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Clark, Spencer-Palmer, and Woodwards' value of 3.63
percent, obtained with an alpha-ray analyzer. While

there are some discrepancies between alpha-activity
values, the author feels that since the values determined

are dependent on the alpha-activities of both uranium

238 and normal uranium, which are in very close agree-

ment with accepted values, ' ' the precisions quoted are
reasonable.

This document is based on work performed for the
Atomic Energy Commission by Carbide and Carbon
Chemicals Corporation, at Oak Ridge, Tennessee.

' A. F. Kovarik and N. L Adams, J. App. Phys. 12, 296 (1941).
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The diffusion equations of the cascade theory of electron showers are solved using improved mathematical
methods. The results obtained agree essentially with those obtained earlier by Carlson and Oppenheimer, by
Snyder, and by Serber, but do not agree with those obtained by Bhabha and Chakrabarty. Solutions are
given corresponding to a single incident electron, a single incident p-ray, and a 1/E spectrum of p-rays. The
total number of particles expected under a given thickness of material are given in tables for various incident
energies and each of the above initial conditions. Other tables and formulas are included which enable one to
calculate the spectrum of the particles and p-rays for various initial conditions.

I. INTRODUCTION

INCE the original papers on the theory of cascade
showers by Bhabha and Heitler' and by Carlson

and Oppenheimer' other contributions have been made

by Snyder, ' Landau and Rumer, 4 Serber, ' Iyengar, ' and
Bhabha and Chakrabarty. ' The work of Bhabha and
Heitler was carried out without including ionization
loss and is thus limited to the high energy portion of the
spectrum. The calculations of Carlson and Oppenheimer
did include ionization loss, but used simplified asymp-
totic forms for the high energy cross sections. They also
replaced the integral equations of cascade theory by a
simplifying di6erential equation. Their solution does
not satisfy boundary conditions exactly, but provided
the energy of the incident particle is suQiciently large,
the error is insignificant. The work of Snyder was an
extension of that of Carlson and Oppenheimer, using
the same cross sections, but using the integral equations.
This solution did not satisfy exact boundary conditions.
A di6iculty in this work which has been emphasized by
Bhabha and Chakrabarty was that a certain function
was computed only for integral values of its argument,
the non-integral values being obtained by graphical
interpolation. Soon after, Landau and Rumer showed
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that the exact forms for the asymptotic cross sections
produced no essential complication. Serber then con-
tinued the series of calculations as they were begun by
Carlson and Oppenheimer and extended by Snyder,
but also with the reservation that the incident energy
be large enough so that the errors in the boundary
conditions are small. Still later, Iyengar gave a com-
plete solution in which the exact Bethe-Heitler cross
sections were used; a solution from which it is not easy
to obtain numerical values according to Bhabha and
Chakrabarty. At about this same time, Bhabha and
Chakrabarty also gave in series forms, an exact solution
of the diffusion equations using asymptotic forms for
the cross sections.

One of the major difhculties in this work has been to
express the solution in such a form that numerical
values can be obtained with reasonable ease. This has
been particularly true for the total number of particles
present at a given thickness and for the energy spectrum
of the particles and &-rays at low energies. Although
Bhabha and Chakrabarty have given a series solution
which converges even for zero energy, the first two
terms in their expansion account for only about seventy-
6ve percent of the total energy dissipated in a shower.
On the other hand, the forms of solution as given by
Carlson and Oppenheimer, by Snyder and by Serber,
give in a single term the total energy dissipated in a
shower. The objective of the work being reported in
this paper is: (a) to give exact representations for all
values of its arguments of the function which had pre-
viously been computed only for integral values of its
argument, (b) to give a solution of the diGusion equa-
tions which satis6es the correct boundary conditions,
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(c) to give formulas and tables by means of which the
low energy spectrum of the particles and p-rays may be
computed, (d) to compare the results obtained with
those of Bhabha and Chakrabarty.

II. THE DIFFUSION EQUATIONS

The physical basis of the dift'usion equations is so
well known that we will just reproduce them here. We
denote by P(E, t) the number of particles, by y(E, t)
the number of quanta each per unit energy at energy E
and at depth t. The ionization loss per unit of t we call P.
Length 3 is measured in radiation units

Z'iV e' ) ' ——I

I
ln (191Z- ~ )

137 l mc'&

The diffusion equations then are

BP(E, t) BP(E, t)
——p-

8E

= lim ~' P(E', t)E(E', E'—E) dE'
&-0 ~Z+S E&'2

~F, E'dE'
—P(E, t)R(E, E. ')

The contour of integration for s is taken to be a straight
line parallel to the imaginary axis passing to the left
of the origin and from —i~ —8 to i~ —6 with 8&0.
Substituting (5) and (6) into (1) and (2) and using
(3) we get

