

I. INTRODUCTION

ANY of the most important problems in the
theory of solids concern the motion of electrons

in perturbed periodic lattices. Examples of such prob-
lems are: the eGect of impurities, of the P- or &V-type,

in semiconductors; the behavior of rectifying barriers,
either between semiconductors and metals, or between
I'- and X-type semiconductors; and the behavior of
optically excited energy levels in crystals. All these
problems have received much discussion in the litera-
ture, by methods involving various approximations to
the solution of the wave-mechanical problem of the
motion of electrons in a perturbed periodic lattice. It is
the purpose of this paper to point out that there is a
quite general theorem in wave mechanics, regarding the
motion of an electron in such a perturbed lattice, which
serves to unify the treatment of all these problems. This
theorem was essentially discovered by Kannier, ' and
used by him in discussing excited energy levels of crys-
tals. That problem, unfortunately, is one of the most
complicated to which the method can be applied, and
the theorem has tended to lie buried in Kannier's paper,
attracting little attention, without general realization
of the important simpler problems to which it is ap-
plicable. James' has independently arrived at many of
the qualitative results of the present paper, but is
apparently unaware of the importance of Wannier's
theorem, and bases his conclusions on quite diGerent
and less powerful methods of discussing the problem,
applicable only in the one-dimensional case, though he
has carried his approximations one step further than
we have. A number of other writers have used similar
less powerful methods for special problems. '

*This work has been supported in part by the Signal Corps, the
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3 For instance, S. C. Tibbs, Trans. Faraday Soc. 35, 1471 (1939),

In the present paper, we shall first state the general
theorem, and prove it by a method similar to that
used by Wannier for his special problem. We shall then
apply it to discussion of the important problems, such
as impurity semiconductors and excited energy levels,
which result in discrete energy levels. For problems of
rectifying barriers and surface states, a statistical ap-
proach is more appropriate, and we point out the
relation of our theorem to self-consistent field methods,
and thence to statistical treatment by the Fermi-Dirac
statistics. This leads us to a discussion of rectifying
barriers and surface states, not essentially diferent from
that appearing in the literature, but somewhat more
general and unified.

II. THE MOTION OF ELECTRONS IN PERTURBED
PERIODIC LATTICES

In Appendix I we give a general proof of our theorem;
in this section we shall merely state it and discuss its
applications. The theorem is one which starts by assum-
ing that the problem of the motion of electrons in a
given periodic lattice has been solved, and uses that
solution as the starting point for discussion of the
problem in which the potential is the sum of the original
periodic potential and an additional potential varying
only slightly from atom to atom of the periodic poten-
tial. We 6rst remind the reader of the nature of the
solution of the periodic potential problem. 4 We describe
the solution as if we were considering a metal, although
the extension to non-metals with more than one atom
per cell presents no di6iculties. We surround each atom
by an appropriate polyhedral cell, the vectors from the
origin (located at the nucleus of one of the atoms) to
other atoms being denoted by Q~, so that the potential
is unchanged when we make the translation Q~. Then
each solution of the wave equation can be characterized
by a vector quantity p, of the dimensions of a momen-
tum, such that the wave function is multiplied by a

who discussed excited energy levels in NaCl, and S. Peckar,
J. Phys. U.S.S.R. 10, 431 (1946).

4 We use substantially the notation in J. C. Slater, Rev. Mod.
Phys. 6, 209 (1934).
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factor exp((i/A)p. Q&) when we make the translation
Q~. Bloch' made a well-known approximation to the
form of the wave function by starting with functions
ii(q —Qi) (where q is the vector position of the point
where we are finding the wave function) representing
the wave function of an electron at a vector displace-
rnent q

—Qi, from the nucleus of the kth atom, in the
case where that atom alone was present; such a function
is generally called an atomic function. He then set up
the approximate wave function

t(p, q)=Z Ie pL(i/&)p Q.)IN(q —Q ) (1)

which clearly has the required periodicity property and
which, at the same time, behaves in the neighborhood
of each atom like an atomic wave function.

This Bloch function b(p, q) suffers from two defects.
First, it is not an exact solution of the problem; sec-
ondly, the functions N(q —Qi), for difFerent fi's, are not
orthogonal to each other, so that in calculating any
sort of integrals over the Bloch functions we meet
integrals coming from lack of orthogonality. Kannier'
showed that both diAiculties can be overcome by setting
up a new set of atomic functions a(q —Qi) (see Appendix
I for their definition), similar to the I s near each atom,
but oscillating and falling ofF in amplitude like the
function (sinx)/x at a distance from the atom. These
functions have the properties that they are normalized,
are exactly orthogonal to each other, and when they
are substituted in an expression like (1) they form an
exact solution of the problem of the periodic lattice.
Thus the real solution $0(p, q) can be written in the form

A(p, q) =Z~ 1/»'-I exp'. (i/&) p Q.) I ~(q —Qi) (2)

The factor (1/iV&), where iV is the total number of
atoms in the crystal, is introduced so that iPD will be
normalized when integrated over the whole volume of
the crystal. We notice from (2) that the function AD(P, q)
is periodic in p-space, or momentum space: if p is in-
creased by one of the vectors I'; of the reciprocal lattice,
defined by the relation P;.Qi,, =integerXh, the expres-
sion on the right side of (2) is unchanged. Then the
energy E0(p), the energy of the level associated with a
given p, will likewise be a periodic function of p, being
unchanged when p increases by any one of the P s.
All solutions can then be obtained by allowing p to
range over the interior of the central zone in momentum
space; it is easily shown that, when p is quantized by
the boundary conditions appropriate to a 6nite crystal
with A' atoms, there will be X allowed stationary states.
For a given p, there will, of course, be an in6nite num-
ber of energy levels, just as for an isolated atom. The X
levels continuously joined together, corresponding to
the various allowed p's, form an energy band; we see
that there are an infinite number of such bands. Their
properties and relations to the theory of metals (where

' F. Blocb, Zeits. f. Physik 52, 555 (j.928).

they overlap) and semiconductors or insulators (where
gaps in energy remain between them) are well known.

