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Electric Breakdown in Ionic Crystals*
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The electric breakdown strength of ionic crystals at low and moderate temperatures is calculated on the
basis of von Hippel's low energy criterion. Frohlich's method of calculation, modi6ed to take account of the
electronic polarizability of the ions, is employed. The breakdown strength at T=O' is Fp(volts/cm)
= 134' 10'(fuug), f(e fp)/(e cp )&](m*/m) where (Aa g),„is the reststrahl energy in electron volts, e, and 6p are
the static and optical values of the dielectric constant, and (m*/m) is the ratio of the effective mass to the
free electron mass. The breakdown strength increases slowly with increasing temperature. The lack of
dependence of the breakdown strength on crystallographic orientation and the strong directional dependence
of the breakdown paths are qualitatively accounted for.

I. INTRODUCTION down strength, according to von Hippel's "low energy"
criterion, therefore corresponds to the maximum in
Fig. i, and an electron brought into the conduction
band with low energy is immediately accelerated to the
ionization energy and produces an additional conduction
electron, the process thus building up in the form of an
avalanche. Alternatively, Frohlich' has suggested that
an applied field su%cient only to accelerate electrons
already having the ionization energy may lead to an
instability and to electric breakdown.

Unfortunately it does not seem possible as yet to
give a definitive a priori proof of the necessity of von
Hippel's low energy criterion or of the su%.ciency of
Frohlich's high energy criterion. It therefore seems de-
sirable to compute the breakdown strength of crystals
on the basis of each criterion, and to make an a posteriori
choice of the criterion which most closely predicts the
experimental facts.

Frohlich' has developed a method of treatment of the
interaction between a conduction electron and the
vibrational modes of an ionic lattice, the method being
a modification of the methods developed in the electron
theory of metals. Utilizing this method he has given a
breakdown theory based on the high energy criterion.
Seeger and Teller' have a given a low energy breakdown
theory based on Bohr's classical calculation of the
energy loss of alpha-particles in a gas. The calculations
of Frohlich and of Seeger and Teller differ in two funda-
mental respects. Firstly, as discussed above, Frohlich
adopts what we have called the high energy criterion,
whereas Seeger and Teller adopt the low energy cri-
terion. Secondly, Frohlich has explicitly considered the
effect of the tortuosity of the path of the electron, and
has given a treatment of this effect in terms of an
electronic relaxation time. In the present paper
Frohlich's method, 4 modified to take account of the

Wo distinct mechanisms have been proposed for
the breakdown process in ionic crystals under

high field-strengths, at low and moderate temperatures.
It has been proposed by von Hippel' that breakdown
occurs when the applied field is high enough to acceler-
ate electrons of any given energy in the conduction band
to sufhcient energy to further ionize the ions of the
crystal by collision, thus leading to an exponential
increase in the number of electrons in the conduction
band. It may be easily seen that the applied field
necessary to accelerate (on the average) an electron of
given energy has a maximum when considered as a
function of electron energy, as indicated schematically
in Fig. 1. For, in order to accelerate an electron, the
applied field must compensate the energy lost by this
electron to the lattice; but slow electrons have insuf-
ficient energy to excite the vibrational modes of the
lattice, whereas very fast electrons interact for too
short a time with the ions which they pass to transfer
energy to them with appreciable probability. The break-

Breakdown field according to Yon Hippets
low-energy criterion.
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FIG. 1. The field necessary to accelerate an electron of
given energy (schematic).

~ This work was supported under Contract NOhs-42487 at the
University of Pennsylvania, and was sponsored by the ONR, the
Army Signal Corps and the Air Force under ONR contract
N5 ori-78, T. 0.1 at M.LT.

' See A. von Hippel, Trans. Faraday Soc. 42A, 78 (1.946), an
A. von Hippel and R. S. Alger, Phys. Rev. 76, 127 (1949) fo
recent accounts of this point of view and for a more complet
bibliography.

