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On In6nite Relativistic Particle Matrices*
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Besides the known tensors of integral and half-odd-integral rank (spinors) there exists a new form of
relativistic covariant entities with an infinite number of components, discovered in 1944 by Dirac. An
especially simple type of them is generated by operations underlying a theory of the electron recently pro-
posed by the present author. This way the representations are obtained immediately in matrix form, the
matrices being of an unexpectedly simple type. Half of them have continuous spectra. They permit the setting
up of wave equations having always positive energy.

*The present paper was completed at the end of 1947, but
could not immediately be published. As far as it is concerned with
the representations of the Lorentz-group, the matter has already
been settled by V. Bargmann, Ann. of Math. 48, 568 (1947) and
Harish-Chandra, Proc. Roy. Soc. A189, 372 (1947), whose papers
in the meantime came to the knowledge of the author. %ith
regard to this work it should be pointed out more clearly, that
these Lorentz-representations, i.e., the matrices Mg„III, in our
terms, although mathematically the most interesting part, are
only six of the sixteen elements of our theory. Our primary aims
are not to construct these representations but (a) to translate
the Poisson-brackets given in an earlier paper into commutation
relations and (b) to find matrix representations for the aq and
especially for the cq-matrices, that serve to set up the wave equa-
tion aqp"= —m(I, K}c. The connection of our starting point (a)
with Harish-Chandra's representation would be achieved, as far
as the MI„ II~rnatrices are concerned, by the unitary transforma-
tion that is indicated in its first steps by formula (37). This
"normal representation" has been fully developed in the meantime
and appears simultaneously in Zeits. f. Naturforschung 4a (1949).
The construction of the matrices mentioned under (b) needs a

slight generalization of Harish-Chandra's method, because the six
Mq, IIq matrices behave like a subgroup in the 16-element-scheme.
The connection between the invariants of the Lorentz-group,
eis. , J', I (Harish-Chandra) resp. —Q, R (Bargmann) with our
I, K is given by

-Q=J =P—K2—1, R=I=IK.
The factorization of R resp. I is essential for the construction of
irreducible representations of the whole 16 elements, because only
I, not K commutes with all of them.

A short report of the present paper together with a first attack
upon the mass problem appeared recently (Sommerfeld-Festheft}.
Zeits. f. Naturforschung 3a, 559 {1948).In a simultaneous paper
of Bopp (Zeits. f. Naturforschung 3a, 564 (1948}) the underlying
physical ideas have much been improved. The continuous spec-
trum of the c-components has already been noticed by E. L. Hill,
Phys. Rev. (2) 73, 910 {1948},but it is a main result of our paper
(see formula (23)) that ~4 can be used in a discontinuous and even
one side bounded form. Next to I it is just the key for the classi-
fication {see our Table III}.

OME years ago Dirac' discovered a new type of
vector called "expansor" by him with an infinite

number of components, which by a I.orentz-trans-
formation undergo a unitary substitution. It is ex-
pected that expansors will be of great importance in

particle-theory, as they provide a method of dealing
with continuous entities more amenable to quantum
theory than the usual methods of field theory, "quan-
tization" not merely considered as an introduction of
Planck's constant but essentially as the selection of an
enumerable manifold from a continuous one. In its
general form Dirac's theory looks rather complicated
mainly by the particular behavior of the fourth world-
coordinate. Meanwhile the author met with the same
thing from another point of view, considering just radia-
tion-reaction-forces. The method arrived at furnishes
immediately the matrices of the representations and
subsequently of the transformations from both a re-
stricted and enlarged type of Dirac's. Starting with
spinors rather than vectors of integral rank, we include
integral as well as half-odd-integral representations. At
the same time there is a wide restriction or ordering of
the immense manifold of components by the existence
of an invariant, which makes the representation split
up into a number of non-combining ones, whose matrices
can be written down in an unexpectedly simple way.

' P. A. M. Dirac, Proc. Roy. Soc. London A183, 284 (1944).

1

Besides being Hermitian, as Dirac s theory implies,
they have eigenvalues of a noteworthy type.