1 f (p)y s+1

ds{ —
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2~tP~ e &E&
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I
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—
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in which
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P(E', t)R(E', E)
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(4 ) (d Inl'(y+1)
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In these equations we take

+ 5772 —1+
1 ) 1 1I+— (9)
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Through the use of Kq. (3) we are limiting outselves to
the asymptotic forms for the cross sections. We now
look for solutions of (1) and (2) depending on a param-
et;er, y, of the form

P„(E, t) =
2miP

( p ) g+e+1

X
~ {

—
I K„(y, s)r( —s)r(y+sy1)e ds, (5)~, iE&

D = 7/9 —1/6CE. (12)

In order that (7) and (8) follow from (1) and (2), the
real part of y+s must be positive. Now, both terms in
(8), and all except the last term in (7) have the same
power of (P/E). If IC„(y, s) is an analytic function of s
in the strip from —i~ to i~ with real part between
—1—8 and —b, the contour of integration for s may be
displaced one unit to the left in the last term of (7).
Under these conditions (5) and (6) will be a solution of
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(1) and (2) provided

[p+~(r+s)]&.(r, s) —&b+s)L.(r, s)
= sE„(y, s—1) (13)

[~+D]L.(r, s) —~(r+s)&.(r, s) =o (14)

s~, z~s)

It„(y, s) = lim [g„(y, 1V+1)7*

go(r~ n

=o g„(y, s+n)

Eliminating L„(y, s) between Eqs. (13) and (14), we get
if we take E„(y, Os=i. Substituting (22' into 21

{~'+ [~(y+s)+D]&+A (r+s)D
—B(r+s)c(r+s) I&.b, s) g. (y, n)

=s[IJ+D]I „(r, s—1). (15) I).„(r,s+z) = lim g„(y, X+1)'II
N—+m " ' g (r s+n)

In order to make the dependence of p definite, we take
it to be a function of y satisfying the equation

~'(r)+[~ b)+D]~b)+~b)D —Bb)cb) =o (16)

The roots of (16) will now be called y(y) and v(y) with

~(r) = —2[~b)+D]
+z I [~b) —D]'+4~(r)C(y) I',

~b) = —z[~(r)+D]—
z I [~(y)—D]'+4&(r)c(y) I '.

By eliminating p'(y) between (16) and (15), we get

I [~b+s) —~(y)7[I (r)+D]
+&b)c(r)—&b+s)~(y+s) I&.(r, s)

=s[pb)+Dan(r, s—1), (18)

or, to save writing later,

E„(r, s) = g„(y, s-1)E„(y,s-1), '
(19)

with

g.(y, s- 1)

s[p(y)+ D7
(2o)

[~(y+s) —~(y)7[~(r)+D]
+o(y)c(y) —o(y+ s)o (y+ s))

We shall show that a solution of (19) is

F„(r, s+z) =E„(y, s)[g„(y, s)7*

go(rs s+n) (gobs s+n+1) l *

xII
~ ~

(»)
g„(y, s+z+n) L g„(y, s+n) )

Using the asymptotic form for A (y) it is easy to verify
that the inanite product in (21) converges and that
lim)) „[g„(y,s+Ã)/g„(y, Ã)7=1, conditions which are
necessary and sufficient for (21) to be a solution of (19).
If (21) is a solution of (19) we should have (setting

g„(y, s+m)
X lim g„(y, s+M+1)* II

M-+no =o g„(y, s+z+m)

pg. (y, s+.~+1)~
*

= lim
~ ) g„(y, IV+1)'+*

v-~ 0 g„(y, X+1)

g.b, n)
X (23

n og„(y,=s+z+n)

g„(y, s+ I))'+ 1)
Since lim =1 (23) gives

g„(y, 17+1)

K„(y, s+z) = lim g„(y, %+1)'+s

g.(y, n)
X II , (24)

o=o g„(y, s+z+n)

which is (22) with s replaced by s+z. We thus see that
the right-hand side of (21) depends only on s+z, as it
must, if the left side is to depend only on s+z. Since (21)
is valid for all values of s', it holds for s= 1, in which
case we get IC„(y, s+1)=g„(y, s)It„(y, s) which is (19)
with s replaced by s+1. Thus we see that (21) is a
solution of (19).

The analytic character of E„(y, s) is most readily
seen from Eq. (22). From the expression for g„(y, s) as
determined from Eq. (20), and the values of A(y),
8(y), and C(y), one can see that g„(y, s) is 6nite and
non-vanishing for all finite values of s except for zeros
at s= —y—n, n=i, 2, 3. .. As a consequence of this
property and the fact that (21) converges, IC„(y, s) is
analytic and non-vanishing for all Gnite values of s
except for isolated poles at the points s= —y —e with
m=1, 2, 3. - .. From the fact obtained earlier that real
part (y+s) must be greater than zero, we now see that
the condition given earlier that the function E„(y, s)
must be analytic in s in the strip —i~ to i ~ with real
part of s between —1—5 and —8 is in fact satisfied
by (21).

