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III. CONCLUSIONS

The preliminary results from photographic plate de-
tection at 40 degrees, 60 degrees, and 80 degrees using a
10 Mev beam' agree with the 10.8 Mev data within the
limits of error. Over the angular region of the measure-
ments the scattering is almost entirely nuclear. Calcu-
lated coulomb scattering at 35 degrees amounts to 4.7

Rosen, Tallmadge, and Williams, Phys. Rev. 75, 1632 (1949).

percent of the total di8erential scattering cross section
for 10.8 Mev. For comparison the d—d scattering at 3.5
Mev is included in Fig. 2.' The diBerential cross section
is somewhat lower for the higher energy data; at 90
degrees the ratio of the cross section at 10.8 Mev to that
at 3.5 Mev is 0.523. For 10.8 Mev scattering the cross
section remains more nearly constant over a wider
angular region near 90 degrees than for 3.5 Mev scat-
tering.
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Besides the doubts concerning the actual meson theories, and the use of a perturbation method for the
study of strongly coupled 6elds, doubts have been raised as to the validity of some approximations usual) y
made in the computation of the cross section for meson production by nucleon-nucleon collision. This cross
section is computed here in a relativistically invariant manner for the pseudoscalar meson (pseudoscalar
coupling) with the charged and the charge symmetrical theory. The results are valid for all energies of the
incoming particle. The energy distribution and the total cross section derived from the invariant statistical
factors are given as a point of comparison. Some computational tools are presented: a projection and a
permutation operator and a method for the calculation of the density of states. In the Appendix two dif-
ferent ways of considering the meson production (mesonic analog to the bremsstrahlung or third-order
process) are discussed.

HE problem of the production of mesons has
interest for the origin of mesons in cosmic rays

and for the artificial production of mesons. Many
papers have been published on the production of mesons

by collision between nucleons. ' ' In the actual state

* Chargee de recherches au Centre National de la Recherche
Scientifique, Paris (now on leave of absence).

' L. W. Nordheim and G. Nordheim, Phys. Rev. 54, 254 (1938).
E. Strick, Phys. Rev. ?6, 190 (1949). {Scalar mesons —Born
approximation. )

2H. S. W. Massey and H. C. Corben, Proc. Camb. Phil. Soc.
35, 84 (1939). (Vector mesons. Born approximation —non-rela-
tivistic approximation. Mesonic analog to bremsstrahlung, see
Appendix. )' W. Heitler and H. W. Peng, Proc. Roy. Irish. Acad. 49 A 101
{1943).W. Heitler, Proc. Roy. Irish Acad. 50 A 155 (1945).
(Mgller and Rosenfeld mixture —Weizsacker-Williams method—
damping theory —extreme relativistic approximation. )

4 Cecile Morette, These de Doctorat, Paris (1947). (Mgller and
Rosenfeld mixture —damping theory —non-relativistic approxi-
mation —mesonic analog to the bremsstrahlung, see Appendix. )

~ Chcile Morette and H. W. Peng, Nature 160, 59 (1947) and
Proc. Roy. Irish Acad. 51A 217 (1948). (Mgller and Rosenfeld
mixture —damping theory —non-relativistic approximation—
third-order process, see Appendix. )

6W. G. McMillan and E. Teller, Phys. Rev. 72, 1 (1947).
(InQuence of the binding of the nucleons in a nucleus and cor-
rections due to the electromagnetic interactions. )

~W. Horning and R. Weinstein, Phys. Rev. 72, 251 (1947).
{Scalar mesons. Born approximation —third-order process, see
Appendix. )

8 Lewis, Oppenheimer and Wouthuysen, Phys. Rev. 73, 127
{1948).(Multiple meson production. )' L. L. Foldy and R. E. Marshak, Phys. Rev. 75, 1493 (1949).
(Pseudoscalar mesons —pseudovector coupling. Born approxima-
tion non-relativistic region, mesonic analog to the bremsstrahlung,

of the theory, there exists no satisfactory method to
compute the cross sections for the production of mesons:

(1) The equation of propagation of the meson Geld
and the form of the interaction between the nucleon
field and the meson Geld are not known.