Representations of the I.orentz-transformation are
induced' by a scheme of commutation-relations between
six quantities, which by a suitable transformation may
be combined into the components of a six-vector. In
this form their commutation-rules generalize those of
a moment of momentum and may be considered as the
respective ones of the magnetic and relativistic electric
momentum of a moving particle. For convenience we
shall speak of the momentum components instead of the
mathematical quantities. Denoting them by Ml, M2,

M3, II1, II2, II3, we have

MlM2 —M2M1= iM3, II1II2—II2II1= —iM3)
M1II2 H2iY11 —iII3~ (&)

together with the relations obtained from these by
cyclic permutation of 123 and with

M II —II M =M II —II,M =M,II,—II,M, =O. (2)

There is a very singular consequence of these equations,
which looks almost like a contradiction between
quantum-mechanics and relativity-theory. Of course,

~ B.L. van der Waerden, Die gruppentheoretische Methode in der
Quuntenmechanik (Verlag. Julius Springer, Berlin, 1932}.

'See also P. A. M. Dirac, Proc. Roy, Soc. London A155, 447
(1936}.
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the relations are invariant under a I.orentz-transforma-
tion, i.e., they reproduce themselves, if one substitutes
for the components their combinations relative to
another system of reference. Now by the rules of
quantum-mechanics the measurable values of any
physical quantity are given by the eigenvalues of its
representing matrix. However, because of the minus-

sign on the second triplet of equations required by the
relativistic invariance, the eigenvalues of the III„-,

k=1, 2, 3 are purely imaginary.
For proof introduce the quantities II= IIi+iII2 and

M=M~+iM~, whose commutation with II3 gives

Bringing II~ into diagonal form and labelling the II, M

with its eigenvalues x', m", , say, one has

There may be more indices of the II, M, say I, J,
a certain manifold of x's belonging to each of them.
This does not prevent the conclusion, that for non-
vanishing m' —m"

I tlM

for every I, J, . . . , and in consequence, by the second
Eq. (4), M ~ =0 or

(6)

Thus the n. are purely imaginary (save perhaps for a
common additive constant, which may be shown
actually to disappear).

In Dirac's theory of the electron this difIiculty does
not interfere, because his commutation-rules are of an
entirely different ("anti-commutative") character.
Moreover, there is no intrinsic magnetic and electric
momentum at all. DiA'erent authors already have
attempted to introduce one, as has Breit, 4 on the basis
of experimental evidence. If one does not insist on the
scheme (1), this may be realized without difficulty,
since the Dirac-current can be decomposed in a well-
known manner into a convective and a polarization
parts. But now the author met with the same necessity
from classical considerations' culminating in a system
of Poisson-brackets for the momentum-components to
be converted into commutation-rules. These Poisson-
brackets are of the form (1) and by no means of an
"anti-commutative" character, and so the question
arose: Are there hermitian matrices, which fulfill the
relations (1) or, in mathematical terms, are there
unitary representations of the Lorentz-group?

At first sight the conclusion (4)—(5), which forbids

' G. Breit, Phys. Rev. 72, 984 (1947).
~ W. Kessel, FIAT Report No. 1131, henceforth referred to as

l.c. Appeared also Zeits. f. Naturforschung j., 622 (f946), rvith
different numeration of formulas.

them, looks quite stringent. There is only one way to
escape it: The division by the factor x"—m' is impos-
sible, if the w-values are continuous (because then the
left-hand sides of (4) become integrals with h-functions)
and this seems almost absurd. One might not expect,
by "reasons of four-dimensional symmetry, " the eigen-
values of the II to be different from those of the M (we
shall so term henceforth the III„MI„k=1, 2, 3, for
brevity), which according to the first triple-set of Eqs.
(1) are always discontinuous. But really one can only
conclude that the II-components among themselves
and the M-components among themselves must have
equal eigenvalues, because they can be completely
exchanged by a rotation of the coordinate-system. A
I.orentz-transformation never completely exchanges an
M and a II; either the transformation reproduces them
or it yields a linear combination of two non-commuting
ones. Now the eigenvalues of non-commuting matrices
are not additive, and so the eigenvalues of these linear
combinations need not be of a mixed character. The
same thing comes in play at rotations, where it prevents
the continuous alteration of quantized observables.
There is another question, whether the sum of a matrix
with a discontinuous spectrum and a second matrix
with a continuous one may have discontinuous eigen-
values. A similar question arises in connection with the
second triple-set of Eqs. (1), where two continuous-
valued II-components by mere multiplication and sub-
traction have to yield the discrete-valued M-compon-
ents. But there is an elementary example of a matrix
with a continuous spectrum, which even by simple
multiplication with itself gets a discontinuous one.
Imagine a partide reflected along a straight line between
two rigid walls, represented by a potential-hole of
suitable steepness, a "reflection-oscillator, " so to say.
It is just the case assumed to be realized, in first
approximation, by the electrons inside a metallic con-
ductor. The momentum (p) of such an oscillator, due
to Heisenberg's uncertainty principle, must have a
continuity of measurable values, its coordinate-values
being bounded. Indeed the correspondence-principle
shows that the "reflection-oscillator" will have a fully
developed series-spectrum, in spite of its seemingly
uniform motion. At the same time, evidently, its
energy-spectrum is quantized, and so p' will have a
discrete spectrum, whereas p has a continuous one.