2 H. Frohlich, Proc. Roy. Soc., London, A160, 230 (1937).
d ' R. J. Seeger and E. Teller, Phys. Rev. 54, 515 (1938).
r 4 Frohlich has pointed out (Phys. Rev. 61, 200 {1942), and
e private communication with the author) that certain qualitative

consequences of his breakdown theory follow from the treatment
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electronic polarizability, is applied to the low energy
criterion, leading to results in fair agreement with
experiment. The structure of the calculation follows
closely that of Frohlich's paper, and many of the equa-
tions are modifications of equations obtained by him.
%e have, however, thought it preferable to present a
complete and self-contained account of the theory,
rather than to attempt to refer to and modify Frohlich's
equations in those cases where such a procedure would
be possible.

The electric field required to accelerate an electron
of given energy is determined by the condition that the
rate of energy loss from the electron to the lattice is just
compensated by the rate of energy input from the field
to the electron. This latter energy input is, however,
simply Iles~, where Ii is the field and v~ is the drift
velocity. It is thus necessary to calculate the rate of
energy loss from electron to lattice, and the drift
velocity, as functions of electronic energy. These calcu-
lations are accomplished by treating the efkct of the
lattice vibrations on the electron as a time-dependent
perturbation. The breakdown field is identjL6ed with the
maximum value of the field so obtained.
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where $&~ and $2a determine the rels, tive amplitudes of
u~ and u2& and are so defined that

of the relaxation time rather than from what we have termed the
high-energy criterion. Thus the temperature dependence and the
dependence of breakdown strength on impurity content are
similar in the present theory to that in Frohlich's high energy
theory.

~ See, for instance, F. Seitz, The Modern Theory of Soli'ds
C,'McGraw-Hill Book Company, Inc., New York, 1940).

II. THE VIBRATIONAL MODES OF THE LATTICE

According to the lattice dynamics of Born and von
Karman' the normal vibrational modes of a diatomic
crystal may be represented in the form of plane waves.
The wave-vectors a (~ 0

~

= 1/X) take X discrete va.lues
lying within the first Brillouin zone, where X is the
number of unit cells in the crystal. To each value of e
there correspond six modes, which can be grouped into
three "optical" modes of relatively high frequency and
three "acoustical" modes of relatively low frequency.
Of the three modes of each type, one is longitudinal and
two are transverse.

For a mode of wave vector e let u~a (r) or u2a(r) be
the deviation from its equilibrium position of the ion
at the point r, if the ion is of type 1 or type 2, respec-
tively. Then a standing wave description of the longi-
tudinal mode of wave-vector e may be written as'

v here the summations are over all 6N modes.
If the kinetic and potential energies of the lattice are

expressed in terms of the variables b~ and b~, a
Lagrangian and a Hamiltonian function can be obtained,
and bo is found to be the momentum conjugate to be.
The Hamiltonian is

FI= ,' QLba'+-(aa'ba'j, (4)

which is formally identical to the Hamiltonian of a col-
lection of 6N one-dimensional, independent, harmonic
oscillators. The wave function describing the vibrational
state of the lattice is the product of 6N harmonic oscil-
lator wave functions of individual quantum numbers
n~, n2 n& . The corresponding energy eigenvalue is

Neglecting the fine structure of the dielectric, the
mode e can be considered as producing a polarization Pg,

and consequently a charge density p,

where e* is an effective charge per ion (see Section II)
and where a is the interionic distance (2a' is the volume
of a unit cell). This charge density pa represents the
accumulation of positive and of negative ions at the
alternate nodes of a longitudinal wave and it is easily
seen from the form of Eqs. (1) that p& differs from zero
only for a longitudinal mode. The Coulomb interaction
between a conduction electron and the charge density pp
supplies a means of interaction whereby the electron
can be scattered by the vibrational modes. Of course
this is not the only interaction energy between a con-
duction electron and a phonon, and any vibrational
mode alters the periodicity of the potential in which the
electron moves and therefore scatters the electron, even
though the mode may not give rise to a charge density
pg. However, the Coulomb interaction with p~ is the
dominant term' in the complete interaction, as indicated
by the empirical fact that the mean free path of elec-

6 F. Seitz, in a paper presented to the New York meeting of the
American Physical Society, January 28, 1949, hap pointed out that
for very fast electrons the Coulomb interaction with p~ ceases to
be the dominant term.