(2) The perturbation method is not adapted to the
study of strongly coupled Gelds. Attempts to circum-
vent the inadequacy of the perturbation method for
problems involving mesons have not yielded entirely
reliable methods. In the absence of an invariant rela-
tivistic method which gives the solution to radiative
scattering problems without making an expansion in
terms of powers of the coupling constant, the study of
the multiplicity of the mesons produced in each collision
is not really possible.

Besides these basic difhculties, illegitimate approxi-
mations have often been made in the course of the
calculations. Taking advantage of the new computa-
tional techniques, the cross section for the production
of a meson is computed here in a relativistically in-
variant manner. Hence, the result shares the large
uncertainty of the present meson theories and of the
use of the perturbation method, but it is not impaired
by undue and unnecessary approximations.

We compute here the cross section for the production
of a pseudoscalar meson with pseudoscalar coupling

see Appendix. ) The lists in references 1—9 are not exhaustive, and
the notes between brackets are only very rough indications.
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between the meson Geld and the nucleon field. The
transitions from a state where two nucleons are present
to a state where two nucleons and one meson are present
can be represented by the following diagrams (Fig. 1).
A full line is the world line of a nucleon; a dotted line
is the world line of a meson. The q's and the k's and
their combinations are the four-wave vectors of the
wave function of the corresponding particle.

According to Dyson" and Feynman, " the collision
operator 0, which transforms the wave function of the
system in the initial state )p(—pp ) to the wave function
of the system in the final state 0'(~ ), is obtained by the
following prescription:

Repla. ce each intermediate (or virtual) nucleon and
meson line by the inverse of the operator of its equation
of motion. Replace each vertex by the Hamiltonian of
interaction. The cross section is given by the following
relation:

a=
~

0
~
31/[p) (initial state)]p (final states), (1)

where y is the Qux of the particles in the incident beam,
and p is the density of the final states.

Natural units will be chosen so that 0=c= 1 and the
following notation" will be used:

Hence

p=Zv. p., &=Zv.&.,

3

a„b„=a4b4—P a;b;=a b,
i=1

74 P P3)

Vi =p&i =pi&i)

where p, pi, p3, u;, and o; are the usual Dirac matrices.

P=W*V4,

where )P* means the complex conjugate transposed of
)P and )P the adjoint of )P. The Hamiltonian of pseudo-
scalar interaction between the nucleon field and the
pseudoscalar meson field is

H = if)pppr, )p)t, .
The expression which is to be associated with each
vertex of the diagram is simply ify5r, .

Qs Pl+2+3+4)

f is the coupling constant, and r, are the charge opera-
tors. Ke shall use the charge operators in the repre-
sentation best suited when one is interested in the
charge of the particles.

This representation, in which the charge density is
diagonal, is determined by the condition

gp=pp or pp,

if=p or p )

f p=Pp or Pp,
q'=p' or p'.

r, )/pi = const. )p%

The index R stands for neutron or proton.

pp' is a four vector whose components are Ep'=(~lip'~'
+M3)& and Pp'. k is a four vector whose components
are p=(~ f~p+pp)& and f. The functions )4) and p in a
covariant representation" are

rc Acv~v)

where the r's printed in boldface are the Pauli matrices
and A is

3 (Pp' Pp') = (-'(Pp'XPp') (Pp'XPp'))'

dp' dp' dk
~(p', p', &) = 2M2)rh[(p') 3—M']

(2)r)' (23r)4 (2)r)4

X2M2~8[(p')' —M']2~8[k' —p,']

(2) 1

v2

X( 2r))84(P 'p+Pp' —P' —P' —ip). (3)

The equations of motion of the field operators are:

meson field ( '—pp))t) =0,

nucleon field (iV—M)/=0,

' F. J. Dyson, Phys. Rev. 75, 486 (1949)."R. P. Feynman, Phys. Rev. ?6, 769 (1949). We are indebted
to Professor Feynman for his most illuminating lectures,