After all, there is even a strong reason to guess that
the eigenvalues of the II may not be exhausted by their
known finite representations. Confining oneself to the
M one has M'=Mie+M2'+M3' as a quantity which
commutes with all the MI„k=1, 2, 3. Therefore every
value of M' yields an independent representation of
the Mj„which is necessarily finite, as M-"is definite. But
M' is no longer commutable with the III,-components,
and so it may not serve to reduce the M, II-system as a
whole. However, there are now two invariants, viz.
M' —ll' and the scalar product MII, which commute
with all MI, and III„and these now are indefinite. So
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TABLE I. Commutation table.

I K

0 0
0 0

0 0 0 0 0 0 0 0
C3 C4

0
0

0
0
0
0 —K4

0
M3—M2
III

—M3
0
MI
II2

M2 —III—rr2
0 —II3
II, 0

—K
0
0
0

0 0 0—K 0 0
0 —K 0
0 0 K

—CI

0 0

—
C4

cl

—
C4

c2

C4

C3

KI

K2

K3

K4

0
0
0
0 —c4

K
0
0
0

0
K
0
0

0 0
0 0

0
0

0—M3
M2—III

M3
0—MI—rr

—M2 II1
M I II2
0 II,—II, 0

K3—K,»

Kl

0 0

K2

Kl

K2

—K4

K3

M1
M2
M3

II2
H3

0 0
0 0
n 0
0 0
0 0
0 0

0 c3 —c2

c3 0
0

c4 0 0
0 c4 0
0 n

0
K3

K2

K4

0
0

0
0 KI 0

0 0
0 0 KI

K4 0 K2

0 C4 K»

0—M3

0—II3
II2

M3
0—M1
II3
0—II,

—M2
M1
0—II2
II1
0

0—II3
H2
0
M3—M2

II3
0—II1—M3
0
MI

—II2
II
0
M2—M1
0

they may yield non-combining systems, being finite for
themselves, but not limiting the IIf,- and MI,-values.

Indeed there are such representations, but one may
not easily find them proceeding from the system (1),
because the continuous character of the II is unfavorable
to their diagonal transformation, extending as it does
also to the invariants. On the other hand reduction goes
almost by itself, if one introduces the group of Eqs. (1)
as a subgroup into the system the author arrived at in
the above mentioned paper. One has only to interpret
the Poisson-brackets as commutation-relations.

YVe shall not begin here with the somewhat remote
starting point of our former considerations, but rather
at once with the complete scheme of commutation-
rules. Our electron, in addition to its magnetic mo-
mentum, will have a spin-angular momentum and a
velocity to be discerned, following Dirac, from the
velocity of its center of gravity. Let c be a four-vector
proportional to the four-velocity, but not bounded by
the condition ii,P= —1 (X=1 4), and similarly let i~

be a vector, whose spacial components are proportional
to the spin-angular momentum, also unbounded and
both dimensionless. Further let I and K be two in-
variants connected with the invariants of M, II by

P—K~=M' —II~, IK=-'(MII+IIM).