According to our convention, if the cosine function in
Eq. (1) is adopted for the mode e, the sine function
must be adopted for the mode —e to insure ortho-
gonality of the modes. Both the natural frequency of
the mode (v&) and g&~ depend on a in a fairly com-
plicated manner. The total deviation of the ion at r is,
of course,

ui(r)=Bum(r), u (r)=Z um(r),
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trons in polar crystals is very much shorter than that in
non-polar crystals. We therefore neglect other interaction
terms, and we consider the conduction electrons to be
scattered only by the longitudinal modes. For the
longitudinal modes

e~ g(2q& p$+g $,g) sin
(2 ) (g)

2a'o (X) EM+& M &) cos

For every value of e there are two longitudinal modes,
one in the acoustical branch and one in the optical
branch. The acoustical modes are characterized by the
fact that $+, g/$, g is positive, whence neighboring
positive and negative ions vibrate in phase. For the
optical modes (+, g/$, g is negative, and neighboring
positive and negative ions vibrate 180' out of phase.
The optical longitude modes therefore produce a much
larger polarization P and a much larger charge density

pg than do the acoustical longitudinal modes. In fact,
for the acoustical longitudinal modes of long wave-

length, which are of principal importance in our theory,
the ratio of the amplitudes of positive and negative
ions is unity so that P+, g/M+&= g, g/M &, and
Pg= pg =0. For the optical longitudinal modes of long
wave-length the ratio of amplitudes is

I+, g/I, g= M /M+— (9)
whence

p+, g/M~& $, g/M —&= (1/M++1/M )&= 1/M&, (10)

where M is the reduced mass of the ions. As a simpli-

fying assumption we take Pg = pg =0 as true for all the
acoustical longitudinal modes, and Eqs. (9) and (10)
as true for all the optical longitudinal modes. In this
way the longitudinal modes of long wave-length, which
are of principal importance in the theory, are treated
correctly, and the over-estimation of the polar'ization
produced by the short optical modes is compensated by
the underestimation of the polarization due to the short
acoustical modes. Only the optical longitudinal modes
are effective in scattering a conduction electron.

In the optical branch the frequency is a fairly insen-
sitive function of wave-length and may, to a good
approximation, be taken as constant, independent of
wave-length. We therefore attribute to every optical
longitudinal mode the frequency of the optical longi-
tudinal modes of long wave-length, which we denote by
v (or by cp—= 2prv). The relation of v to the reststrahl
frequency u&, or to the frequency of the long wave-
length optical transverse modes, will be considered in
the next section.

III. THE FREQUENCY OF THE LONG WAVE-
LENGTH LONGITUDINAL OPTICAL MODES

It has been shown by Lyddane and Herzfeld' and by
Frohlich and Mott' that the frequency of the long**

~ R. H. I yddane and K. F. Herzfeld, Phys. Rev. 54, 846 (1938).
I H. Frdhlich and N. F. Mott, Proc. Roy. Soc. A1T1, 496 (1939}.
*~ A mode of long wave-length is to be considered as one for

which X&&e (e is the inter-ionic distance), but it is assumed that )

V= (-,'Mcp'/2a')XgP, (15)

where M is the reduced mass of the ions and co is the
natural angular frequency we thus 6nd

(~pMpp'/2a')Xg'= —,'Mcpc'/2a'Xg'+ ep/Spr[(2ge*/a')Xg j-'

or
ppP = cpcP+ 27rppe~'/Ma',

where co is the natural angular frequency of the longi-

is small compared with the dimensions of the crystal in order that
the boundary conditions shall not be significant.