The in6nite product given by (21) does not converge
very rapidly, so it is not very useful for numerical
calculations. However, other expressions which con-
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verge to the same value, but which converge much
more rapidly can be found. The sequence of functions
which was used for the numerical calculations is

K„(y, s+z) =K„(y, s) lim Lg„(y, s+iV —1)) '*'
P,T ~&e

X Lg.b', s+»')]e"Lg, (y, s+»'+1)]""

with

g„(y, s+ »)
X Lg.b, +N+2))"II (25)

go (y, s+z+»)

n(z) = —1/24 z(z+ 1)(z—1)(z—2),
J3(z) = 1/24 z(z —1)(z—2) (3z+ 7),
y (z) = —1/24 z(z+1) (z+2) (3z—7),
&&(z) = 1/24 z(z —1)(z+1)(z+2).

The polynomials n(z), P(z), y(z), b(z) were chosen
so that (25) gives exact results for all N if z=0, ~ 1, ~2.
Also, o'(z)+ p(z)+y(z)+ &&(z) = z which insures that (25)
converges for the same values as (21).

However, for a given value of Ã, the number of
terms in the product, and for small z (25) give results

better by several significant figures than does (21).

III. THE BOUNDARY VALUE PROBLEM

In Section II we have given two solutions for each
value of a certain parameter, y, of the diGusion equa-
tions of cascade theory. Our problem in this section
will be to combine these solutions in such a manner that
the resulting solution will represent either a single
charged particle or a single photon of energy Eo,
incident on the top of the material. To do this we write

QO

t dy ds
(2or)'P o=o

I'(—s) I'(y+ s+»+ 1)
X

rb'+»+I)LP(y+») v(y+")]
(E ) v ( p & v+a+n+&

x{—
I {

—
I

&. &3) &, E&

X {A„(y+»)[p(y+»)+D]E,(y+», s)ev&v+"&'

B„(y+—n)[v(y+u)+D]K, (y+», s)e'~"&";, (26)

Z i"dy d.
(2&r)'P =o J»

I'(—s) I'(y+ s+n+ 1)
X

I'(y+n+1) [p(y+») —v(y+n)]

y(E, I)=—

y
v

~ &3 ~
v+s+n+&

X{—
{ {

—
{ C(y+s+n)

EP) EE)
X I A.(y+ n) K„(y+n, s) eo&~ "& '

B„(y+»)A—.(y+», s)e"&v.+"&'I . (27)

Equations (26) and (27) are simply linear combina-
tions of (5) and (6), respectively, using both roots of
Eq. (16) as given in Eq. (17). The function K„(y, s) is
determined by using v(y) instead of p(y) in (21). In
Eq. (27) we have used relation (14) to eliminate L„(y, s)
and L„(y, s). Our problem is to determine the functions
A „(y+n) and B„(y+») to fit the given boundary condi-
tions. The contour of integration for y is taken to be a
straight line from —i~+a to i~+a and with real
part of y+s greater than zero.

If we now evaluate the integral over s in P(E, t) in
terms of the residues of the integrand at s=0, 1, 2,
we can write the result in the form

(Eo& "(|3&
""

dyr(y+N+I)(-I)'{ —
{ {

—
I&E) &EJ

~(L, &) =
27r~P n=oo=o JD I'(k+1)I"(y+N —k+1)Lp(y+N —k) —v(y+N —k)]

X {Anr o(y+N k)&&w(y+Ã —k)+D)K„(y+—»&' k, k)e"&v 'v "—'
Bv o(y+»' k)(—v(y+»' k)+—D]K,(y+iV—k, k)e"&'+ o&'I . —(28)

An entirely analogous expression could have been written for y(E, I).
Since the functions A„(y+») and B„(y+») are not uniquely determined at this point, we subject them to the

relationships

n (—I)'Ls (y+N —k) —v(y+ iV—k)]-'
{An o(y+cV k)Pp(y+»&' k)+D—)K„(y+N —k,k)—

I'(k+ 1)r (y+ N —k+ 1)

BN o(y+N k)kv(y+N — k)+D]K (y+N k k) I =0 (29)

" (-I)'L~(y+N-k)-v(y+ V-k)] '
{Aot o(y+N k)Kv(y+» kl—k)— —

r(ky 1)r(y+N —k+1)
Bn o(y+N k, —k)K.(y+N —k, k) j =0, (30)—
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for N=1, 2, 3, . The relations (29) and (30) were
chosen so that only the terms with Ae(y) and Bo(y)
survive at 1=0 in (27) and (28). If we use relationships
(29) and (30), we 6nd for t=0 the values