Then there exists a group-like system of commutation-
rules between these quantities of such a nature that a
combination of two of them always gives a third one,
and a Lorentz-transformation of all the components
reproduces the whole system. The invariance is proved'
for the Poisson-brackets and persists in the re-inter-
pretation. For convenience, the system will be given
in the form of a "group-table, "the rows labeled with the
first factor (a) and the columns with the second factor
(b) of the operation

[ab5 = ab ba—

and the value of [ab])i inserted at their crossing. (See
Table I.)

The system is not a group in the mathematical sense
(for lack of a unity element), being not even a ring (for
failure of associativity), but one may speak quite well
of subgroups, central, etc. The invariant 1 is the
"central" and in consequence will split up the repre-
sentation generally. Secondly, of course, one will choose
one of the M-components, ill& say, as a diagonal matrix,
being certain that its eigenvalues will be discrete ones.
In the third place, limiting oneself to the "subgroup"
of Eqs. (1) and (2) expressed at the right lower corner
of the present scheme, one might think of the intro-
duction of K and II3 as quantities commuting with both
I and M3 and with one another, but by the reasons just
mentioned this is impracticable. C"oing through the
"group-table" one now sees that together with I, K,
and II~ also c3, c4 and K;», K4 commute with M3. Xone of
them commutes with K, so that this quantity may be
dropped. Left with I, M~, c3, c4, K3, K4, one finds that
they form two sets of mutually commuting elements,
namely I, M3, c3, K4 and I, Ms, K., c4. Thus, the elements
of one of these sets may be brought simultaneously in

diagonal form and their eigenvalues may be used to
label the rows and columns of all matrices. It will be
shown that c3 and K4 have continuous spectra too,
whereas K3 and c4 have discrete ones. Therefore, we will
have a I, M3, K3, c4-representation or, as I commutes with
all elements, a set of non-combining i'll&, K&, c4 repre-
sentations.

At this point it seems no longer possible to avoid
introducing the spinors of the previous paper. These
spinors, although otherwise disliked for their entangled
connection with world-vectors, are here in their proper
place. They express the sixteen elements through eight
real quantities (four complex spinors) in either bilinear
or quadratic homogeneous forms, which exhibit at once
their spectral character. The reduction of the elements
to half their number involves a set of supplementary
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conditions studied explicitly l.c.,' but unimportant for
the present purpose except for its compatibility with
the scheme of Table I.' To be brief, we shall now refer
repeatedly to the foregoing paper and, concerning the
spinor-calculus, to the paper of I.aporte and Uhlenbeck. '
Replace the factor I' of l.c. (5.10) by i and the round
brackets by the square brackets of formula (8). They
read then,

c—1
2

0
1
2

TABLE II.

c 1

c 2

and are compatible in this form. Indeed, if an ordinary
spinor P„ is expressed in terms of two real quantities,
say, zz, b, in the form |P„=zz+2'b, its f„ is obtained by
change of i into —i. With a, b as Hermitian matrices,
|P will transform correctly if one also understands f„
as a ib I—n ot.her words, denoting as usual by a t the
process of changing the rows and columns of a matrix
and substituting all their i by z, the mat—rix'|P, is to
be considered as P„z, and so

[0,'x""]= [x'0,]t = —&.".

Introduce now the real and imaginary parts in the
form

Pz= —(41+|Pi), qz= —(x' —x'),
V2 i%2

i
P2=—(A —A), q2= —(x'+ x')i' V2

i
Pz = (pz q21

i
Pz= ~f» qz), —

V2

i
qz = =(pz+qz ),

V2

i
q '= (pz+-q —),

V2

(14)

etc. ,

generated by the function

~(qz' ' 'q4~ pz' ' ' p4)

4

=v2 2 p2q2 pzp2 pzp4 qzq2 qaq4, (15)

in the weH-known manner (P2=85/Bq2, q2=zlS/Bp2).
So we have

Having the form of angular momentum components, the
brackets may be brought into quadratic forms by the
contact-transformation

Then by (9) the p, q are canonical in the quantum- M, = ——,'(pz2+q, -')+22(p22+q2'-)
mechanical sense:

+4(pz'+ q ') z(pz'+ q4'), —(16)

