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Diffusion in Binary Alloys
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Darken has given a phenomenological theory of diffusion in binary alloys based on the assumption
that each constituent difFuses independently relative to a 6xed reference frame. It is shown that diffusion

via vacant lattice sites leads to Darken s equations if it is assumed that the concentration of vacant sites
is in thermal equilibrium. Grain boundaries and dislocations may act as sources and sinks for vacant sites
and act to maintain equilibrium. The modi6cations required in the equations if the vacant sites are not
in equilibrium are discussed.

I. INTRODUCTION

HERE has recently been much interest in diGusion

in alloys from both an experimental and a theo-
retical standpoint. W. A. Johnson' has investigated
the relation between diBusion of radioactive constitu-
ents of binary alloys of silver and gold and diffusion

resulting from a gradient in the relative concentra'tions

of the two metals. He finds that the chemical diffusion

coeKcient in an alloy in the 50—50 range of composition
is larger than that of either of the constituents.
Smigelskas and Kirkendall, ' in a study of the migration
of the boundary between 70-30 alpha-brass and copper
as a result of di6usion, found that the diBusion is

associated with a mass Qow such as might be expected
if zinc diffuses out of the brass more rapidly than

copper di8uses in.
The theory of diGusion in alloys has been discussed

recently by a number of authors from difterent points
of view and apparently with differing results. Birchenall
and Mehp emphasize the role of the gradient of chemical

potential as the motivating force in dift'usion. Fisher,
Hollomon, and Turnbull' treat the problem on the
basis of the absolute theory of reaction rates, and

consider diffusion via vacant lattice sites as well as by
interstitial atoms. L. S. Darken' has developed the

theory of diffusion in binary alloys from a phenomo-

logical standpoint. He assumes that each constituent
diBuses independently of the other. F. Seitz' treated
the vacancy mechanism of diGusion from the stand-

point of kinetic theory. The purpose of the present
note is to point out the connection between these

various treatments, and in particular to show that the
vacancy mechanism leads to Darken's equations if it is

assumed that the concentration of vacant sites is

maintained in local thermal equilibrium.
The method of calculation which we use is similar to

that of Seitz. From a consideration of the effect on
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rate of Qow of terms in the free energy arising of non-
ideality of the solid solution, we are led to equations
for diffusion rates which are essentially the same as
those of Fisher, Hollomon, and Turnbull. These equa-
tions involve the concentration of vacant lattice sites.
Darken's equations then follow if it is assumed that the
vacant sites are maintained in thermal equilibrium.

In Part II we give a brief description of Darken's
theory. This is followed in Part III by a discussion of
the thermodynamics of a binary alloy with vacant
lattice sites. Part IV gives the theory of diBusion based
on a model similar to that of Seitz.

II. DAR&&N'8 THEORY

Darken assumes that each constituent di8uses inde-
pendently of the other so that, in a binary alloy with
constituents A and 8 in concentrations Ã~ and E~,
the currents of atoms of the two types relative to some
fixed reference frame are:

zA DA(~NA/~&) j zB DB(~NB/~&) ~

Although Darken does not wish to be as specific, we
will assume that the reference frame is the crystal
lattice. Since

(BNg/Bx) = (BNa/Bx), — (2)

the total Qow of atoms across a plane fixed in the
lattice is:

z~+izz = —(Dg Dzz) (BNg/Bx). — (3)

Relative to a moving reference frame for which this
Qow vanishes, the Qow of A atoms is

zg fs(zx+zzz) = —(f—aD~+f~D~) (8N&/Bx), (4)

where f~ and fez are the fractional concentrations:

f~ it A/(NA+@ B)y fB NB/(NA+NB) (~)

The factor
Dc =faD~+ f~aa (6)

is the chemical diBusion coeflicient as measured by the
usual methods.

If there is a gradient of the concentration, X~~, of
a radioactive tracer, the Qow of radioactive atoms in an
alloy in vrhich the total concentration of A atoms is
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uniform is
i~* ——D—~'(BN~*/Bx). (7)

potentials p~, p~, and p„are deined by equations of the
form:

Darken attributes diGerences between D~ and D~* to
terms in the chemical potential other than those
resulting from the entropy of mixing. It is the gradient
of the chemical potential, p~, which is responsible for
dlffuslon.