Now we are ready to consider our problem of the
perturbed periodic lattice. Let the Hamiltonian func-
tion of the unperturbed problem (the kinetic energy
plus periodic potential energy) be HD, so that the F0's
satisfy the equation

HDA(p, q)=&0(p)&0(p q).

Then we wish to find functions f„(q), n being a quan-
tum number, satisfying

W-(q) =&4 -(q),

where H=H0+Hi, Hi being the slowly varying func-
tion of q. We try to express the tP„'s in the form:

4.(q) =Zi +-(Q~) ii(q —Qi).

That is, we try to find a function 4'„(q) which we can
use to modulate the atomic functions a(q —Qi,) to get
the correct solution of the problem, replacing the ex-
ponential function (1/»') expL(i/k) p. q]which is used
in the problem of the unperturbed periodic potential,
in the solution (2). Our theorem now states that 4'„(q)
satisfies the following di6'erential equation, provided II&
varies slowly with position, so that it does not change
its value greatly from one atom to the next:

L&0L—»(B/Bq) 1+Hi(q) j+.(q) =&.+.(q) (6)

Here the first term E0( ihB/Bq) —stands as an abbrevia-
tion for the difI'erential operator in which Eo, regarded
as a function of the three rectangular components of
the vector p, is transformed by replacing p by ihB/Bx, —
p„by —ikB/By, etc. , as in the ordinary kinetic energy
operator in Schrodinger's equation. Fn (6) we then have
a Schrodinger equation for 4'„(q), in which the per-
turbative potential II& appears as the potential energy,
while the kinetic energy operator is derived from the
energy ED(P) of the unperturbed problem by replacing
p by a differential operator. It is this theorem which is
proved in Appendix I, and which was applied to the
problem of excited energy levels by Wannier. ' By means
of it, we electively reduce the problem of electrons in
periodic lattices and additional perturbing potentials
to a problem much like that of free electrons in the
perturbing potential (as we sha, ll show in the next sec-
tion) and hence make the problem of electrons in
periodic lattices not much more complicated than free-
electron theory.

III. APPLICATIONS OF THE GENERAL THEOREM

The erst application which we shall make of our
general theorem (6) is to the motion of wave packets
of electrons in the perturbed periodic lattice. Ke can
set up such wave packets just as well from the functions
+„, which modulate the atomic functions, as from the
functions P„, which take into account the oscillations
in the neighborhood of each atom. It is a well-known



i594 J. C. SLATE R

theorem of quantum mechanics that the center of
gravity of a wave packet moves according to the class-
ical Hamiltonian equations. Since (6) is derived from
the Hamiltonian Eo(p)+Hi(q), we see that the equa-
tions of motion of the packet (writing them in terms of
their rectangular components) are:

~x ~+0 ~y ~~0 ~s ~~0

dt Bp, dt Bp„dt Bp,
(7)

dp. BHi dp„

dt Bx dt

BHi dpi'

8y dt

BIIg
(g)

Both these theorems are familiar, but they are ordi-
narily derived by much more involved methods than
are used here. ' In (7) we see the formula for the velocity
of a wave packet in terms of the gradient of the function
Eo in momentum space, and in (8) the statement that
the momentum p of a packet is governed by the classical
equation of motion in terms of the additional force
resulting from the perturbation II~. These two results
are the basis of most of the band theory of electrical
conduction in solids, but it has hardly been realized
that they form merely the classical Hamiltonian equa-
tions of the Hamiltonian of Kq. (6).

Our next example will be the behavior of wave
packets near the bottom or top of an energy band, and
hence the concept of effective mass. At the bottom of a
band, provided the axes are properly oriented, the
energy Eo may be written in the form

p* pw p*
Eo(p) =Ei+ + +

2m@ 2wy 2M'
(9)

Here m, m„, m, are three coefficients of the dimensions
of masses and Ej the energy of the bottom of the band.
In this case, (7) and (8) become

ds pg dp~

dt m, dl

aHg

8$

(10)

with similar equations for the y- and s-components,
showing that the packet obeys an ordinary equation of
motion corresponding to a particle of mass m, for the
x-coordinate, m„ for the y-coordinate, and m, for the

R. Peierls, Zeits. f. Physik 53, 255 (1929); F. Bloch, Zeits. f.
Physik 52, 555 (1928};A. Sommerfeld and H. Bethe, Handblch
der I'hysik (Verlag. Julius Springer, Berlin, 1933),second edition,
vol. XXIV, pp. 374-375, 506-509; H. Jones and C. Zener, Proc.
Roy. Soc. AI44, 101 (1934); C. Zener, Proc. Roy. Soc. Aj.45,
523 (1934); L. Brillouin, Les EJectrons dans les Jtt/Ietalx du Point
de Vge Ondglatoire (Hermann and Cie, Paris, 1934); J. C. Slater,
Rev. Mod. Phys. 6, 209, 259-262, Appendix VI (1934); Mott and
Jones, EroPerties of Metals and Alloys (Oxford University Press,
New York, 1936), p. 92-96; %. V. Houston, Phys. Rev. 57, 184
(1940); and many other references.

s-coordinate. Similarly, near the top of a band, we have:

p~ pv p*
Eo(p) =Ei-

2m+ 2ssg/ 2VEg

where these m, 's are different from those in (9), but
still positive. Hence the equations corresponding to
(10) are

m, (d'x/dt2) = &Hi/Bx, etc. ,

showing that a packet at the top of a band wi)l be ac-
celerated by an external field in the opposite direction
to a particle of positive mass exposed to the perturba-
tive force. It is well known, and we need not repeat the
discussion, that this leads a hole in an almost filled
band, near the top of that band, to be accelerated as a
positively charged particle of electronic charge and
mass m, m„, m, would be.