) y+I

I'(E, 0) =- dy
2zrzEp'n I:'1

If the incident radiation is a single p-ray of energy E0,
we obtain

(v(y)+D]
-lot(y) =- Bat(y) =-

C(y)

[z (y)+D]
(34a)

C(y)

If the incident radiation contains no charged particles
and has a 1/E distribution of y-rays up to the energy Eo,

& o(y) [z (y)+D]—Bob') [p(y)+ D] [()+D], [ ()+D]
z (y) —~(y) A o*(y) =—,Bo*(y)= — (34b)

yCb) yC(y)

)Eoq u+&

y(E, o) =
2~zE, n LE&

A o(y) —Bo(y)
X —C(y). (32)

z (y) —v(y)

If the incident radiation is a single charged particle of
energy Ee, then from (31) and (32) we obtain

Ao(y) =B0(y) =1. (33)

Note the fact that we have placed an asterisk on the
Ao(y) to indicate these particular boundary conditions.
We have also placed a dagger on the Aot(y) and Bot(y)
to indicate the particular boundary condition as given
by (34a). Throughout the remainder of this paper an
asterisk or dagger will be placed on various quantities
whenever it is necessary to distinguish the initial condi-
tions (34a) or (34b) from (33).

We now give the solution of Eqs. (29) and (30) for
A~(y+N) and B~(y+N), namely,

(—I)'+'I'(y+N+1)
-I.v(y+N) = 2—

&=~ I'(y+.'6—k+1)[p(y+!V—k) —z(y+N —k)]I'(k+1)

X I [z (y+~V —k) —~(y+N)]K, (y+-~ —k, k)A~-~(y+»' —k)

—[z(y+N —k) —v(y+N)]K„(y+N —k k)Bv „(y+N—k) I. (35)

A (—1)"+'I'(y+ N+ 1)
B.v(y+-~) = 2

&=& I'(v+N —k+1)[zz(y+N —k) —
z (y+iV —k)]I'(k+1)

X I [zz(y+tV k) zz(y+1V—)]K—„(y+6 k, k)A& k(y—+N —k)

—[v(y+rY —k) —p(y+N)]K„(y+1V k, k)B~ z—(y+1V k)I. (36)—
Through the recursion relationships (35) and (36), AN(y+1V) and B&(y+iV) can ultimately be expressed in terms
of certain rational functions of y, zz(y+N), v(y+N) through the values of Ao(y) and Bo(y) as given by either (33)
or (34).

XVe note here that if we dehne

'v (—I)""I'(y+1)
&+z(y+ 1, z) =2.=o1(k+1)r(y+N —k+1)[„(yyN —k) —.(»+N —k)]

X IA&=z(y+iV k)[, zz(y+ tV —k)+D]K„(y—+N k, k)e"'"+~' "—&'

Bz k(y+N k)$v—(y+iV k)+D—]K„(y+rV —k, k)e"~~—
then we can write (28) in the form

(Eo) y+1

Z(E, z) =
2+iEO~D E E &

One can prove, except for notation, if we use Ao(y)
=Bo(y)=1, that the functions f&(y, t) are identical
with those given by Bhabha and Chakrabarty in
their Eqs. (11); thus our solution is, as it must be,
identical with their solution.

In order to express the solution in a form which is
most useful for obtaining the total number of particles
in the shower, and the low energy spectrum of the
particles and the p-rays, we examine the analytic
character of the functions A~(y) and B~(y). To do this
we note that the functions zz(y) and v(y) have branch
points at y=0 and in the negative half-plane. As one
passes around a branch point the functions zz(y) and
z (y) interchange. ExactIy the same properties are true
of the functions K„(y, s) and K„(y, s). This property
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TABLE I.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

t (y)

3.7875
2.2793
1.5686
1.1253
0.8122
0,5751
0.3876
0.2347
0.1075

0—0.0928—0.1706—0.2390—0.3002—0.3500—0.3952—0.4346—0.4692—0.4996—0.5262—0.5497—0.5704—0.5887—0.6049—0.6193—0.6322—0.6435—0.6537—0.6628—0.6710

a (y) b(yj

2.4997 2.718
1.8904 2.415
1.6239 2.185
1.4614 2.055
1.3458 1.875
1.2548 1.762
1.1785 1.680
1.1110 1.635
1.0490 1.599
0.9905 1.562
0.9344 1.545
0.8797 1.537
0.829i 1.520
0.7690 1.500
0.7237 1.475
0.6747 1.445
0.6276 1.420
0.5826 1.375
0.5400 1.335
0.5001 1.276
0.4625 1.215
0.4277 1.150
0.3956 1.090
0.3659 1.040
0.3386 0.985
0.3136 0.935
0.2908 0.880
0.2699 0.830
0.2508 0.780
0.2335 0.733