If in place of (2) or (7) we write

u = —C~lV~&y~/»~,

then C~ is the same for both chemical and radioactive
di8usion. The chemical potential in the radioactive
case involves only the entropy of mixing, so that, as
for an ideal solution,

p,~*=kT long*.
Inserting (9) into (8) and comparing the result with

(7), we And that
C~ =D~*/kT~ (10)

Comparing (8) and (2) for the case of chemical diffu-

sion, we hand the relation between D~ and D~* which
was used by Darken:

Dg=Dg*(d(pg/kT)/d logXg). (11)

For an ideal solution D~ and D~* are equal. In general,
D~ may be either larger or smaller than D~*.

Similar equations apply to i&. Darken points out
that the thermodynamic equations of the alloy system,

d(p~/kT)//d logiV~=d(pa/kT)/d loglVa, (12)

imply that
D~/Da =D~*/Da*.

Using values of p~ from electrochemical data for the
silver gold alloy Darken computed the value of the
chemical diffusion coeKcient, D;, from the radioactive
coeKcients and. found reasonable agreement with
Johnson's measurements. Darken, of course, attributes
a mass Qow such as that found by Smigelskas and
Kirkenall to a diGerence between D~ and D~.

III. THERMODYNAMICS OF ALLOY WITH
VACANT SITES

Ke suppose that of a total number of X sites, E~
are occupied by A atoms„E& by 8 atoms, and E„are
vacant, so that

X= lV~+Xa+lV. .
We suppose that )V, is small compared with X~ and Ã~.
The Gibbs free energy may be expressed in the form P

G= W(lVg, Xa, X,) kT(X logX lV g loglVg— —
le+ log%& —X, logV, ), (15)

where the second term comes from the entropy of
mixing and the erst from all other causes. The chemical

7 See, for example, M. %.Zemansky, Heal and The neodyeeetics
(Mcoraw-HiH Book Company, Inc., New Vork, 1943), p. 323.

pg=BG/BXg=W/BlVg+kT logfg, (16)

where f~ is the fractional concentration. In terms of
the chemical potentials,

G= VApA++Bpa+Xvjlu (17)

The potential p,, is the free energy required to take an
atom from the interior to the surface, forming an
additional vacant site and increasing the total number
of sites by one. If the vacant sites are in thermal
equilibrium, p, =0. We do not assume this necessarily
to be the case. In general,

g, =kT log(X„/X„,),

where X, is the actual concentration of vacant sites
and S„, is the equilibrium concentration, In writing
Eq. (18) we have assumed that BW/8)V„ is independent
of X„as will be the case for small concentrations of
vacancies. Equation (12) follows directly from Eq. (17)
if it is assumed that p,,=0, but is not strictly valid in
the general case. Deviations from Eq. (12) will be
small if the fractional concentration of vacant sites is
small compared with unity or departs but little from
equilibrium.

IV. DIFFUSION VIA VACANT SITES

We erst discuss radioactive di8usion and then show
how chemical di8usion is related to it. Ke assume,
following Seitz, e that diffusion of both A and 8 atoms
occurs by motion of atoms into neighboring vacant
sites. For simplicity, we assume that the atomic volume
is independent of concentration.

Consider two neighboring crystallographic planes
1 and 2, which are normal to the x axis and which are
separated by a distance X. We suppose that there is a
gradient in the concentration, S~*, of tracer atoms in
an otherwise uniform aHoy, so that the number per
unit area on plane 1 is LV~* and on plane 2 is X(&V~~

+X(8$~~/Bx)). The concentration of vacant sites is
assumed to be uniform. The rate at which A* atoms
go from plane j. to plane 2 is then:

kgb%, Sg*,

and from plane 2 to plane 1,

(19)

kgbÃ„(Kg*+A(BX~*/Bx)), (20)

where k~ is proportional to the rate at which an A atom
jumps into a neighboring vacant site. Expressions (19)
and (20) are based on the assumption that the concen-
tration of A atoms which have vacant sites as neighbors
in the adjacent plane is proportional to the average
concentration of A atoms in the given plane. ' The net