[p q„]=—b„,„, zzz, I=1, 2.
i

Having exhausted only the spinors with the index 1,
a second system p„p„qz, q4 will be introduced, also
transforming the spinors vith the index 2. Note that
index 4 does not play a singular role, the Pf„qL- not
being the components of a world-vector. AVith these PI„
qh„k= 1 4, the I, K, M, II, ~, Kare now to be expressed
as the I, J, 9)f, Q, j, b of the former paper, Greek type
indicating dirnensionless quantities. For instance M3
takes the form (note |P'=|P2, |P2= —

tpz)

1
Mz ™12 (zzz12 zzz12) i

2i
l.c. (4.11)

= —22(pzX' zp2X'+zpiX' $2X —), 1 c (4 7—)

2(pzq2 Pzqz)+2(p—zqz Pzq—z) (13)—
'Beside the eight conditions indicated l.c. there is a super-

numerary one, the number of independent elements being seven,
as has been shoxvn by W. Ko6nk, Ann. d. Physik (V) 38, 421
{1940j.Indeed Eq. {3.26) resp. {4.26) l.c. has a dual one to be
formed by jM* instead of jM.

~ 0. I aporte and G. F.. Ejhlenbeck, Phys. Rev. 37, 1380, 1,552
(1931).

and it is seen at once that the eigenvalues of M3 are all
positive and negative integral and (note the factor ~)
half-odd-integral numbers. Owing to the change of
signs there is no "zero-point" term, as of course must be
expected from the first triple-set of (1). Likewise the
other three representative quantities I, K3, and ~4 just
amount to quadratic forms. Writing for abbreviation

H2= 2(p2'+qz'), &=-1, 2, 3, 4,

one obtains (z'= —«)

M 2
——,' ( Hz+ H2+ H, —H—4), —

I = —,
' (H z

—H2+ H2 —H4),
~2= ', (Hz+H2 Hz H-4), — —
z' = .' (H2+ Hz+ H2+ H4—).

(17)

(18)

The fourth quantity is positive definite, which will be
of both mathematical and physical importance. The
other three exhaust the possibilities of two negative
signs. Obviously all have discrete eigenvalues, and by
reasons of rotational transformability M&, M2 and Ki K2

will be discrete-valued too.
Correspondingly, the II;&, K, c~, K' are continuous,

re-establishing in this way the "relativistic symmetry. "
The quantity K'= —K4 appears immediately, without
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the preceding transformation, in the form Eliminating n3 and n4, for instance, one gets from (23)

K=nl+n2 —I, n= —nl+n2. (26)
"=4 2 (P" V'—) (19)

Accordingly If: will have its maximum value if n& and n2

have theirs (and inversely), or
which evidently has no discrete eigenvalues, the term
—g' corresponding to a potential-peak instead of a
potential-hole. The invariant E and the component H3
become

~ 2 (PIP2 AII2)+ (P3P4 '1314) 7 (20)

and a transformation to principal axes shows that they
are also composed of terms of the form p' —II2. The
colllpollellt 43 — 3 (pl/2+ p21II)+ (p3II4+ p41I3) ls not
so easily transformed. But

42= 2 (PIP4 IIIII4)+ 2 (P2P3 II2$3) (21)

has again the form (20), and from this the continuous
character of the c&- and c3-components may be inferred.

Let us introduce the eigenvalues explicitly putting

H&=n»+-,', n»=0, I, 2, , 4=1, 2, 3, 4. (22)

As the M~ c4 shall. be used as indices themselves, we

shaH drop their subscripts, writing simplyt 34, K for M3,

l~:~ and, tO Spare the "ZerO-pOint" term, c=c4—1. SO

we have from (Ig)

34= 2( n, +n2+—n3 n4), —
I= ,'(nl n, +n-,—n4), —
K= ,'(n, +n-, n, n—4), —

2 (nl+ n2+n3+ n4).