0.187 0.100
0.275 0.200
0.3295 0.300
0.3645 0.410
0.3830 0.515
0.3940 0.620
0.4005 0.730
0.4021 0.841
0.4000 0.960
0.3951 1.074
0.3875 1.200
0.3775 1.315
0.3640 1.435
0.3490 1.550
0.3335 1.670
0.3195 1.790
0.3050 1.910
0.2915 2.035
0.2785 2.150
0.2673 2.272
0.2555 2.395
0.2445 2.530
0.2335 2.655
0.2240 2.790
0.2140 2.930
0.2055 3.060
0.2975 3.210
0.2905 3.355
0.1845 3.510
0.1799 3.688

—0.0019—0.0099—0.021—0.041—0.054—0.062—0.063—0.052—0.034
0

+0.0428
0.087
0.148
0.213
0.289
0.370
0.454
0.546
0.641
0.746
0.845
0.950
1.061
2.173
1.286
1.400
1.513
1.633
1.752
1.889

0.4892
0.5002
0.5460
0.6220
0.7320
0.8440
0.9700
1.093
1.205
1.304
1.390
1.463
2.524
1.575
1.618
1.654
1.686
1,712
1.734
1.753
1.770
1.784
1.797
1.808
2.818
1.827
1.835
1.842
1.848
1.854

0.4894
0.4447
0.3663
0.2603
0.1812
0.0937
0.0918
0.148
0.250
0.379
0.521
0.664
0.796
0.916
1.024
1.121
1.208
1.279
1.342
1.389
1.446
2.490
1.522
1.554
1.582
1.609
1.632
1.652
1.666
1.687

A o~(y)

3.0711
2.0975
1.6800
1.4424
1.2900
1.1859
1.1128
1.0609
1.0245
1.0000
0.9848
0.9772
0.9758
0.9778
0.9877
0.9996
1.0145
1.0321
1.0517
1.0727
1.0962
1.1203
1.1453
1.2710
1.2972
1.2237
1.2506
1.2775
1.3044
1.3307

»*(y)

0.00872
0.0365
0.0813
0.1410
0.2220
0.2980
0.4030
0.5153
0.6250
0.7360
0.8594
0.9870
1.123
1.272
1.430
1.590
2.759
1.950
2.140
2.333
2.545
2.762
2.984
3.229
3.482
3.740
4.025
4.312
4.601
4.888

1.0354
1.0516
1.0864
1.1385
1.2138
1.2818
1.3558
1.4196
1.4682
1.4991
1.5146
1.5157
1.5083
1.4821
1.4645
1.4388
2.4122
2.3854
1.3608
1.3382
1.3185
1.3015
1.2870
1.2752
1.2659
1.2597
1.2551
1.2517
1.2493
1.2501

P*(y)

0.8103
0.9388
0.9487
0.9096
0.8616
0.8225
0.8684
0.9712
1.2114
1.2687
1.4262
1.5772
1.6935
1.7925
1.8471
1.8789
1.8766
1.8486
1.8030
1.7565
1.7104
1.6455
1.5781
1.5180
1.4592
1.4075
1.3603
1.3154
1.2721
1.2405

3.600
3.385
3.140
2.890
2.635
2.375
2.095
1.705
1.530
1.284
1.085
0.820
0.750
0.615
0.480
0.360
0.250
0.155
0.055—0.034—0.135—0.230—0.310—0.405—0.490—0.565—0.650—0.730—0.805—0.881

also holds true for the Ap(y), and Bp(y), redundantly
in case Ap(y) and Bp(y) are given by (33), and also if

Ap(y) and Bp(y) are given by (34). By examination of
(35) and (36) one can see by an induction argument that
the functions A (y) and B„(y) are analytic for real part
of y greater than zero, and that they have branch
points only where p(y) and v(y) have branch points,
and that if we pass around a branch point the functions
A&(y), and B~(r) interchange. The analytic property
of A~(y) and B~(y) for real part of y greater than zero
enables us to displace the contour of integration, D,e
units to the left in the e'" terms of Kqs. (26) and (27).
We then obtain

It is the 6rst term in the expansion of the solution
in the form (38), (39) in powers of P/Ep that has been
used previously by Snyder and Serber, and as one can
see from (38) and (39) this is adequate for all values of
the energy and thickness Provided (P/Ep) is suffi-

ciently small. We observed here for reference that the
integrands of (38) and (39) do not have branch points
as functions of y and s.