If we are near the top or bottom of a band, so that
one of the approximations (9) or (11) is correct, it is
clear that Eq. (6) reduces to a Schrodinger equation of
the conventional type, with a quadratic differential
operator for the kinetic energy (though, in general, with
different coeflicients for the x-, y-, and z-derivatives).
We can thus solve it by conventional methods, resulting
in discrete energy levels as in atomic problems. We
shall shortly give examples of this situation. In case the
energy is such that these approximations are not appro-
priate, the problem becomes more complicated, higher
derivatives entering the differential equation. In such
circumstances, at least in one-dimensional problems,
the most appropriate method of solution would pre-
sumably be the WEB approximation. This depends on
finding the momentum p, which is equal to tt/X, where
X is the wave-length, in terms of position. From the
equation Eo(p)+Hi(q) =E we can find p, and hence set
up the wave function and quantum condition.

There is a useful graphical method of discussing the
solution, in the one-dimensional case (James' makes
considerable use of this method). This is shown in Fig. 1.
In Fig. 1(a), we show a schematic periodic potential,
with its energy bands. In Fig. 1(b), we draw the energy
bands, pushed upward for each value of x by the amount
Hi(x), the potential energy. We also draw a horizontal
line of constant energy, E. We now see that the kinetic
energy and momentum are determined by the position
of E with respect to the energy bands, just as they
mould be in the absence of H~. For instance, at point A
in Fig. 1(b), the energy E is in the same position with
respect to the energy band which the energy E' occupies
in Fig. 1(a). Thus, at this point A, in the presence of
the potential H~, the de Broglie wave-length of the
function 0 will be the same as the de Broglie wave-
length of the sinusoidal function in Fig. 1(a), corre-
sponding to energy E'. Our graphical representation of
Fig. 1(b) thus has many of the characteristics of an
energy diagram in classical mechanics, in which poten-
tial energy and total energy are plotted as functions
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FIG. 1. (a} Periodic potential, with energy bands {shaded).
{b) Energy bands and potential pushed upward by amount H1
(shown in upper curve). Line of constant energy E cuts band, at
point A, at same relative height as energy E in Fig. 1(a). B and
C, reversing points of oscillation of particle.

DISCRETE NPURITY
LEVEL IN VALENCE SAND,
ALWAYS OCCUPIED

Fro. 2. Continuous and discrete levels surrounding impurity
atom in ¹ype semiconductor. E1, energy of a discrete level;
B2, energy in continuum.

of x, the difITerence giving the kinetic energy. When E,
in Fig. 1(b), lies outside any of the energy bands, the
kinetic energy is negative, the wave-length imaginary,
and the wave function is damped oG exponentially.
When E is inside one of the bands, kinetic energy is
positive, and the wave-length real. A classical particle
of energy E, moving according to the classical Hamil-
tonian Ep(p)+Hi(q), would then oscillate between
points like 8 and C, Fig. 1(b), reversing at each point
as its kinetic energy and momentum become zero, and
a quantized particle will obey a quantum condition.
Such a, picture, as James has emphasized, allows us to
deduce the nature of the stationary states and wave
functions in such a problem. If, for instance, the ex-
ternal field represented by JI~ is constant, so that the
energy bands are tilted at a constant angle, the electron
will oscillate back and forth in coordinate space with
a very large amplitude (for a small external field), at
the same time having its position in the energy band
go from bottom to top and back again, in a way familiar
in the theory of electrical conduction.

Let us now consider the application of our theorem
to cases actually met in the theory of solids. First we
take P- and E-type impurity atoms. The Ã-type is a
little easier to understand, and we deal with it first. It
is usually an atom substituted for one of the atoms
normally present in the lattice, and containing more
valence electrons than the atom which it replaces; for
definiteness, we may be considering an atom of P or
As in a lattice of Si or Ge. If the atom loses an electron,
it has enough remaining electrons to fit properly into
the lattice, but it then carries a positive charge, which
introduces a Coulomb potential (modified as to its
absolute value by the dielectric constant of the material)
into the lattice. Thus the energy bands, as modified by
this Coulomb potential, will be as shown in Fig. 2. In
these bands, we clearly have the possibility of discrete
energy levels, of a hydrogen-like sort, at energies such
as E&. Just compensating these levels, which if they
were occupied would introduce extra charge near the
impurity, we see that with higher energies in the band,
such as E&, the electrons will effectively be repelled like
positive charges as they approach too close to the im-

purity atom, their kinetic energy going to zero and the
electrons being turned back at the point where the line
at height E2 emerges from the top of the energy band.

Thus these other states will provide less than the normal
charge near the impurity, so that, if all the states of a
band are occupied, we shall still have just enough charge
to account for one electron per atom of each spin in the
band. In the X-type semiconductor, these modified
levels are all occupied in the lower, or valence-electron
band. We still have one electron per impurity atom left
over, however, and this at low temperature will go into
the lowest discrete level below the upper (or conduction)
band, but at slightly higher temperatures will go into
one of the conduction levels.