Dr. C. Herring has pointed out to the author that this assump-
tion may not be valid. Consider the different ways in which a
vacant site on the plane at x+) becomes adjacent to an A atom
on the plane at x so that a forward jump of the' A atom can take
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Bow of A* atoms is the difference between (19) and (20) the two directions is AW. To a sufhcient approximation,

ig~ —— —kgb'$, (8$z*/ax), (21) kr ka—=46W/kT. (27)

giving for the radioactive diffusion coefficient:

Dg*= kgb'X. . (22)

%e next consider the case of chemical diffusion and
assume a gradient in the concentration of vacant sites
as well as of A and 8 atoms. The rate at which A
atoms go from plane 1 to plane 2 is

k,) X,y'„+) (BX„/ax))

and from plane 2 to plane 1

(23)

kgXiV„(Ng+X(aÃ~/ax)), (24)

in which kf and k~ are proportional to the frequency of
jumps in the forward and backward directions, respec-
tively. If, as a result of the concentration gradient in a
non-ideal solution, the free energy of an A atom on
plane 1 is slightly diferent from that of one on plane 2,
the potential barrier over which diffusion takes place
will not be symmetric, kf will difkr from k& by terms
of the order X, and both will dier from k~ by terms of
the same order.

The net rate of Row of A atoms is the diQ'erence

between (23) and (24)

B'AV„aug�)
ig =kgb'I Xg —X. ~+ (ky —4)&&~&., (25)

ax ax )

in which we have neglected higher order terms in ). If
5W is the change in free energy arising from non-
ideality in the forward jump of an A atom, '

hW~
kr/4=exp( —hW/kT)

i
1—

kT3
(26)

The effective height of the barrier impeding diGusion is
increased for a forward jump and decreased for a
reverse jump, and the diBerence in eGective heights in

place. One of the ways is that in which a reverse jump has just
taken place, an A atom on x+) going to the plane at x. The
number of these which will occur will depend in part on the
concentration of A atoms at x+) instead of x. In the extreme
case in which motion can take place only along strings of atoms
parallel to the concentration gradient, a Bow of vacant sites
could take place without any associated diffusion. According to
Dr. Herring's calculations, the error made in calculating the
radioactive diftusion coefficient in a cubic monatomic substance
by the above method is about 10 percent.

9 See S. Glasstone, H. J. I aidlen, and H. Eyring, The Theory
of Rate Processes (McGraw-Hill Book Company, Inc., New York,
1941},p. 530.

Using (27) and (28) in (25), we find

8
sg = kg) 'XgE,—logÃ„—long

Bx

1 (aw aw)
(29)

kT EB.V~ arV„) .
which may be written in the form:

2g = CgSga (pA p„)/ax
where

(30)

Cg =kzX'E, /kT =Dg*/kT (31)

Equation (29) is essentially the same as Eq. (27) of
Fisher, Hollomon, and Turnbull.

Equation (30) is the same as Eq. (8) if p„=0. Thus
the mechanism of diffusion via vacant sites leads to
Darken's phenomenological equations if the vacant
sites are in local thermal equilibrium. No gradient of
vacant sites is to be expected in the case of diffusion of
a radioactive tracer. In chemical diffusion, where there
is a vacancy current, grain boundaries and to a less
extent dislocations will act as sources and sinks for
vacant sites to help maintain local equilibrium. The
associated plastic Bow tends to keep the density of
atoms constant.

If the concentration of vacant sites is not in thermal
equilibrium, the more general Eq. (30), which is
analogous to those of Seitz and of Fisher, Hollomon,
and Turnbull, must be used. With use of Eq. (18) for p„
(30) includes a term in the concentration gradient of
vacant sites. This could be transformed, following
Seitz, to a term involving the current of vacant sites.

The author is indebted to Dr. C. Herring and to
Dr. L. S. Darken for a number of valuable suggestions.

An expression for hW may be obtained as follows.
In a forward jump, the number of A atoms on the
plane at x+) is increased by one and the number of
vacant sites is decreased by one. On the plane at x the
opposite changes occur. Thus to terms of the order X

(BtV BW ) (BW 8W)
~w=

Eav, B.v„)„, iax. Bx„),
8 (aw awi

~. (28)
ax iaxg ax„)