We now write (38) in the form

t'
P(E, t) = g {

—
{ P„(E, t),

=o EEO)
with

P(E, t)=— ( pi",I-Z{—
{

(2pr)'Pp=p EEo) ~D ~c

f
P„(E,t)= — ' dy ds

(2pr)'P ~ D

1'(—)1'(y+ +1) )Eo& " (P &

X
1'(r+1)[t (r) —(r)3 & P & &E &

X {A.(r)[t (r)+DÃ. (r, s)e"'""

—B-(r)[ (r)+Dj&.(r, s)e"'""I, (38)

F(—s)I'(y+s+1) (Ep) ( p) ~'+'
X

1'(r+&)[ (r)- (r)j~P& «&
X {A.(y)[t (r)+D)&„(y, s)e"""

—B-(r)[~(r)+DE& (y, s)e"'""I (4o)

r(E, t) =-
(2a.)'P =o (Ep) ~n

The sa,me type expansion holds for r(E, t). We remark.
here that the functions P (E, t) and r„(E, t) are them-
selves solutions of the basic di6'usion equations.

1'(—s) 1'(y+s+ &) /Eo~" t' P &
~"'

X «y+ )
r(y+f)[t (r) —~(r)7E P i &E&

X ' 1 (y)E„(y, s)e"'"" B(y)E:„(y,s)e"'—""I. (39)

IV. LOW ENERGY EXPANSIONS

As has been noted before, the functions It„(y, s) and

E„(y, s), F(y+s+1) and C(y+s) have poles at
s= —y —e. This makes it convenient for E& p to
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evaluate the integrals over s as in (38) and (39) in
terms of the residues at these poles. We noir compute
in this manner the total number of particles of energy
greater than E,

.&'(E, t) = 2 (P/Eo) "&.(E, t)
n=0

with

1 E p)= -ldr
27'~ r(y+1)[p(y) —v(y)]

1 d'~'» I'( —s) I'(y+ s)
xP

o=o I'(k+1+a(k)) ds'+ &» (y+s+k) ~' ~&»--

TABLE II. cV.

5.68
14.46
21.17
23.6
22.01
18.40
13.97
9.96
4.72
1.99
0.79
0.30
0.12

with

0.5 2.38
1 2.32 3.75 4.87
2 1.760 4.55 8.86
3 1.170 3.85 10.13
4 0.729 2.81 9.07
5 1.9+ 7.09
6 1.22 5.23
7 0.68 3.52
8 0.48 2.39

10 0.90
12 0.31
14
16
18
20

6.33 6.7
26.7 33.1
41.0 68.7
53.42 106.3
57.33 135.0
54.20 142.1
46.42 135.2
37.25 119.2
20.16 75.6
9.67 41.1
4,0 20.2
1.67 9.1
0.67 3.9
0.1 1.6

8.5
44.3

115.8
201.5
287.5
335.4
357.5
346.0
26).3
155.2
85.5
42.2
18.9
8.0

pppv+s
&&

I

—
I [A -(y)[t (y)+DR'. (y, ~)e"b"

&E,)
—&.(r)[v(r)+Dj&.(r, ~)e"'""]

a(k) =0 for k=0, 1,
a(k) =1 for k=2,
a(k)=2 for k=3, 4, 5 . . .

(41) The general form of the answer is readily discernible
from (41) and is

t'Eo)" A-(y) [t (y)+DR. (y, —y)e"""—&.(y) [v(y)+&$&,(y, —y)e'i'"
X„(E,t) =—dy~

—
(

2xt D &p) r[t (r) —v(y)&

y+s+1 f E& ( p
A-(r)[t (r)+Dj&.b, —y) e"h"

/

—~/» —+f(y) /

[t (r) —v(y) j g„(y, s) , „ , E P ) E E )

r+ +1
B.(r)[v(r)+D—]E,(r, —y) — . e"'""~ —

~ ~

ln—+g(y) ( +0~ —
(

ln' —+ (42)
g, (y, s) ,= „ i 0 P ) 4 E ) ( P ) E

In (42) f(y) and g(y) may be evaluated from (41).
The first term in (42) clearly determines the total
number of particles. For t) —', the terms involving p(y)
are much larger than those involving v(y). The terms
involving ti(y) may be evaluated approximately by
the saddle point method for m=0 in which case we get

~tt{y) t+ey

-&o(E, t)— A o(y)
LPb)+&(r)to'

The functions f(y) and n(y), P(y) are too complicated
to reproduce here. The values of p(y), a(y), b(y), f(y),
II(y), M(y), A i(y) and A o*(y), A i*(y), a(y), P(y), a*(r),
P*(y), are given in Table I. Of course, we have Ao(y) = 1

for an incident electron. Also we have A of(y) =yAo*(y),
Ait(y)=b —1)Ai*b), ~lb)=~*(r) —1 and Pt(y)
=P*(r)-1

TABLE III, 3T*.