'2 Here is summarized the meaning of the various printings of
the vectors: p {italics) is a four vector, y (boldface) is a matrix,
p (German type) is a three-vector (momentum}; so that p'=E' —p'
(German type). The lower indices refer to the components of the
vector; the upper indices refer to the particles. The primes indicate
that the quantity is considered in the laboratory system."C. M/lier, Det. Kgl. Danske Vid. Sels. Math. -Fys. Medd. ,
Bind XXIII,¹.1 (1945).

Fxo. 1. Diagrams representing meson production
by nuclear collision.
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c=+ or —in the charged theory, and c=+, —,or 0 in

the charged symmetrical theory. By convention 7+——7. *
will be the operator for the emission of a positive meson.
The following relations will be used throughout the
calculation

7.c ~c+7.7-" =2~-

A. DENSITY OF STATES

The integration over the density of the final states
is an integration of the following type:

)"F(p ' p'p' p'k)~(p' p'k)

The upper index refers to one or the other particle.
With this notation the operator 0 is:

A convenient way to proceed is the following:

~(+ p&» &»
~

&»+ &»~(+ „„, &»
~

2 &.,
& (4) (i) integration of one of the four-vectors (p' for in-

) "' '
stance) with the help of h(pp'+ pp' —p' —p' —k).

(ii) integration of p say. The two 8-functions
8L(p')' —M'] and 8C (pp'+ pp' —p' —k)' —M'j shows that
p' is to be integrated on the intersection of the two
surfaces.

0= —iW(qp)v pr"*P(q) p(qp')
(qp-q)'-~'

S»

S2

(pl)2 (Ml)2 —0
(P 1+p 2 pl k)2 (M2)2 0 (7)

X PPc+ +57c +57c'
(q'+k) —M (qp' —k) —M

XP(q')4 (k). (5)

For greater generality we have set the masses of the
two nucleons diferent. The radical plane of S» and S2
is at a distance

(M')' —(M')' i
D=-, (p. + p."--k)( I+

)p 1+p 2 k~2)

Vp 734(q') = W(q'),
q'+k —M (q'+k)' —M' (pp'+ pp' —k)

pl. D
I
po'+po' —k~+k

4 (qP') Vp, Vp= 4(qP')
q&l' —k—M (qp' —k)' —M' (see Fig. 2). This condition can also be derived im-

mediately analytically from (7). Sl and S2 intersect
each other only if D' ~~(M')'.

(iii) Integration of k. The condition (8) fixes the
limit of integration of k on the surface k' —p.'=0.

Let us fix a system of coordinates. Let us set

Before we complete the calculation of the cross section,
we shall set up some computational tools to simplify
the calculation. We shall set them up in a general form
so that they can be used for other calculations. ln the
paragraph called density of states we give the angular
relations and the energy relations of these particles
whose total energy and momentum is conserved.

6p =pche»
k» =bshe» cos82
k2= @she» sln82 cos83
k3= pshaw» sin|j2 sin83.

The volume element is then:

8(k —p )1k=a sh 81d81 sin82d82d83.

Similarly, p' and p' will be expressed in terms of M',
&21, &22, &23 and M', p„p2, pp, respectively.

The scalar product of two vectors is:

k P' =pM[+ ch81ch&2, —sh81 cos&22sh&22 cos&22
—sh81 sin82sh&31 sin&32 COS(83 &23)j.

The following simplification can be made in Eq. (5):
from the origin of the vector p'.