'Lyddane, Sachs, and Teller, Phys. Rev. 59, 673 (1941). The
author is indebted to Dr. Sachs for calling his attention to this
pager.

f Frohlich and Mott (see reference 8) have also obtained an
equation relating the two frequencies, neglecting the effect of
electronic polarizability.

wave-length optical longitudinal modes exceeds the
frequency of the long wave-length optical transverse
modes in ionic diatomic crystals. In a longitudinal
mode there are regions of charge accumulation which
set up electric 6elds within the crystal, and these 6elds
contribute to the restoring force-constant. In a trans-
verse mode of long wave-length, however, the electric
Gelds are "short-circuited" at the crystal boundaries
and do not contribute to the restoring force-constant.
Lyddane, Sachs, and Teller' have computed the relation
between these frequencies taking proper account of the
electronic polarizability of the ious. f We now reformu-
late this analysis in a form appropriate for the calcu-
lation, in the next section, of the phonon-electron inter-
action energy.

Following I.yddane, Sachs, and Teller, consider the
ions of the crystal to be given the displacements cor-
responding to a long wave-length longitudinal optical
mode, so that the relative displacement of the positive
and negative ions is

X(p=U+, g —U, g,

This displacement produces a polarization which, to the
6rst order, is linear in X. Accordingly we write

Pg = (e*/2a')Xg,

where e* is an effective charge, which difkrs from the
true ionic charge because of the distortion of the elec-
tronic shells and the electronic polarization caused by
the internal 6elds which are set up by the displacement.
This polarization is associated with an internal 6eld

Eg = —4prPg = —(2 pre*/a') Xg, (13)

and this 6eld is associated with an electrostatic energy
density

Ug' = ep/Sm. [(2m.e*/a') Xg]'. (14)

In a transverse mode the electrostatic field of Eq. (13)
is absent, so that U&' represents the difference in energy
density of longitudinal and transverse modes with the
same values of I. 'Writing the total energy density
associated with a mode in the form
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As in Eq. (13) the internal Geld is

E= —(2ee*/a') X,

and the electrostatic energy density is

(1S)

U'= (pp/Se) [—(2 prep/a') X]'. (19)

tudinal mode and ~t, is the natural angular frequency of
the transverse mode.

An equation analogous to the familiar Born" formula,
relating u& to eo, e, and e*, may be obtained by similar
reasoning. Consider a crystal in which the ions are
given the relative displacement X. The energy density
is then

U = (-',M(o'/2a') X'
= (M/4a') [ppP+ (2eppe*'/Ma')]X'. (l7)

IV. THE PHONON-ELECTRON INTERACTION ENERGY

%e have seen that, within our approximations, the
interaction energy between an electron and any vibra-
tional mode other than those of the longitudinal optical
branch, is zero. Using the method of the previous section
we can now evaluate the interaction energy of an elec-
tron and a longitudinal optical mode. Consider a crystal
in which we establish the ionic displacements X& and
into which we insert an excess conduction electron. If
the conduction electron produces an electric displace-
ment D the energy density is, by Eq. (23),

U= (M/4a')coPX '
+ (pp/Sn. )[(1/pp) D —(2ee*/a')X )' (30)

so that the increment in energy density due to the
interaction is

If an external field 9, parallel to X, is now imposed on
the crystal it mill induce an additional electronic
polarization, the total polarization now being

e*
EU= Xg D.

2a
(31)

P=(e /2a')X+(1/4e)[(pp —1)/pp)D, (20) By Eqs. (1) and (16) the relative displacement has the
form

and the internal Beld becoming

K= —(2ee*/a')X+ (1/pp) D. (21)

The electrostatic energy density is thus increased to

U'= (pp/Se)[(1/pp) D —(2ee /a')Xj', (22)

and consequently the total energy density becomes

U= (M/4a')co( X +pp/Se[(1/pp) D—(2ee*/a')X]'. (23)

If the displacement X is allowed to adjust itself the
equilibrium value will be that which minimizes the
energy, or

e( 2 q& sin
Xe———

~ I
be l(2ee r).

o ~ MX) cost

If the electron is at the point r, we have

Introducing the new variables

and

(32)

(34)

X= [a'e*/(Ma'pp '+2eppe*') )D (24)

%Kith this value of X the equilibrium polarization
becomes, from Eq. (20),

P=-'[e*'/(Ma'(g '+ 2prppe*') jD+ (1/4pr) (pp 1/pp) D—

(25)