The P-type semiconductor is handled similarly. A
P-type impurity atom normally contains one less va-
lence electron than the atom of the lattice, e.g. , an atom
of Al or 8 in a lattice of Si or Ge. If we provide such an
atom with an extra electron, to make it a negative ion,
it has the right number of electrons to fit into the lattice.
Then the modified energy bands will be as in Fig. 3,
clearly giving discrete levels lying above the bands, with
compensating diminished electron density in those wave
functions lying at the bottom of the band. In the neu-
tral crystal, there must be one less electron per impurity
atom than the number necessary to fill the complete
valence-electron band, so that at low temperatures this
electron will be missing from the discrete level lying
above the band; but at higher temperatures it will often
be missing from one of the continuous levels lying in
the band, leading therefore to hole conduction.

The case of excited energy levels in crystals, which
has often been discussed (see, for instance, Wannier'),
is more involved, but similar to these cases of impuri-
ties. It is, perhaps, easiest to understand in the case
where a tightly bound, or x-ray, electron is excited to
the conduction band. v If an atom of the crystal has lost
one of its inner electrons, it acts approximately, so far
as its valence electrons are concerned, like an atom
with a nuclear charge greater by one unit; the missing
electron can act like an additional valence electron.
Thus the atom temporarily plays the role of an X-type
impurity atom, and will set up discrete energy levels as
in Fig. 2. When the corresponding emission spectrum is
observed, resulting from an electron in the valence-

~ The application of the theory to this case, the soft x-ray prob-
lem of Skinner and O'Bryan and other writers, is discussed by F.
Seitz, Modern Theory of Solids (McGraw-Hill Book Company,
Inc. , New York, 1940) p. 436-438.
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FIG. 3. Continuous and discrete levels surrounding impurity
atom in E-type semiconductor.

electron band falling down into the empty x-ray level,
there is the possibility that the electron may come from
one of the levels in the continuum of the valence-electron
band (the possibility considered by Skinner and
O'Bryan, discussed in many references, some given in
reference 7), but also the possibility that it may come
from one of the discrete levels lying below the valence-
electron band, resulting therefore in a longer wave radi-
ation than we should otherwise Gnd. Such tails are
observed in the soft x-ray emission spectra, and Seitz
suggests this interpretation of them.

The really optical case of excitation, where an electron
is removed from the valence-electron band to a conduc-
tion band, is more complicated, in that both electron
and hole are readily mobile. We may then best describe
it essentially as %'annier did in reference 1, and as
Frenkel had done earlier. Considering it classically, the
electron in the conduction band attracts the hole in the
valence-electron band, and, since each has a comparable
effective mass, they each execute hydrogen-like orbits
about their center of mass, resulting in certain discrete
states. These discrete states lie below the continuous
states; that is, the electron effectively is at the bottom
of the conduction band, like the discrete states in an
X-type semiconductor as in Fig. 2, while the positive
hole is at the top of the valence electron band, like the
discrete states in a P-type semiconductor as in Fig. 3.
The electron and hole together form a stable structure,
however, which, because of the mobility of both electron
and hole, is free to wander through the crystal, form-
ing what has been. called an exciton (see reference 8).
Being a neutral structure, it carries no current. Less
energy is required to set up such an exciton than to
raise an electron from the valence-electron band to the
conduction band, leaving both electron and hole dis-
sociated from each other and free to move, so that the
wave-length for absorption to this exciton level, which
does not result in photo-conductivity, is longer than for
the limit of photo-conductivity. It is well known that
such exciton levels exist, for instance, in the alkali
halides. '

8 J. Frenkel, Phys. Rev. 37, 17 (1931);37, 1276 (1931};Physik
Zeits. Sowjetunion 9, 158 (1936).' See, for instance, J. C. Slater and W. Shockley, Phys. Rev.
50, 705 (1936), in which the theory of the exciton is considered
without benefit of %annier's theorem.

IV. STATISTICAL TREATMENT OF PERTURBED
PERIODIC LATTICES

A study of the stationary states of the electrons in
the perturbed lattice, such as we have been making in
the preceding section, is really only half the problem;
we wish, as well, to ask which levels will be occupied,
which ones empty. In thermal equilibrium, which is
the only case we shall consider, we must then supple-
ment our theory by use of the Fermi-Dirac statistics:
the average number of electrons in a state of total energy
E, with a given spin, is 1/Iexp[(E —Ep)/kT]+1},
where Ep is the electrochemical potential or Fermi
level. From this fact, supplemented by the knowledge
of the wave functions +, we can 6nd the average
charge density at each point of the lattice. It is by no
means necessarily true that this charge density will

automatically come out zero; hence we have space
charge, and from this space charge we can compute an
electrostatic potential by Poisson's equation. We can
then apply a self-consistent condition, in essentially the
sense of Hartree: we can demand that the potential
energy of an electron in this potential be the same
quantity Pq(q) which is responsible for perturbing the
energy bands.

To set up our self-consistent condition, we must first
find the net charge density as a function of position
arising from our assumed energy bands with the as-
sumed Fermi level. First we shall find this in the case
of the unperturbed periodic potential. In this potential,
let the number of energy levels per unit volume, in the
energy range dE, be m(E)dE; this can be found, as is
well known, from the volume of momentum space lying
between surfaces Eg(p)=E and Eo(p) =E+dE, since
states are distributed in momentum space with uniform
density in the periodic case. In forbidden bands of
energy, e(E) is, of course, equal to zero. Let Sp be the
number of electrons per unit volume necessary to render
the crystal electrically neutral. Then the excess number
of electrons per unit volume, with an arbitrary value
of Ep~ is

X Iexp[(E—EF/kT)+1j} 'dE —Xo. (13)

Ordinarily, we determine Ep by the condition that iY
must be zero, or the lattice uncharged, so that we set
iV(Er ) in (13) equal to zero. Our present problem, how-
ever, is different: we wish to investigate the results of
volume charge in the lattice, resulting from X being not
zero but, instead, a slowly varying function of position.
If we have such a volume charge, then the potential in
the lattice will diBer from its periodic value by a slowly
varying function determined from the volume charge
by Poisson's equation. We let H j be the potential energy
of an electron in this slowly varying potential, as before.
Since the charge density is —Ee, where e is the magni-
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tude of the electronic charge, PH~= —A'e'/e, where e

is the permittivity of the material, or the dielectric
constant times eo.