1 —k Hence, P is to be integrated on Sl with the condition

Fxo. 2. This drawing is only an analog to the real con6guration.
The hyperquadrics S& and 5& have been replaced by circles.
OP =p', OD =D, OE is in the energy direction. K; »& col »&E

Let us now fix a frame of reference: We choose the
center of gravity system so that pp'+pp2 has only a
component along the energy direction. We choose f
as the polar axis in the p' space. We shall now express
the condition (7) for the integration of p' and determine
the limits of integration of p' and k. Let us call g the
angle between p' and pp+pp —k and g the angle be-
tween pp'+pp2 and pp'+pp2 —k. The condition (7) can
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be expressed by the following equation:

chnych$ —cosapshayshp= coshl' . (10)

It is convenient to consider o.2 as 6xed and to introduce
the condition (10) into (6) through the following
b-function.

8 (cosa pshn yshP —chn y eh/+ cosh f)

o, ~ varies then between the following limits

(or M') after the collision is obtained by interchanging

p with M' (or M') in the formulas (16) and (14). The
dummy variable e and the upper limit of integration
«would then be called E' and E' (or K' and
KP )

The maximum of the energy distribution is shifted
towards Ep for increasing values of Ep. The shift is more
rapid for a light particle than for a heavy particle.

The asymptotic values of (1/4M'M') J'p(p', p', k) are

Hence,

l' ~~—ni ~~5+1 4 (2EppM'M') t r"-*
! L(«—~)(«-—«)]'d«

(2pr)' ((M'+M')'I
1 1 pM' t.pre

1(p' P'») = dch8y ' d cos~2
4M'M' (2pr)' 2 J,

t' p&(«+t)
X dnp II dchn~ d cosa«8(cosa« 2)—

~ 0 "0h(t —S)

1 ( Ep Eomm
L(p+ M'+ M') pM'M'7

(2pr)' Ep+M'+ M')

M'+M'
for Ep —Ep; «

(Ep K2

(2pr)P ~„(2pr)P M'+M'-
for Ep))

2

X I dao. (12)
0

A is given by Kq. (10) and chO is given by Eq. (9).
Translated into energy terms the density of states is:

1 1 1 2'
p(p', p', k) = —, d« ' d COSH« I d8«

4M'M' (2~)P 2&„

max( e) 0 y2t

X Jt dE&J~ d cosa«8(cosa« —A) dnp, (13)
~ min(e)

(Ep"—M') &—(«"—p') ~

l —M &cos(P ', f') &1
(14) (E "—M') &(«"—p') &

1
«m~ =—[4(E )'+p,

'—(M'+ M')']
4E

We shall now convert from the rest system to the
laboratory system.

Set M, Ep'pp' the mass, the energy, and the momen-
tum of the incoming nucleon; the other nucleon is at
rest. The angle between the meson emitted and the
incoming nucleon is such that:

Ep EO Ep

2Ep;„=p+M'+M'. (15)

M M'
for («"—p')&&—

2 4(Eoo' —M') &

M M'
—1(cospp' f'&&1 for («"—y')&& ——

2 4(Ep"—M') &

E',.(«) = (2Ep —«)B

with

( (M')'
~! («-'—p') B'—

4(F )p 4F + 2 ) The angle between one of the nucleons after the colh-
sion and the incoming nucleon is:

(Ml)2 (M2)2
8=—1+

2 4(E )'—4Ep«+p'

8L4(Eo)' —4Ep«+ p'] —E'(2Ep
—«)

A=
M'~P(E')' —(M')']'L«' —~']'

E F i

1—M &~COSPo' P„'~&1 for E ') M.
E /Ezl

The asymptotic values of (1/4M'M') J'p(p", p", k')
are

The integration over the density of states yields: L(p+M'+M') pM'M']& (Ko' —E'pmm q
'

(2pr)'16 (p+M'+M« i
hm!

I p(p', p', k) =
I ! («' p')(« «—)Eo, —

4M'M' (2pr)P „
for 2@&Ep' —M&&M

1E,'M
for Ep'))M.

2 (2or)P

4Eo(«,„—«)+4M'M'
X ! d«. (16)

L4Eo(«, —«)+ (M'+ M')']')

The energy distribution of the nucleon of mass M' The density of states of four particles (or more) can be
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TABLE I. cleons can be expressed algebraically by the expression:

Charged theory
Symmetrical theory

3

I+/ g 0) .g (2) ]+/ r (1)r ('-')

v=1

studied in the same way. In Eq. (7) and following k is
then replaced by k'+k'.