6 r—r.
cos8=——. (35)

we have

ee*( 2 q
& sin

~U=—
]2a' EMSi cos

2e(e 8+e.r,)(cos8/p'), (36)

But, by definition of P, (the static dielectric constant)~ and the total interaction energy P'e, „becomes

a& '= (2ee*'/Ma') [p '/(p, pp) 5, —(27)

P=—(1/4e) [(p,—1)/p, ]D, (26) ee*( 2 q& p" Isin
I I

be I
~

' 2e(e 8+e.r,)
2a' &M&V) ~p ~p cos

X (cos8/p')2ep'pin8d8dp (37).

ee*t 2 y&
t

—cos
8'e, p.=

~ ~
be (2ee r.), (3S)

aPe I MN& L sin(29)QP Q)g = $8

which reduces to the Born equation if (e pp) is put
equal to e'. Combining Eq. (26) with Eq. (16) we Gnd The

. t al may be e aluated eas. l a d g.,
sP = (2pre*'/Ma') [pp pg/(pq pp) j (2—S)

Equations (29) and (27) allow us to compute both co

and e~ in terms of the experimentally observed reststrahl
frequency, which is practically identical to co&.

which reduces to Frohlich's result' if one puts e*=e.

V. TRANSITION PROBABILITIES

0 sec M Q{)rQ @Qd M Gacpppz t M@y@z zz~~k /zan phyzQ the interaction energy between the vibrat iona 1

vol. 24/'2, p. 646.
' '

modes and a conduction electron in the lattice is treated
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FIG. 3. Dependence of y,ccelerating
6eld on energy and temperature.
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H e is the angle between I and e one easily finds

cosn = —(0/2E)+ (2ni'/h') [(2h&W h(v)/2Eo 7

(+ for absorption.
for emission.

For a given E the electron can only interact with modes
having wave vectors such that the right-hand member
of Eq. (47) is less than. uruty in absolute value. Putting
$~0, and introducing the notation

EP=2m* /hi (4g)

7

0;„=aE[—1+(iaE„2/E') &7

+ for absorption
—for emission.

In using Eq. (44) to calculate the probability of scat-
tering of an electron we take for eo the average quantum
number of a mode at the temperature T. This average

* For suf6ciently large E the value of cr,„given by Eq. (49)
exceeds the maximum cr which can exist in the lattice —i.e., that
at the furthest boundary of the Brillouin zone. Such fast electrons
do not play a role in our lour energy theory.

so that E, is the wave vector of an electron with energy
hv, we thus find as the limiting values* of 0 which can
interact with a given E:

value n is independent of e and is given by

n exp[ (n+ ,'—)hey/h-T7
n,=

Q„exp[—(n+-,') hco/h T7
(51)

exp(hco/h T) 1—

(54)

where the limits on the first summation are appropriate
to the emission process and those on the second sum-
mation are appropriate to the absorption process, as
given by Eqs. (49) and (50). The summations over ir
can be replaced by integrations in "wave vector space. "
Since there is one value of e for each volume of 1/2%a'
in wave vector space we have

Q( )~2'')I )I ))( )da

=2Ea')~~~))( )2«o' sinadndo (55)

VI. THE RATE OF LOSS OF ENERGY TO THE LATTICE

%e have seen that, for an electron with energy
greater than Aced, the probability of emission of a vibra-
tional quantum exceeds the probability of absorption,
and the electron tends to lose energy to the lattice.
Following Frohlich we now calculate the average rate
of energy loss, which we denote by B. If 4 is the
probability of absorption and C' is the probability of
emission we have, by Eqs. (44) and (51),

p ee*
~
' n 8 sin'$t

Ca =~
~

S(K—K'~~, 0)—,(52)
E 2a'o I XMhco Bt P
(ee*)' n+1 8 sin'$t

s(K—K'~~, o)—,(53)
(2a'o ) N3fhra N
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where

1+(1+kiv/E) &

—nln (56)—1+(1+k&v/E) &

s (2m«) &(ee«)'
C=

Mu'(kiv) &

(57)

and where E is the energy of the electron. It should be
recalled that this equation is valid only if cr, , as given
by Eq. (49), lies indisde the first Brillouin zone. This
requires that

E~&'/32m*a' (58)

or that the electron energy be less than about one to
three electron volts for the various alkali halide crystals.