In the presence of the slowly varying electrostatic
potential, e(E) will, of course, no longer be given as it
was previously. %e know from the preceding sections,
however, that the eBect of II~ will be to push up the

energy bands with respect to their original position by
an amount equal to the local value of IJ~. It seems

reasonable that the number of excess electrons per unit
volume will then be given by X(Er—H~) =iVQ), where

the function X is as defined in (13),and where we intro-
duce the abbreviation f=Ep —B~. This is an assump-
tion much like that made in the well-known Thomas-
Fermi method of discussing atomic structure, where we

assume at every point of space that the statistica1. dis-

tribution of electron energies is what would be found

for free electrons moving in a constant potential equal
to the local value of the actual potential. It takes no
specific account of the discrete energy levels, but merely
handles them in a statistical or averaged-out way. Our
method divers from the Thomas-Fermi method in three
respects: we are handling our kinetic energy by the
energy-band method, so that it is given by Ep(p) instead
of the usual expression; we are dealing with a modulat-

ing function 4' (q), instead of with the actual wave

function P(q); and we are handling our statistics in a
form appropriate to an arbitrary temperature, rather
than for the absolute zero of temperature as is done in

the ordinary Thomas-Fermi method.
When we make the assumption above, we can write

Poisson's equation in the following form:

v'f. = iv({.)P/. , (14)

where we have used the fact that EI must be constant
over-all space, to satisfy the condition for thermal equi-
librium in the Fermi statistics, so that its Laplacian is
zero. In Eq. (14), supplemented by Eq. (13) for the
function E, we have the general formulation of the
problem of setting up the electrostatic potential within

a solid in thermal equilibrium. This equation has, of
course, been used and solved in special cases by many
writers. It has essentially been used by Schottky" in an
extensive series of papers, and is similarly used by Mott
and Gurney, and by Bethe."Fan" has carried out care-
ful studies of the contact between metals and between
a metal and a semiconductor, which are complete
enough so that many of our results will be merely a
restatement of some of Fan's conclusions. Quite re-

cently, Markham and Miller" have used essentially
similar methods in closely related problems. Many

"%.Schottky, Zeits. f. Physik 118, 539 {1941);other references
quoted in this paper.

"N. F. Mott and R. W, Gurney, E/ectronk Processes in Ionic
Crystals {Oxford University Press, Net York, 1940), Chapter V;
H. A. Bethe, M.I.T. Radiation Laboratory Report 43-12 {Novem-
ber 23, 1942).

& H. V. Fan, Phys. Rev. 62, 388 {1942)."J.J. Markham and P. H. Miller, Jr., Phys. Rev. i5, 959
{1949).
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FIG. 4. E{g) as function of g. Above, metal; below,
intrinsic semiconductor.

other writers are aware of these methods of handling
the problem. To give a complete picture, we shall state
some of the methods of solving this equation, and some
of the applications to well-known cases, as well as some
new aspects of the problem.

The nature of the solution depends on the form of
the function X({).In Fig. 4 we show this function for
two familiar cases: the metal and the intrinsic semi-
conductor. In the first case, E increases very rapidly
as f departs from the value appropriate for no charge,
and over a considerable range it can be treated as pro-
portional to f f'0,—where {0 is the value associated with
no charge, In the semiconductor, however, X increases
very slowly with g —to, behaving approximately as a
hyperbolic sine, although when { becomes so large,
negatively or positively, that the Fermi level penetrates
either the lower valence-electron band or the upper
conduction band, E begins to get very large, negatively
or positively as the case may be. If X(i ) can be approxi-
mated as u({—f'e) (where a is a constant) as it can over
a considerable range in these two cases, then Eq. (14)
takes on the mathematical form of the wave equation,
and solutions can be set up by familiar methods. Thus,
if we are dealing with a one-dimensional problem, we
have solutions f lo=e—xp(&x/X), where X=(e/ae')&,
and where x is the coordinate in the direction in which
the potential is changing. As shown by Fan,"this quan-
tity X for a metal is very small of the order of magni-
tude of an angstrom unit; on the other hand, for an
intrinsic semiconductor it becomes large and in the
limit of zero temperature for this case it becomes infi-

nite. For a three-dimensional problem of spherical sym-
metry, we similarly have f go =exp(&r/X)—/r, where r
is the distance from the center, and I is as given above.

Ke can now examine several applications of these
simple results. First we consider the metal, and the one-
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Fro. 5. E(g) vs. f for E-type semiconductor.

dimensional problem; this is met in investigating the
surface charge at the free surface of a metal in an ex-
ternal electric field. Clearly, we can adjust boundary
conditions so that the electric field at the surface result-
ing from the gradient of H~ has any desired value, and
yet the resulting potential will penetrate into the metal
only to a distance of the order of a single atomic layer,
with the related charge density confined to this same
small depth. This aHows us, in other words, to assume
an arbitrary surface charge on the surface layer of
atoms of a metal, of suitable amount to match any
external boundary conditions. Similarly, if two metals
are close to each other and connected electrically, so
that they must bear surface charges enough to produce
the difkrence of potential equal to their diB'erence of
work function, these surface charges will be formed
according to this same method; and as the metals are
brought into contact, the double layer between them
is formed from surface charges of the same variety at
the surfaces of each. This description of the double layer
has been worked out in detail by Fan."Another example
relating to the metal comes from the spherically sym-
metrical problem. If we had an impurity atom in a
metal, of the type which we have in a semiconductor,
and which we discussed in Section II, it would produce
a local singularity in the potential. The solution which
we should have to use would then be of the form l = f0

= constant exp( r/X)/r, showing —a suitable singularity
at r=0, but decreasing exponentially to zero in a dis-
tance of atomic dimensions. In other words, the conduc-
tion electrons would shieM the impurity atom so com-
pletely that it would not produce appreciable perturba-
tion of potential beyond its nearest neighbor atoms.
This, of course, is a weH-known result.