It seems convenient to compare both experimental
results and the influence of the various couplings to
these invariant statistical factors.

3. PERMUTATION OPERATOR

The number of terms in Eq. (4) can be reduced in
the following way: The operation of the emission and
absorption operators )P and )P of the nucleon field on
the wave function of the system in the initial and in
the final state is equivalent to the anti-symmetrization
of the nucleon wave function in the configuration space.

Let us set 6' a permutation operator which permutes
simultaneously the spin, the charge, and the momentum
of the nucleons. The anti-symmetrical wave function )P

of two nucleons can be expressed in terms of the product
of the wave function of each nucleon in the following
manner:

1—(P
4-()(po', po') = 0-(Po')A(po').

v2

The square of a matrix element symmetrical in the
nucleons 1 and 2 is equal to

14.&(p', p') Ap, ~(po'po') I'

= (~ —(P)14-(P')A(p')Ak. (Po')A(po') I'.

Hence, in Eq. (4) we can simultaneously give an
identity to the nucleons and multiply the whole ex-
pression by (I—(P). This procedure simplifies the
writing of the cross section. It reduces the number of
terms by a factor 4 for transitions involving the same
number of particles in the initial and in the final state;
it reduces the number of terms by a factor 2 for transi-
tions involving a di6'erent number of particles in the
initial and in the final states. In the actual case for in-

stance, once a name has been given to the nucleons, two
diagrams must be added which describe the emission
of the meson by the other nucleon.

Moreover, this procedure separates the terms in the
cross section into two groups. The terms which are
not proportional to (P, are obtained when the Pauli
exchange principle is neglected. The other terms are
the contribution of the Pauli exchange forces. In some
cases these terms can be neglected. In the actual case,
these terms are small because the wave-length of the
nucleon is small as compared to the range of the nuclear
forces. (pc/Mv(1, v is the velocity of the nucleon. )

The operator which permutes the charge of the nu-

The covariant algebraic form of the operator which
permutes the spin of the nucleons is derived as follows:

A four component Dirac wave function can be ex-
pressed as a wave function with two two-valued indices.

4- (&)0-'(2) =4 -'"(&)0""(2).
The indices p'0-' and p'0' can be permuted simultane-
ously by the operator.

1 8„,—1
$+p ~„o)~„(~)+ & 0)& (2)& ())& ('-)

2

One checks that

I+ 0) —+ (2)I

For the case of Einstein Bose particles, 1—V' is re-
placed by 1+K

C. PROJECTION OPERATOR

A(p)pe (p) = c

)P (P) if n designates a state whose en-
ergy has the same sign as the
fourth component of p.

0 otherwise

(A)2=A.

FIG. 3. Statistical energy distribution of the meson
emitted (in the rest system).

The covariant operator A(p) = (p+ M)/2M operating
on pe(p) is such that
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A(p) is a "self-selecting" operator: it selects the energy
states of the same sign as the fourth component of p.
Consequently:

2 I p(p, )~y(p) I'= SpurAA(pp)AA(p) (17)
with

A =y4A*y4.

The sum is performed over those energy states which
have the same sign as the fourth component of pp and p.

We notice that we can include the incoming and the
outgoing lines in the prescription which give the colli-
sion operator and forget at the same time the projection
operators: the world line of a nucleon in the final or
in the initial state is translated in the collision operator
by

1/(p —M) =2MA(p)/[(P)' —M']
= 2MA(p) 22ri)[(p)2 —M']

and the world line of a meson is translated by

1/(k' —p') = ()(k'—p')

To avoid the mathematical difhculty raised by such
expressions as {b[(p)2—M']I', one can also say that
the cross section for a process represented by a certain
diagram is obtained in the following way:

The diagram and its adjoint (i.e., the same diagram
with the time direction reversed) are linked together.
The prescription for the collision operator is followed
on that "double-diagram" to obtain the probability of
the transition.