E- (Pqx &(y) —~(y)—»~ —~+f(r)
P &E)
(Ego- P

+0] —
/

ln' —+" (43)
Lp) E

=»(E./P), t=( r— b))/a(y)
dt (r) ,d't (y)

a(y) = —y, &(r) =y'
d3'

[t (r)+DÃ. (r, —y)
II(r) =

(2~)'[t (r) —v(y)3

)vl(r) =2(4/3+~)D&(r)/[t (r)+Dj.

0.5 2.23
1 2.18
2 175
3 1.22
4 079
5 0.66
6
7
8

10
12
14
16
18
20

3.96 6.00
4.29 8.96
3.66 9.60
2,71 8.42
1.92 6.58
1.28 4.99
0.76 3.56
0.51 2.33

1.02
0.36

8.77
15.90
21.27
22.49
20.48
17.34
13.01
10.01
4.81
1.80
0.70
0.28
0.12

11.67 13.2
27.16 40.0
43.67 77.0
52.8 109.9
55.6 130.9
51.7 141.0
46.5 129.8
34.67 114.2
19.2 70.9
9.2 40.6
4.2 20.9
1.7 9.7
0.67 4.2
0.1 1.5

30.1
65.5

131.5
213.9
291.2
332.0
350.5
328.0
248.8
147.5
85.5
43.0
18.9
8.0
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2

0.5 0.935
1 1.61
2 176
3 1.39
4 0.990
5 0.632
6 0.412
7
8

10
12
14
16
18
20

1.88
3,59
3.86
3.34
2.49
1.75
1.12
0.80
0.29

TABLE IV. iV).

2.27 3.1
5.97 8.85
8.51 16.19
9.02 20.40
8.04 21.60
6.51 19.96
4.85 16.93
3.48 13.20
1.60 7.40
0.65 3 28

1.32
0.52
0.19

3.2 3.6 8.5
13.33 13.9 24.4
27.2 46.0 71.0
42.5 78.9 140.2
51.2 109.0 218.2
53.5 130.1 285.2
49.9 133.9 326.0
43.0 126.5 342.1
26.5 93.5 291.4
13.8 54.5 201.2
6.8 29.4 113.5
3.5 13.5 61.2
1.9 5.8 29.9
0.5 2.6 9.9

and (2) as in (42), since it depends only on the location
and order of the poles in the integrands of Eqs. (5) and
(6) and not on the thickness and initial conditions. It is
possible to evaluate the integrals over y in (42) in terms
of residues of various poles in the left-hand plane. This
leads to an expansion in powers of t, which is unfor-
tunately not very useful for numerical calculations
unless t is very small.

There is one check v hich may be made on the expan-
sions which have been given and on the saddle point
method of integration: the total initial energy must be
absorbed by ionization. This leads to the relation

~l iv(o, t)dt=E, /P.
0

In a manner quite similar to that in which (43) was
obtained we obtain, for y(E, t), the value

X(0, t)
y(I', t) = (4!3+n)—

ELt (y)+Dj

p
+0~ —

~

ln —+ "
&P) E

with the saddle point relationship between t and y as
given above. If we compare the y-ray distribution as
given by (44) with the y-ray distribution as given by
Carlson and Oppenheimer in their Eq. (34) and the
total number of particles as given by their Eq. (36), we
see that the relation between the y-ray distribution
and the total number of particles as given by them as
compared with (44) differs only by the factor (4/3+ a).
One can also see that the ditferentiation of (43) with
respect to the energy gives a particle distribution of the
same logarithmic form as was found by Carlson and
Oppenheimer in their Eq. (34). We find

2D(4/3+u)r(0, t) P
I'(E, t) = In—+j(y) —1 +

pkt (y)+D3

p
=2D—y(E, t) ln—+j(y)—1 + . . (45)

If we use the value of 1V„(E, t) as given by (42) and
those of Ap(y) and Bp(y) as given by (33) or (34a) or
(34b) for the diiferent initial conditions, one can show
that

V (0, t)dt =0; n)0
0

Ep/P; n=o

I E„f(0,t)dt=o; n&0
0

Ep/P; n=o

iV*(0, t)dt =
0

(Ep tP)l/(4/3+ o); n= 1

Ep/P 1/(4/3+ n); n =—0. (47)

From the small values of rii(y) as shown in Table I,
it is evident that Xp(E, t) will be quite close to X(E, t)
even for p/Ep~. 1.And, we see from (47) that the higher
ter mVs(E, t) and 1V„f(E, t) can only change the shape
of the.V(E, t) and.Vf(E, t) curves slightly. For iV(E, t)

On the other hand, the answer we find for P(E, t)
does not agree with that given by Bhabha and Chak-
rabarty in their Eq. (37). Of course, if all the terms
in their expansion (35) had been used, the results would
have to agree. The expansions which we have given
here are particularly useful for E&P, while the expan-
sions given by Bhabha and Chakrabarty are most
useful for larger values of the energy. %e also note here
that if P/Ep&1, the saddle point that was used to
obtain (43) and (44) does not exist. In general, formulas
(43) and (44) give the proper dependence of the answer
on t only if P/Ep is small. However, the type of energy
dependence is still correctly given for di8usion Eqs. (1)