In an intrinsic semiconductor, we may consider these
same two problems, remembering that here X is very
large. This means that in such a material, which is
practically an insulator, we can accumulate a practically
negligible volume charge in the interior, so that if the
whole ms. terial (including the surface layers) behaves
in the same way, we cannot have a thin surface layer of
charge as we can in a metal. Instead, if we have such an
insulator in an external electric Geld normal to the
surface, the fieM penetrates the surface, the normal
component of D being continuous as in the usual theory

of dielectrics. To account for surface charges which
unquestionably can build up on the surface of a dielec-
tric, as, for instance, by bombarding with electrons,
which have no chance to leak oG, we must introduce
surface states, capable of holding extra charge; we post-
pone discussion of such surface states to the next
section. In the interior of an intrinsic semiconductor, we
may use the spherical solution of our equation to discuss
an impurity atom; and we find, with our large X, that
the field is essentially an inverse square field, the eGect
of the dielectric being seen only in the dielectric con-
stant. Thus we have correctly drawn our perturbed
energy bands around impurity atoms, in Figs. 2 and 3,
as though the potential varied inversely as the distance
from the impurity center, without the type of shielding
found in the metal.

V. IMPURITY SEMICONDUCTORS AND
RECTIFYING BARRIERS

The method of treatment we have used in the preced-
ing section handles the action of impurity atoms on a
microscopic scale, asking how the potential behaves
around each impurity atom; Section II handled simi-
larly the energy levels of such impurity atoms on the
same microscopic scale. In treating impurity semi-
conductors, however, it is usually more convenient to
treat average behavior over a volume which is small
compared to the thickness of a rectifying barrier, but
large compared to the distance between impurity
atoms; or, alternatively, it is better somehow to average
the impurity levels, so that we do not have to consider
the fine-grained inhomogeneities arising from the dis-
crete impurity atoms. When we do this, we havea
di6erent distribution of energy levels, e(E), for now we
include an appropriate number of levels per unit volume
arising from the discrete levels in X- or E-type impurity
atoms, and hence located just below or just above the
continuous bands. Also in computing the net amount
of charge per unit volume, we must take account of

FrG. 6. f—fo vs. x, for E-type semiconductor.
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FIG. 7. Energy bands at boundary of E-type semiconductor,
large external electric 6eld, but no double layer.

the charge furnished by these impurity ions. When we
do this, we may get for 1V(t ) for, say, a material contain-
ing E-type impurity atoms uniformly distributed, a
curve of the nature shown in Fig. 5.

In Fig. 5, there are shown several distinct regions,
with different behavior of 1VQ') in each. First, for t' less
than |'0, there is a long region in which 1V is negative
and approximately constant. This is the range in which
the impurity atoms have lost their extra electrons, so
that they yield a positive space charge. This is the region
in which Schottky's depletion-layer theory is appro-
priate. As f decreases still further, there is a very rapid
and large decrease in S; this arises when f is so low that
it begins to empty the levels in the valence-electron
band. In this region, the material would act like a
P-type semiconductor, and with still further decrease
of f it would show metallic properties, whereas in the
depletion-layer region there are practically no holes in
the lower band, or electrons in the upper band, so that
the material acts like an intrinsic semiconductor, or
practically as an insulator. Proceeding in the other
direction, of increasing g, we find that E is zero when|= fo, and beyond that point X starts to increase very
rapidly. This is the range where there are enough elec-
trons to start filling the conduction band. Of course,
even with iV =0, there are some electrons in the con-
duction band, raised by thermal agitation from the
donator impurity atoms; but this number very rapidly
increases with increase of f', so that the material becomes
a much better conductor, and soon acquires metallic
properties.

With as complicated a function 1V(f') as is given in

Fig. 5, it is clear that the simple approximation used
previously (of setting it proportional to |'—fo) is in-

adequate, and we must use the whole form of the
function. Even in this case, in the one-dimensional
problem, we can integrate Poisson's equation, (14), as
is done, for instance, by Mott and Gurney" and by
Fan."The equation becomes d'f/dx'=fQ), where f(f)
is a function of f Mathemati. cally, this is similar to a

.'x~x'x x"x"x x'~ x.x'~. . & x.. ~, INTERFACE BETWEEN METAL

BOTTOM OF CONDUCTION
AND SEMICONDUCTOR

BAND OF METAI.

DISTORTION OF CONDUCTION BAND OF
METAL ON ACCOUNT OF SURFACE CHARGE

FIG. 8. Energy bands at interface between metal and
semiconductor, no surface states.

one-dimensional equation of motion in mechanics,
md'x/dP=f(x), where f(x) is the force; and, as in the
mechanical case, we can integrate by a method entirely
equivalent to the energy integral in mechanics. When
we do this, carrying out the integrations numerically
if 1V(|') is as complicated as in Fig. 5, we can find the
relation between f' and x. We find that there are solu-
tions approaching $0 asymptotically for large values of
x, one for g greater than fo, the other for f less than go,

'

all such solutions diBer from each other only by uniform
translation along the x-axis. In Fig. 6 we show such a
solution for the case coming into the problem of a recti-
fying barrier at the surface of an Ã-type semiconductor.