%e have also assumed that the emission process is
possible, so that we must have

(59)

The quantity 8/C is plotted against the "reduced
energy" E/kvv for various values of the "reduced tem-
perature" kT/kiv in Fig. 2.

I 40

+«(~) « I/4 x IO (5~&)a„

(~g) l.,

l,t6—
l l4—

l. lo

where we have taken spherical coordinates in wave
vector spa, ce, with polar axis along K, with radius
vector e, and with polar angle 0,. To carry out the
evaluation of the summations in Eq. (54) it is convenient
to make a further change of variable from a to (, using
Eq. (47). Thus one obtains

(kie q &; 1+(1—kvi/E)&
&=0! I (ny1) ln

( E ) 1—(1—k&v/E)&

3=eFvg, (60)

where Ii is the electric field strength and ~~ is the drift
velocity (which is a function of the energy and of F)
The drift velocity may be expressed in terms of the
relaxation time v, defined by

whence
ve= (er/m—*)F,

2 =e'F'r/m*.

(61)

(62)

The drift velocity, and thus also the relaxation time, is
determined by the equilibrium between the tendency
of the field to increase the z-directed velocity (assume
the field along the z axis) and the tendency of the col-
lisions to scatter the electrons away from the s axis and
thus to decrease their s-directed velocity. Thus the
drift velocity is determined by the equation

dosldt)eauisions = dvs/dt) iisie = eF/m (63)

We consider the average eGect of collisions on the elec-
trons of energy E. I.et an electron have its velocity v
at an angle P with respect to the z-axis, so that its
z-directed velocity v, is vcosp. Let a collision with a
vibrational mode occur, after which the electron is
deviated through the angle y and has a velocity v'. The
probability of such a collision is clearly independent of
the azimuthal angle of v' around v. If we average over
this azimuthal angle the final average s-directed velocity
is v' cosy cosp and, on such a collision, the average
change in e, is

Av, = v' cosy cosP —v cosP= v, [(v'/v) cosy —1). (64)

Maintaining e constant, and averaging both sides of
the equation over the angle p, or over v, ;

(Evg) = ver (v /'v) cosp —1], (65)

where the drift velocity e& is the average of e, for all
orientations of the electron. To find dv, /dt)„ii;;„„,we
must now average (hv, ) over the angle y, weighting
each value of y with the probability per unit time of a
collision which scatters the electron through the angle 7.
Indicating this averaging process by the notation ( )„,
we have

VII. THE RELAXATION TIME

The 6eld required to accelerate an average electron
of given energy is obtained by equating the average
rate of energy loss from the electron to the lattice, 8,
to the average rate of transfer of energy from the field
to the electron, A. This latter rate of energy transfer is

d8*/dt)aollilions= ve((v cos'7 —'v)/v)r (66)

l,Og—

Fjc.4. Temperature dependence of breakdown 6eld-strength.

or, using Eqs. (62) and (60), and recalling that v is pro-
portional to the wave vector K;

1/r = ((E E' cosy)/E) r. — (67)

If 0. is the angle between the wave vector e and the
electronic wave vector K (see figure below Eq. (47)), we
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a{10 scm) M(10 ~4 gms) e*/e

Theor. Theor. Fle (Theor. )
Fo(10e v/cm) F»'(10e v/cm) Exp't.
(m*jm = 1) (m*/m 1) Fee'(10e vjcm) Fte'(Exp't. )