In any case, the propagation of a particle is described
similarly whether the particle is in an observable state
or in a virtual state. The propagation of a particle is
characterized by its four-wave vector. There is a con-
servation law for the four-wave vectors of the particles.
When the particle is in an observable state the com-
ponents of the four-wave vector are the energy and the
momentum of the particle. When the particle is in a
virtual state the 4th component of the wave vector is

not the energy of the particle; the three other com-
ponents are the momentum of the particle.

We shall now complete the computation of the cross
section.

, ~(p' P', k) 4(k)4(p')4(P')
( (Pp', Po')

&,(i)g(2)
2- (2) Q r, (()r, (2)

X —if3

(p
l pl)2 ~2 (p 2 k)2 M2

Q r, (&)r, (2)r (2) 2

("l'
p(p(, pp, k)

I

—
I
[nA+pB]

((2(pp', pp2) (42r]

+1~2 0(pp')4(pp')
"

(1g)
(p'+ k)' —M'

The term explicitly written corresponds to the emission
of the meson by the particle 2. The other one "1~2"
corresponds to the emission of the meson by the par-
ticle 1. In agreement with the discussion of the para-
graph 8, the contribution of the Pauli exchange forces
has been neglected.

Because of Eqs. (4) and (17) and by use of the fol-
lowing spurs:

M'
Sp"r( A(pp')7pA(p')75)

4

M'
= (Po'P') —M'= —2(pp' —P')'

— SpurA. (pp') kA(p') k
4

= 2[2(pp' k) (p' k) —k'(pp' p')+k'M']

= —{[—M'+ (p'+k)'][ —M'

+ (Po' —k')]+k'(Po' —P')'I

SpurA(ppl) gpss(p') k =0.

We obtain:

where the numerical values of (2 and p are given by
the following table.

p
2

A=
(p l pl)2 ~2 [(p 2 k)2 M2][(p2+k)2 M2]

1 (pp' —k)' —M' (p'+k)' —M'
8— +

(p 1 pl)2 ~2 (p2+k)2 M2 (p
2 k)2 M2

[(p 2 k)2 M2]2 [(p2+ k)2 M2]2

Fra. 4. Statistical energy distribution of one of the nucleons
after the collision {in the rest system).

In this expression p,
' has been neglected as compared

to M'. Here we have averaged over the charges of the
nucleons in the initial state and summed over the
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charges of the nucleons and the meson in the anal state.
The cross sections for the diBerent cases according to
the charge of the meson and the nucleons are not equal
in the charged theory.

The structure of the cross section is given essentially
by the term 1/[(p, '—p')2 —p27. The terms propor-
tional to p,' are small as compared to the others. The
two terms which are functions of k balance each other
to give a term nearly equal to two.

(Eo'—M)
4M'

p
for —

~& Ep' —M&&M,
2

log(E2') for E2'))M.
(F 1)2

gr p5$-/+~Carl lrl Qrlt+5

p(pl p2 P)
J (p 1 pl)2 p2

(2iVI)2 ~

(2~)2 ~ 2[((Eo')'—M')'((E')' —M')'7

2[(F 1El+ ((F 1)2 M2)$((El)2 M2)$7 2M2+~2
Xlog

2[(E2'E'—((E2') —M') &((E') —M )&7—2M +P'

( 4(E 1)2 4F 1El+~2 ) 2

&& ((E')'—M)l
&4(E2')2—4E2"E'+M23

4p'
dE'. (19)

4E '—4E 'E'+M'

The square root is merely a statistical factor; it corre-
sponds to the integration over all the states of the
meson available when the energy of one of the nu-
cleons is equal to El. The logarithm divided by 2[(E2')2
—M27~(E12—M') & is essentially a function of E2' alone.
Its asymptotic values are

Hence, the energy distribution of the meson and the
nucleons is nearly the same as the energy distribution
obtained from pure statistical considerations (see para-
graph A). In Figs. 3 and 4 there is plotted the statistical
energy distribution of the meson and the nucleon in
the rest system.