Obviously the eigenvalues of I are all integral and half-

odd-integral numbers, both positive and negative
including zero. Every I by its character, integer or not,
determines a set of c, ~, p, of the same character. Fur-
thermore, every given value of c admits only a finite
number of combinations of n~, n2, n3, n4. Thus the
definiteness of c' enables one to unfold every repre-
sentation step by step. The value of c may be written
according to (23) in the forms I=n2+n4+I or I=nl
+n;&—I, depending on the sign of I, showing that
always

(I'K'I 'I a&
I

I"3"3 ")= QI p K Q3 (2)
0

X (I'K'34'
l
g

l
IKI4) (4K/

l
II

l

I"K"P"), (29)

the index (2) indicating steps of two units in the index.
Similarly in the case I=-,':

K g I 3+«+st

=24 ZK En(2)+2» El (2) (3o)
Ill —N2+Ns —M4 =1 y q

—4+« —
y

—s- —3 —«+y

In the preceding expressions exchange of f~: and p is

possible. To write down the matrices we make the
usual transformation

1 l

p= —(P+Q), i=—(P—Q),
v2 42

(31)

for every k. Any H, formula (22), with eigenvalues m, n

will then be made diagonal by

P„,„=(m+1)ill„+I, „, Q„,„=(m) 7b I, „, (32)

being diferent II~ to be distinguished by diGerent ml„
nl, . For convenience we shall give the six representative
matrices explicitly:

(2&)

according to Table II. The terminal values are realizable
just once, with p =0. Furthermore, still following
Table II, one sees that ~= c—1 and ~=1—c are both
realizable twofold with p, = —1, 1, or f~=c—2 and
It( =2—c threefold with y= —2, 0, 2, etc. , down to ~=0
with 34= —I, —4+2, —4+4 I—2 I, so that the
p,-values attached to a value of ~ may be written

IKI
—I, IKI —4+2, , I—IKI —2, I—IKI (2g)

BrieQy stated: a multiplication of two matrices a and b

in the c, Ic, p-representation will be accomplished by the
process

I=0. (25)

(24)

For a more detailed study we may confine ourselves
to the most simple case

M I=—;(—PIQ3 —P3Q I+P2Q4+ P4Q2),
M2 (3(2)(PIQ3 P3QI+ P2Q4 P4Q2),
M, = -', (—PIQI+ P,Q2+ P3Q3—P4Q4).
111— 2 (PIP4+ QIQ4+ P2P3+ Q2QI),
112= (I/2) (PIP4 —Q,Q,—P,P,+Q2Q3),
113 2 (PIP2+QIQ2 P3P4 Q3Q4)

(33)

Hence, n~+ n3 =n~+ n4 and c = n&+ n3, for instance.
Given the value of c one has the possible arrangements
shown in Table II. Every left-side arrangement can be
combined with every right-side one, there being (4+1)
combinations. Thus 44 is (4+1)2 or (44)2-fold degenerate.

f In the forthcoming paper Zeits. f. Naturforschung 4a the
letter x denotes the maximum value of M3.

Note that Pt =Q, Q2 =P, guaranteeing the hermitian
character of the M, II. The arrangement of the factors
is arbitrary.

Inserting the P, Q from (32) one has for instance

III 2 I ((mI+ 1)(m4+ I)j&67771+1,77I II7772772

777,'67773773II7774+I, 774 + ' '
I (34)



TABLE III.

0 1 0 0
0 -P 1

o-r

0
0 0

I 0

1' 2

0

v~ Pg

'~z &~

yU

1

l

dr

~ r/y

cfg'

the. . . indicating three similar terms. Here the mI„nI,
are to be substituted by the I, i, ~, g according to (23).
Inverting these formulas we have, putting I=0 and
indicating m and n by one and two accents respectively:

my= a(L +K+@),

(35)

The rather extended terms are reduced to half their
number of factors by the commutability of II& and ~

(see Table I), involving ~-diagonal character of Iiq at
least for all non-vanishing values of ~, and actually
throughout. Thus II~ attains the form

II(—— ,'8„, ', [(~'+—~' ——p'.+2) (~' —K' —p, '+2) ji

and may easily be written down row by row, the root
being constant in every row. The structure of the
II-matrices will become clear from Table III, where the
upper triangle refers to —2 II~ and the lower to —2 II2,
the missing triangles being the Hermitian complements.
The ~-, a- and p-matrices, of course, are immediately
given by either the head or the left margin of the
II-representations. A complete representation may now
be gained simply from Table I, if one disposes of
II3 or one further M-component. There is some interest
in considering M~, for instance. As it commutes with I, ,
only its quadratic submatrices are difkrent from zero.
Table IV gives 2.M~ with the same meaning of rows
and columns as Table III. Evidently the M-submatrices
are further reducible, finite representations of the
rotation group (as they are) being characterized by
matrices of rank 2j+1, j=O, 1, 2, .instead of
(&+1)', ~=0, 1, 2, . Thus e.g. (1a'p'~M~~1~"p") will
be decomposed by a unitary transformation Ut M&U



with

0
V2

0 —1

0

0 0

0 0 0

-8'

z -Pz

.V2

into (0) and

0
1

K2
say. Putting

V= 1+au (39)