LIF
NaF
NaCl
NaBr
KF
KCl
KBr
KI
RbCl
RbBr
RbI

9.27
6.0
5.62
5.99
6.05
4.68
4.78
4.94
5.0
5.0
5.0

1.92
1.74
2.25
2.62
1.85
2.13
2.33
2.69
2.19
2.33
2.63

0.072
0.033
0.024
0.018
0.03
0.019
0.015
0.013
0.017
0.011
0.01

2.07
2.31
2.81
2.97
2.66
3.14
3.29
3.53
3.27
3.42
3.66

8.46
17.27
23.2
29.6
21.2
30.8
43.6
49.5
41.6
68.5
84.6

1.11
0.72
0.56
0.44
0.84
0.55
0.50
0.43
0.63
0.51
0.48

8.75
3.34
1.35
0.78
2.72
0.965
0.63
0.40
0.88
0.49
0.33

8.80
3.57
1.57
0.98
2.96
1.20
0.85
0.57
1.12
0.73
0.52

3.1
2.4
1.5
0.81
1.9
1.0
0.70
0.57
0.83
0.63
0.49

2.8
1.5
1.1
1.2
1.6
1.2
1.2
1.0
1.3
1.2
1.1

have
E' cosy= E+o cosa (68)

If e* is expressed in terms of coc by Eq. (28) and cp is
expressed in terms of cpc by Eq. (29) we obtain

whence
1/r= (—o cosa/E), (69)

where we now average over o and 0,, weighting each
value with the probability per unit time of an appro-
priate collision. Thus

1/r =Q [—(cr/E) cosaC cr')+g [—(o/E) cosa' cr'],

(7o)

and transforming to integrals as in Eq. (55), we obtain

1/r = (B/2hcp) (hcp/E)+ (C/hcp) (hcp/E) &

X I (n+1) (1—hcp/E) &+ n(1+hcp/E) & I. (71)

The quantity hcp/Cr like B/C, depends only on the
reduced energy E/hcp and the reduced temperature
kT/hcp, and is plotted against E/hcp for various values
of kT//hpp in Fig 2. .

VIII. THE BREAKDOWN FIELD-STRENGTH

For a given electronic energy the average rate of
energy loss 8 is independent of the applied Geld, but
the average rate of energy gain from the Geld increases
quadratically with the Geld intensity (Eq. (62)). There
exists a certain field intensity for which the energy gain
is just compensated by the energy loss, and any field
strength greater than this value will, on the average,
accelerate the electrons of the given energy. This
"acceleration Geld strength" is determined by the
equality

(72)

24'm*e
Fo ~coc

h' (p,ppP) &

ol
pg
—

pp f rn
Fp(volts/cm) =134X10p(hcpc),

~ ~
(77)

(p, pp')& E rn 3

where Fp is in volts/cm and (hcpc), .„.is in electron-volts.
The quantity F/Fp, as given by Eq. (74), is easily

obtained as a function of E/hcd and kT/hco from Fig. 2.
In Fig. 3 we plot F/Fp against E/hcp for various values
of kT/h .cp

In accordance with the low energy criterion we adopt
as the breakdown Geld at a given temperature the
maximum of the corresponding curve in Fig. 3. VVe

note that at T=O the maximum occurs at F/Fp 1. ——
Thus Fp ps the breakdown field strength at T=O. The
maxima of the curves of Fig. 3 are plotted against the
reduced temperature in Fig. 4, which therefore gives
the temperature dependence of the breakdown strength.

The breakdown strength of a diatomic ionic crystal is
obtained at T=O from Eq. (77), and at other tem-
peratures from Fig. 4. The breakdown strength depends
only on the reststrahl frequency, the static and optical
values of the dielectric constant, the eGective mass, and
the temperature.

In Table I we give the pertinent data for those alkali
halides for which the reststrahl frequency is known, and
the computed values of the breakdown strength as-
suming fs =sl.