The asymptotic expressions for the cross section in
the laboratory system are:

g
0 =a7l Eo'—M-

(in ) M[M(E2' —M)7&

p,
'—2pM '

(f2q2( g
~

ME2

l, 4 )l l, ME ,)l g ,
for 2p ~& Ep' —M&&M

for Ep'&)M

a=i in the charged theory. a=3 in the symmetrical
theory. Ep' is the energy of the incoming nucleon, the
other nucleon is at rest. The cross section in the charge
symmetrical theory is about three times bigger than
the cross section in the charged theory. Besides a larger
number of mesons transmitted or emitted in the charge
symmetrical theory, some transitions are possible only
through an exchange of neutral mesons.

The total cross section is plotted on Fig. 4 in the
laboratory system. On Fig. 5 there is also plotted the
cross section obtained from the statistical factors:
density of 6nal states and inverse of the Qux of the
incoming particles (i.e. , the cross section obtained from
equation (2) with 0=1.

This result diGers appreciably from the results ob-
tained with a scalar meson field' and with the pseudo-
vector coupling of the pseudoscalar meson field." For
the scalar and pseudoscalar interactions which do not
depend on the energy of the meson, the energy dis-
tribution of the particles is nearly the same as the
statistical energy distribution. There is no term in the
cross section which favors a large or a small momentum
transfer from the nucleon to the meson: The strong
dependence of the cross section on large momentum
transfers, at high energies, which could be expected in
a pseudoscalar theory, is eliminated for two reasons:
The terms corresponding to the emission of the meson
before and after the scattering of the nucleons balance
each other. The contribution of high energy particles
limited to a small angle scattering is of the same order
of magnitude as the contribution of slow energy par-
ticles with a large angle scattering; the energy de-
nominators which look like "resonance denominators"
are smeared out by the integration over the angles.

Fxo. 5. The full curve is the cross section for the production
of a pseudoscalar meson with pseudoscalar coupling in the charge-
symmetrical theory (in the laboratory system). The dotted curve
is the cross section as obtained from the invariant statistical
factors (in the laboratory system}. It increases up to a value of 13
which is reached in the neighborhood of Eo/M =20.

"The cross section for production of a pseudoscalar meson with
pseudovector coupling increases like the square of the energy of
the incoming particle Eo'. The cross section reaches the geometrical
cross section for a total energy of the particle of the order of twice
the rest mass. If the cross section is calculated with the damping
theory, the damping terms become effective in that energy region;
they reduce the cross section for proton-proton collision to a
constant and the cross section for proton-neutron collision to a
decreasing function of Eo'.
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APPENDIX

The meson production is considered here from the point of view
of the quantum theory of 6elds (case a). The meson production has
been also considered from a phenomenological point of view~& ' as
the mesonic analog to the bremsstrahlung (case b). The process is
then described as the scattering of a nucleon by another nucleon
followed or preceded by the emission of a meson. The knowledge
of the scattering can be obtained from experiment; thus this
semi-empirical method does not ask the explanation of the mo-
mentum transfer between the nucleons from the theory. The
difference between these two conceptions is more easily explained
in the old form of the perturbation theory. A diagram such as
Fig. 1a condenses three diferent processes which can be unfolded
in the following format:

pl p&R ts

1)2 y', (p02 —f), f, P
II+ IV

y",(vo' —&), &— (»)
III~~

vo', s'( —&') ~
F'= po' —p' is the momentum of the virtual meson exchanged be-
tween the nucleons.