FrG. i. Graph of .V(t) (solid curve, ), $*(t) (dash double
dot curve, ~ ), Ef(t) (dash dot curve, —-), ÃEtt:(t) (dashed
curve ——) for &=6.
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this is actually a small decrease in $(E, t) for small t

and a small increase in X(E, t) for large t T. hus, in our
case, the numerical evaluation of the integrals in (47)
essentially gives a gross check on the saddle point
method of evaluating Ão(t), .Vof(t), Ao*(t) and .Vr (t).
One can also show, using (42), that ATO(0, 0) =1 and
.Vof(0, 0)=0. We also wish to observe at this point
that the saddle point method can be used for the ap-
proximate evaluation of only .Vo(t), .Vo*(t), tVDf(t) and
.Vr*(t). For the other X„(t), etc. , the functions A„(y)
have zeros at y=1, 2, 3 .ts which zeros prevent the
application of the saddle point method.

In Tables II, III, and IV we give the values of cV(t),
iV*(t) and A' t(t), respectively, for e= 2, 3, 4, 5, 6, 7, and
8. These values were calculated using formulas (43).
Since the values of t and 1V(t) are determined para-
metrically by assigning values of y, these values of t
and $(t) were plotted with A (t) as a function of t and
the values of iV(t) etc., as given in Tables II, III, and
IV were obtained by reading the graphs. The values of
AT(t) and 1t7f(t) were calculated using $(t) =CAVO(t) and
iVf(t) = 1VOf(t); however, we used 1V*(t)= cVO*(t)

+(P/Eo)Ã~ (t). It is not practical to compute higher
terms in the series for A (t), tVf(t), and N*(t) since we
cannot use the saddle point method for their computa-
tion. In addition, relations (47) insure that the areas
under these curves will be correct to the accuracy of the
saddle point method.

In Table V we give the values for various ~ of
fq"Ã(t)dt, fq"sV*(t)dt, fp"1Vf(t)dt, and fq"A'oc(t)dt as
numerically evaluated by plotting curves for .V(t)
tV*(t) and iVt(t) as determined by using Eqs. (43), and
for Aoc(t) the values as given by Bhabha and Chak-
rabarty' in their Table III, and then measuring the
area under the curves, using a planimeter. These areas
should, of course, be equal to Eo/P which is listed in
column 2 of this table. It is evident on inspection of
this table that the agreement of columns 3, 4, and 5
with column 2 is much better than is that of column 6.

Figure 1 is a graph of A (t), 1V*(t), 1Vf(t), and iVac(t)
for &=6. It is evident from these curves that the
numerical values obtained by Bhabha and Chak-
rabarty are in error by about 35 percent near the maxi-
mum of the shower curve.

I wish here to thank Miss Jean Snover who is pri-
marily responsible for the numerical work and prepara-
tion of the graph and the tables.

TABLE V.

Fo f," i «t -f,"v'~i f,"t tdi f x„di

7.389
20.086
54.598

148.41
403.43

1096.6
2981.0

7.22
20.4
55.1

149.4
406.4

1106.8
2997

7.52
20.8
55,2

149.2
406.3

1111.5
3001

7.26
20.3
55.5

149.7
407.4

1103.1
2998

5.64
14.29
38.27

102.8
2?9.8
736.3

2001

r(y+1)
&-(y) = (—1)"Lr(y)+D)"

r(y —n+1)
n 1

xn
=' Lr(y) —r(y-j))LP(y) —

t (y-j))
Furthermore,

B(y—n)
A.tb) = (y —n)A. *(y)= A-(y)

t (y)+D

Il(y-n)
&-t(y) = (y-n) &-*(y)= &-(y).

v(y)+D

From these explicit expressions for A„(y) and B„(y),
one can directly verify the statements made earlier in
this paper covering the analytic properties of these
functions, together with the fact that they satisfy
Eqs. (29) and (30).

Privated communication. The method is outlined in W. T.
Scott s unpublished thesis (University of Michigan, 1941).

Vote added after completion of manuscript Th.e—re-
sults of this paper have recently been obtained by
%. T. Scott, ' starting with a Laplace transform in t,
and Mellin transforms in both E and Eo. The resulting
homogeneous difference equation is analogous to Eq.
(19) and was solved in a similar way. This approach
yields explicit formulas for A „and 8„,namely:

rb+ 1)
A„(y) = (—1)"Lu(y)+D)"

I'(y —n+1)
n 1xg-

~=' Lub) —u(y- j))Lu(y) —r(y- j))