IK. CONCLUSION —DIRECTIONAL EFFECTS
or, by Eq. (68),

which may be written

F=Fp[((h~/C) (1/r)) (B/C) j'

VZxm*ee*'

(73)

(74)

(75)

The theoretical values (assuming np*/np= 1) are com-
pared with the experimental breakdown strengths in
Table I. It is seen that the agreement is quite fair, the
only notable exception being LiF.*

~ Burstein, Oberly, and Plyler (Proc. Ind. Acad. Sci. 28, 388
(1948)}have presented evidence which indicates that there is an
abnormally large amount of homopolar binding in LiF, and it
should be noted that the presence of homopolar binding should
tend to decrease the breakdown strength below the theoretical
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It should be mentioned here that fluctuation eGects,
which have been neglected, may alter the breakdown
criterion. Thus, although the field necessary to accel-
erate, on the a7;eruge, an electron of given energy is as
indicated in Fig. 3, there exists an appreciable prob-
ability than an electron will reach fairly high energies
even without the benefit of the applied field, due to the
statistical fluctuations in the interaction between the
electron and the thermal vibrations of the lattice.
Calculations of the eGect of the fluctuations would

involve a knowledge of the length of time an electron
can aGord to wait in the conduction band for a propi-
tious fluctuation, before decaying into the lower almost-
full band; that is, the treatment wouM require a
knowledge of recombination probabilities, about which

very little is known. Fortunately the curves of Fig. 3
are seen to be very flat in the neighborhood of their
maxima, which tends to minimize the eGect of fluctu-
ations. Fluctuation eGects may, however, be partially
responsible for the fact that the theoretical breakdown

strengths of Table I exceed the observed breakdown
strengths and may perhaps be significant in the high-
temperature region in which the temperature coefEcient
of the breakdown strength is observed to become
negative.

The validity of the perturbation method also deserves
some comment here. If the change in energy of an
electron during a collision is Are, and the mean time
between collisions is A$, a condition for the validity of
the perturbation method is that hE At&h. If we com-

pute the mean time between collisions for electrons in

NaCl at T=O' we find that for electrons of energy
~3hco (for which At is minimum) we obtain

aE AI,=0.74h,.
Thus the condition for validity of the perturbation
method is not strictly satisfied, but the extrapolation
is not so drastic that we may expect to obtain quali-

tatively incorrect results. The perturbation method is

predictions. The goodness of the correlation between the deviation
of theory and experiment, and the amount of hornopolar binding
found by Burstein el ul. , seems to us to actually increase the con-
6dence which one may place in the fundamental assumptions of
the present theory.

commonly found to be remarkably trustworthy, even
when cruelly abused.

Finally, we wish to point out that the directional
eGects observed in breakdown experiments can be at
least qualitatively undertood in terms of the present
calculation. It is experimentally observed" that the
breakdown strength of alkali halide crystals is inde-
pendent of the orientation of the applied field relative
to the crystallographic axes, but that the breakdown
paths tend to lie in definite crystallographic axes. %e
have seen that the conservation rules for the collision
between an electron and a vibrational mode restrict the
range of wave vectors of the modes with which an
electron of given energy can interact (see Eqs. (49)
and (50)), and the maximum allowable a increases with
increasing electron energy. The slow electrons are thus
insensitive to direction because the conservation rules
permit them to interact only with modes near the
origin of wave vector space, whereas the fast electrons
are direction-sensitive because the conservation rules
cause them to interact with modes at the zone bound-
aries. According to the low-energy criterion it is the
slow electrons which determine the breakdown strength,
but these electrons, once accelerated past a few tenths
of an electron volt, travel relatively long distances
through the crystal while being further accelerated to
the ionization energy (~7 electron-volts). It is in this
latter phase of their flight that they become direction
sensitive* and form the direction-sensitive breakdown
paths. It thus appears that the directional eGects are
associated with the symmetry of the Brillouin zones
of the vibrational modes, and indeed Davisson" has
shown that the directional properties of the breakdown
paths are governed completely by the lattice sym-
metry, and not by the ionic characteristics or type of
crystalline bonding. The directional effects seem to
provide a potent argument in favor of the low energy
criterion

» See A. von Hippel, Zeits. f. Physik 67, 707 (1931); 68, 309
{1931);A. von Hippel and J. Davisson, Phys. Rev. S7, 156 (1940};
J. W. Davisson, Phys. Rev. 70, 685 {1946);73, 1194 (1948).

*Von Hippel (see reference 1) has suggested that the direc-
tional sensitivity of the fast electrons may arise from the sym-
metry properties of the forbidden and allowed energy bands, and
this may also contribute to the effect.