A circuit will be referred to by the corresponding number on
the arrow. Circuit IV describes a direct interaction'~ between the

1~ In the 6rst-order approximation the matrix element for the
nuclear interaction VA A due to the exchange of mesons between
two nucleons is

VA A= ZjLHA jHjA/(EA-E;) g. (1)
Contrary to previous opinions on the static nuclear potential, the
pseudoscalar mesons do not contribute to the first-order term
(they contribute to the second-order term). The vector mesons
give a matrix element VAA which representation in coordinate
space is:

6'(e I"'/r)+g28(r). (2)

g is the coupling constant for the tensor interaction. G is a linear
combination of the square of the coupling constants of the vector
and the tensor interactions. The in6nite terms occurring from the
tensor interaction cannot be cancelled by charge and mass re-
normalization alone (K. M. Case, Phys. Rev. 75, 1440 (1949)).
A treatment which would remove all in6nite terms may remove
also the term g'b(r). There may not be any 8-interaction in the
static potential derived from VA A. If there is one, VA.A is replaced
by the following expression:

VA'A= ~iLHA'jHjA /{EA Ej)g+H A'A. (3)
H' is the operator for direct interaction which is chosen so that

V(r) =62(e "'/r). (4)
In Eq. (4) as in Eq. (2) the term in G' is obtained only when the
static approximation is made, that is to say, when the recoil

nucleons which may or may not be needed to cancel unwanted
singularities in the theoretical derivation of the nuclear potential.
The cross sections obtained in the case a and b would be equiva-
lent' only if the two following conditions were fulfilled:

(1') If the matrix element for the circuit II+III+IV could be
replaced as a whole by the corresponding matrix element of the
nuclear potential. The diagonal elements of these two matrices
are equal (elements corresponding to the transitions between two
states of the same total energy); but the o6 diagonal elements are
not equal when circuit IV is included or when there is a virtual
pair creation in the intermediate state. When there is not equiva-
lence between the circuit II+III+IV and the nuclear potential,
it is di%cult to speak of a nuclear potential for processes of higher
order such as radiative scattering.

(2') If circuit I were negligible as compared to the circuits
II+III+IV. This condition would be necessary because the
phenomenological description cannot account for circuit I where
the meson is emitted during the exchange of the virtual meson.
The ratio of the contribution of circuit I to the contribution of
circuit II or III is of the order:

w/(&0' —s') &1

near the threshold. The importance of the contribution of the
circuit I at the threshold is due to the 6niteness of the meson mass.
Two circumstances may affect circuit II and III in such a way
that circuit I becomes of major importance. When there is no spin
or charge operator, contribution from terms in which scattering
precedes meson emission is equal and opposite in sign to that in
which scattering foilows meson emission. r [The contribution of
circuit II (and III) cancels with that of the corresponding circuit
of the mirror image of (20).) When there is a circuit IV, the con-
tributions of circuit II and III are essentially reduced by that of
circuit IV, that of circuit I is unaffected.

We have pointed out the differences of the photon and meson
case due to the finiteness of the meson mass. By looking at the
meson production in a slightly diferent manner, we can bring
forth another difference between these two fields. Whereas in the
bremsstrahlung, the Coulomb potential is accounted for by the
longitudinal part of the 6eld, and the photon emission by the
transverse part of the 6eld; in the meson production, there is no
such distinction between the field responsible for the nuclear
potential and the Geld responsible for the meson emission. Unlike
the problem of the bremsstrahlung one cannot take the difference
between the total field and the part of the Geld associated with the
nuclear potential to account for the meson emission. In the
bremsstrahlung there is no difference between the case a and b.

In conclusion, the phenomenological description avoids the
difBculties of the theoretical calculation of the nuclear scattering.
It keeps just a part which gives meson production. It overlooks
some of the differences between the meson field and the photon
Geld.

energy is neglected in Eq. (3) or in Eq. {1).This approximation is
justified in Eq. (1); it is not obviously justified in Eq. (3) because
H'A A cancels the main contribution of ZjpiA jHjA/(EA-Ej)g and
the remainder is of the same order of magnitude as the first term
neglected by the static approximation. It can be shown that the
static approximation is justified in Eq. (3) only if the total energy
of the states A and A' is the same. Consequently, the representa-
tion of VA A in coordinate space is not G'(e "'/r).