There are sections of the curve of Fig. 6 which are
associated with the various parts of Fig. 5. As f' departs
only slightly from Po, we are in a linear part of Fig. 5.
Here we have the Laplacian of I" fo equal—to a constant
times f' —l 0, so that we can set up an exponential solu-
tion for g go as a f—unction of x, just as we did with the
metals. We find, however, a much slower exponential
variation, extending over much greater distances. Next
we have the region where l is considerably less than f 0,
so that we are in the region of the depletion layer. In
this region, as we have mentioned earlier, 1VQ) is
practically constant, and our solution agrees exactly
with Schottky's, "leading to P as a quadratic function
of x. This parabolic function, of course, fits smoothly
to the exponential function which holds as f approaches
its asymptotic value l 0. Finally, when f gets so small
that electrons of the lower band begin to be removed,
f' begins to decrease very rapidly with change of x. This
is because we are now meeting high positive volume
charges, arising from the emptying of this lower band,
and the electric field can change with position about as
rapidly as in a metal (where we have already seen that
we can accommodate a large enough charge in a layer
of atomic thickness to be equivalent to a surface charge).
This happens here as f penetrates into the lower band,
and the reason for its happening is essentially the large
reservoir of charge available, similar to the case of a
metal. In the nature of things, however, this surface
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layer of charge can only be positive, since it arises from
holes in the valence-electron band. If there is a negative
surface charge, the curve corresponding to Fig. 6 must
rise rather than fall at the surface of the material.

The result shown in Fig. 6 can now be used to discuss
the boundary between a metal and an E-type semi-
conductor, or between such a semiconductor and a
vacuum. If we used this result straightforwardly, we
should draw the following conclusions. %e should con-
clude that at the boundary between a semiconductor
and a vacuum, in the absence of an external electric
field, the potential in the semiconductor would be
constant. If an external field were impressed, then the
surface charge to terminate the lines of force would be
actually distributed through the whole depth of a de-

pletion layer, instead of being located on the surface,
as in a metal. The only exception would come if the
field were so strong that the Fermi level dipped down
into the valence-electron band at the surface; then any
remaining charge required to terminate the lines of
force would be located almost exactly at the surface.
In other words, the total amount of charge which can
be distributed through the interior of the volume in the
depletion layer is limited. In such an extremely large
field, the energy bands would look as in Fig. 7, and the
external field would be indicated by the slope of the
curve to the left of the solid. If now the semiconductor
were placed in contact with a metal between which the
difference of work function was so great as to require
on the semiconductor a positive charge, and on the
metal a negative charge, great enough to produce a field
of the magnitude shown in Fig. 7 in the double layer
between the two materials, then we should find the
situation shown in Fig. 8. Here the Fermi level would
come slightly below the top of the valence-electron band
of the semiconductor just at the surface, and the result-
ing situation would be almost independent of the work
function of the metal, provided only that it was different
enough from that of the semiconductor to require a
large enough double layer.

It is well known that the situation we have just de-
scribed does not fit the observations, at least in ger-
manium and silicon, two semiconductors which are very
well understood as a result of the large amount of work
done on them during the war and since at Purdue
University, the Bell Telephone Laboratories, the Uni-
versity of Pennsylvania, and elsewhere. Meyerhof'4 in
a set of measurements on contact difference of potential
between silicon and metals found definite evidence that
our simple picture is wrong, and his effect was explained
by Bardeen" with his theory of surface states. Since
then, the group at the Bell Telephone Laboratories has
arrived at substantially the following conclusions re-
garding the surface of germanium, explainable in terms

'4 M7. K. Meyerhof, Phys. Rev. 71, 72/ {1947)."J.Bardeen, Phys. Rev. 71, 717 (1947).

of surface states. "At a free surface between germanium
and air, there is good evidence that in the absence of an
external field there is, nevertheless, a well-formed posi-
tively charged depletion layer below the surface, com-
pensated by an equal negative surface charge. In an
external electric field, the extra surface charge required
to terminate the lines of force appears just on the sur-
face, rather than in the depletion layer in the interior.
And when contact is made between the semiconductor
and a metal, the required double layer adjusting the
Fermi levels of the two to coincidence is made up of a
surface charge of the usual sort at the surface of the
metal, and a surface charge of opposite sign on the sur-
face of the germanium.

It thus appears that the surface layer of atoms on a
germanium crystal must behave differently from the
interior and, to explain this, Bardeen introduces the
idea of surface states. The action can be described,
roughly, as if there were part of a monomolecular layer
of metal on the surface of the germanium, whose work
function differed from that of a hypothetical germanium
which lacked the surface states by something like the
amount considered in Fig. 8. This layer of metal would
have to acquire enough negative charge to raise its
Fermi level —normally far below that of the germanium—up to equality with that of the germanium. Having
the large reservoir of electrons characteristic of a metal,
it could acquire any other amount of surface charge
necessary to compensate for an applied external field,
or for a double layer arising when another metal made
contact with it. Thus the rectifying barrier would re-
main something like that of Fig. 8, which is not unlike
what is observed (see, for instance, reference 16), inde-
pendent of the material of the metal making contact.