0

one has after a multiplication with U~

M3u =uM3+ II2. (40)

M3' ——U~M3U =M,,+~II., (38)

By the same transformation (Ix'p'~M3~1K"p") goes
over into (0), (1 0—1). In this way every submatrix
can be decomposed again into a step-matrix, labeled
by p and its maximum value. Yet for the present pur-
pose it seems more interesting to have evidence of the
connection between p and ~, and so this transformation
may first be set apart. Physically it may appear strange
to find magnetic and angular momenta combined in the
way indicated by these matrices, but in the case I=-,'
one will have x= (2, —2) together with p= (—~~, —', ), and
this will be correct for a negative electron.

Given the representations of the Lorentz-transforma-
tion, explicit transformation formulas may easily be
worked out. Let us begin with an infinitesimal trans-
formation (e) to a system of reference moving in direc-
tion 1

According to Table I this equation will be obeyed by

u= —zrI . (41)

A finite transformation with p= Ee will now be
effectuated by an E-fold repetition of this process. So
we have at the limit &=0, rV= ~:

(42)

Similarly a rotation will be obtained through M instead
of II. The exponential matrices being infinite (and
actually containing an infinite number of elements in
every row and column) will transform an "expansor"
AI~f~:p of Dirac's type according to

A'= exp( —iII)A (43)
in a unitary way.

At present we must restrict ourselves to these mathe-
matical preliminaries, as every application in the sense
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proposed l.c. will need rather laborious work. As is well
known Dirac's theory agrees excellently with experience,
and every attempt to improve it can be tested only by
very subtle effects, e.g. , the term-shift recently studied
by Bethe, s and related phenomena. Only two general
advantages of the present apparatus may be empha-
sized. First, as mentioned in the introductory remarks,
the continuous spectrum shown by half of our matrices
seems to account for the essentially continuous, non-
quantum character of the radiation-damping-process
and its natural line-breadth in a more intrinsic manner
than does the usual procedure of Hohlraum quantiza-
tion. It is satisfactory, that f(:A-, k=1, 2, 3, corresponding
to the spin-angular momentum, is quantized, whereas
c&, k=1, 2, 3, corresponding to the four-velocity, is
continuous. Very probably the ordinary velocity, to be
represented by the Hermitian real part of (i') 'i~,
k=1, 2, 3 will still be continuous. This should be more
comprehensible than the puzzling behavior of Dirac's
velocity matrices, which always have the eigenvalues
&c (=velocity of light).

g H. Bethe, Phys. Rev. 72, 339 (1947).

Moreover our matrix I allows one to set up Hamilton-
functions (wave-equations) with definite energy. In the
rest-system of the center of gravity (p=0) the energy
will have the form E= (u') 'moc' (mo ——rest-mass,
14=4-component of four-velocity). Now, in Dirac's
theory one is provided with two operators to be con-
nected with the mass, both having eigenvalues +1 and
—1 and non-commuting with the Hamilton-operator as
a whole. Thus, E can be positive of negative, and transi-
tions may occur in external fields. Here we have also
two invariants, I and K, of which I commutes with ~4.

Thus E=(i') 'woe' with mo=mo(I) will be hermitian
and of correct transformation character. Owing to the
definiteness of f4, however, any positive even function
mo(I) will now always yield a positive E. With odd mo
there may be E)0 or E&0; yet by the exclusive
character of I there will be no transitions in any case,
as long as mo does not depend on K. Of course this
simple example is only an informative one and does not
solve the difficult mass-problem. Indeed the physical
point of view arrived at in the last section of the former
paper would make one expect a term with (i') '(I'+ K')*'

rather than (~') '.