In this description of the surface, which is substan-
tially that suggested by the group at the Bell Telephone
Laboratories, it is not clear whether the surface states
arise from real impurities on the surface (either metallic
or, at any rate, setting up a distribution of states of the
sort characteristic of a metal), or whether they are
inherent in the germanium itself. The evidence indicates
that the surface states depend on surface conditions,
suggesting impurities, and certainly it is very difIicult to
get the surface really clean. Furthermore, the absence
of surface conductivity suggests that the surface states
are localized at widely separated spots on the surface,
as if they arose from impurities. On the other hand, the
photoelectric experiments of Apker, Taft, and Dickey, "
performed on the cleanest surfaces obtainable, gave
evidence of the same sort of situation observed in ordi-

"W. H. Brattain and W. Shockley, Phys. Rev. 72, 345 (1947);
W. H. Brattain, Phys. Rev. ?2, 345 (1947);J. Bardeen and W. H.
Brattain, Phys. Rev. 74, 230 (1948); %. H. Brattain and J.
Bardeen, Phys. Rev. 74, 231 (1948); W. Shockley and G. L.
Pearson, Phys. Rev. 74, 232 (1948); J. Bardeen and %. H. Brat-
tain, Phys. Rev. ?5, 1208 (1949). The author is indebted to Dr.
Bardeen for an opportunity to see this latter paper before its
appearance in print.' Apker, Taft, and Dickey, Phys. Rev. 73, 46 (1948).
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nary germanium, suggesting that the situation may be
inherent in a clean germanium surface. This is not im-
possible: the spacing between the surface layer of ger-
manium atoms and the next layer below it may well
be diBerent from that between layers in the interior
because of the unbalanced forces near the surface; this
would bring about a distortion of the energy bands near
the surface, quite aside from anything we have con-
sidered, which might have the efI'ect of making the
surface layer of atoms behave quite differently from the
interior. At any rate, it seems to be empirically clear
that we must treat the surface layer of such a crystal as
a diferent material from the interior; hence, to apply
the arguments of the present theory to the boundary
layer, we must consider the interior and the surface
separately, and consider the boundary conditions at the
interface between them, as well as at the interface
between the surface and air or another conductor.
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APPENDIX I
We start with the functions &0(p, q), satisfying Eq. (3}.From

them we form the functions

a(q —Qq)=E &Z„rexp[{ i/k)p Q—q j}po(p q), (1A}

where the sum is over all the quantum states p. These functions
are the normalized atomic functions of Wannier, written in our
notation; we refer to reference 1 for their properties. Equation
(2) follows at once from (1A) by multiplying by expL(i/k) p'. QI j,
summing over k, and using the theorem

exp{ (~/Pi)(p' —P) Qf )=0 if p'WP,
=Ã if p'=p.

Now we set up the solution (5} for Eq. (4). In (4) we write
P„(q) in the form (5), multiply both sides of the equation by
a*(q—Q ), and integrate over q, obtaining the equation

0=2k f a (q Q)(Ho+—Zi —E )4' (Qa)a(q —Qa)dq. (2A)

We remember that Ho is an operator operating on a function of qp

II& is a slowly varying function of q, and E„ is a constant. On
account of the orthogonality of the e's, proved by Wannier,
t'u*{q—Q„}u(q—Qq)dq=0 if m&k, 1 if m=k. Thus the term in

E reduces to —E 4' {Q ). So far as the term in IJ~ is concerned,
let us assume that B& is so slowly varying with q that it can be
regarded as approximately constant over the atomic wave function
of an atom. Then, again using the orthogonality of the a' s, this
term reduces to H&(0 )0' (Q ). If H& varies more rapidly, we can
use the deviations from this result as a starting point for a higher
order of approximation.

The other term of (2A), the one in Pp, must be handled differ-
ently. We rewrite a*(q—Q ) and a(q —Qz), as they appear in {2A},
by using (1A), and make use of the fact that the &0's satisfy
Eq. (3). Then we have

~~:fa*(q Q-)-&oq'. (Q~) a(q Q~)~—q
= ~ (1/~)~.(0.) Iexpt(~/I)(p' 0 —P Qk) jI

k, p, p'

Xfyo*(p', q}&oq 0(p, q)&q

We use (3},and the orthogonality of the functions &0, for diferent
p's, to show that J'$0*(p', q)IJ0$0{p, q)dq=EO(p)b(p', p). When
we substitute this above, we have

Z p, fa*(q Q„)—&0+.(Q~) a(q Qa}—&q

= & (1/&)+ (0 )&o(P) expt. (~/&) P. (0 —0 )3
k, p

= & (109+.(0 —Q.)&0(p) expl:(~/&)P 0-3
s, p

where we have substituted Q —Qq= Q..
We can now rewrite this expression (3A). We recall that Eo{p)

is a periodic function in the p-space, having the periodicity of the
reciprocal lattice. Thus it can be written in the form

Eo{p) =Z A(Q ) expL( —i/k}p Q ], (4A)
Qa

where the Fourier coeKcients A(QI,) are given by

A(Q)=~ (1P)E (P) pl (/&)p'0 j.
Thus the right-hand side of {3A) can be expressed in the form

&.A(Q.)+-(0-—Q.). (5A)

Now we expand 0 {Q —Q,) in Taylor's series about the point Q„.
We have

+-{0 —Q.) =+ (0 )—
d

+ (0 )(0.)

1 d'
+——+ (0 )(0')+2fd 2

p —Q.— + (0 )'dq

In this expression we have written only the case where q is a
scalar quantity, but an exactly analogous form holds if it is a
vector, Q, (d/dq) being replaced by the scalar product Q, V, where
the V operator denotes vector differentiation with respect to the
components of the vector q. We now use the result {6A) to modify
(5A), and it takes on the form

Z, A(0,)I exp{—Q, V}g%'„(0 }.
Comparison with Eq. (4A) shows that this is what we should get
if we took Eo(p), replaced p in it by the operator {5/i)V, and al-
lowed this to operate on + (Q ). When we combine this with the
expressions for the terms in Hq and E„in Eq. (2A) which we have
already discussed, we see that we are led to Eq. (6), which we
wished to prove.


