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On the Theory of Electron Multiplication in Crystals
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The theory of the multiplication of electrons in strong electro-
static 6elds is investigated. It is found that the non-polar coupling
between electrons and lattice has an important effect on the
retardation of electrons in polar materials as well as in non-polar
ones if the electron is to be accelerated to an energy at which it
may ionize the bulk material. The retardation arising from this
coupling is a maximum when the energy of the electron corre-
sponds to a value near the boundary of the Brillouin zone, in
contrast with the retardation arising from purely polar interaction
in polar crystals which has its maximum when the energy is near

the energy of the polar modes. The existence of the non-polar
interaction seems to make the difference between the breakdown
criteria of von Hippel and Frohlich of less practical importance
than was supposed hitherto. It is found that statistical fluctuations
in the velocity of the electrons plays a very important role in
determining electron multiplication and that the field required
to produce breakdown in a standard specimen actually is no
more than twenty percent of the value obtained from the criteria
of von Hippel and Frohlich.

i. INTRODUCTION

'HK theory of the production of free electrons in
crystals in the presence of high electrostatic

6elds and relatively low temperatures, where thermal
currents do not play a role, has been the subject of
relatively intense but somewhat diversified activity
during the past 6fteen years. In this development
principal interest has focused. on dielectric breakdown
because of its great practical importance. ' On the other
hand there are secondary phenomena which are of equal
interest from the standpoint of fundamental develop-
ment. For example it has been observed by von Hippel'-

and his co-workers that a measurable current exists
within the alkali halides for fields somewhat lower than
that required to induce breakdown. These pre-break-
down currents grow in magnitude as the 6eld is raised.
Although the breakdown current usually appears as a
discontinuity on the rising pre-breakdown current, it
seems reasonable to suppose that the pre-breakdown
current is related to breakdown. Haworth and Bozorth, '
who studied pre-breakdown phenomena in glass, ob-
served that the current is exceedingly noisy; that is,
the current occurs in pulses (Fig. 1) which grow in
magnitude as the 6eM increases. Pulses of this type
have been observed4 in a qualitative manner in many
cases. Their presence suggests that electron avalanches
occur at 6elds lower than that required to produce
breakdown and grow rapidly in magnitude as the
breakdown 6eM is approached.

Now at the University of Illinois, Urbana, Illinois.
The principal survey articles on the 6eld of dielectric break-

down in solids are as follows: A von Hippel, J. App. Phys. 8, 815
(1937); Trans. Faraday Soc. (Conference on Dielectrics) 40, 78
(1946};W. Franz, Zeits. f. Physik 113, 607 (1939);H. Frohlich,
Reports on Progress in Physics 6, 411 (1939); ¹ F. Mott and
R. W. Gurney, Electronic Processes in Ionic CrystaLs (Oxford
University Press, New York, 1940); A. E. W. Austen and S.
Whitehead, Proc. Roy. Soc. 176, 33 (1940). More recent papers
are as follows: H. Frohlich, Proc. Roy. Soc. 188, 521, 532 {1947};
J. W. Davisson, Phys. Rev. 70, 685 (1946).

2 A. von Hippel, Phys. Rev. 54, 1096 (1938).
3 F. E. Haworth and R. M. Bozorth, Physics 5, 15 {1934).
4 The writer is indebted to Professor R. J. Maurer for a discus-

sion of observations on pre-breakdown noise.

Theoretical developments concerning breakdown
phenomena have Qowed in three somewhat separate
channels, each of which has had its own exponents:

(1) One of the 6rst systematic development along
modern lines is that of Zener, ' who proposed that
breakdown occurs when the electrostatic field becomes
sufFiciently strong to ionize the atoms of the insulator
by a process akin to 6eld emission. In e6'ect, the elec-
trons of the bulk solid are able to tunnel from the 6lled
band of levels to the conduction band. This efkct was
investigated subsequently by Houston' and by Franz. '
The latter focused attention particularly on the problem
of breakdown, however, Houston's calculations are
somewhat more accurate. These investigators find that
the probability per unity time that an electron is
ejected from the 6lled to the empty band when the field
intensity is E is

P= (2sdeE/h) (e /(1 —e )')
where

~= (~e)'rad/eE@'

Here Ae is the gap in energy between 6lled and empty
band, d is the lattice spacing (for the one-dimensional
model employed) and e a,nd m are the electron charge
and mass. Franz has shown that this leads to a current
of the order of 1 amp per cm' when E takes the value

E=0.33 10'(Ae)'(volts per cm). (3)

Here E is given in volts per cm when he is expressed in
electron volts. The lattice spacing d is assumed to have
the value 3 ~ 10 cm corresponding to the nearest-
neighbor spacing in sodium chloride. Now the spacing
between filled and empty conduction bands is about
10 ev in the case of sodium chloride, if present interpre-
tation of the ultraviolet absorption spectra of the
alkali halides is correct. Thus (3) leads to a breakdown
potential of about 3 107 volts per cm, which is at least

' C. M. Zener, Proc. Roy. Soc. 145, 523 (1934).
6 W. V. Houston, Phys. Rev. 57, 184 (1940).
7 W. Franz, see reference 1.

¹ F. Mott and R. W. Gurney, see reference 1, p. 95.
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a factor 10 larger than the observed' value at room
temperature of j..5 10' volts per cm. Even without this
evidence, which is subject to criticism on the ground
that the absolute theoretical values may contain large
calculational inaccuracies, the measurements of Buehl
and von HippeL9 on the temperature dependence of the
breakdown field in the alkali halides seem to rule out
the field emission theory. This work shows that the
breakdown field decreases with decreasing temperature
in the range below room temperature. This effect is
very dificult to explain on the field emission theory,
whereas it is explained very naturally on an avalanche
theory.

The value of De is not accurately known in diamond;
however it is probably less than 10 ev and probably
nearer to 7 ev. Moreover the lattice spacing in diamond
is about half the value for sodium chloride. As a result,
the 6eld corresponding to that given by Kq. (3) is
somewhat less than 10' volts per cm. Ke shall have
cause to refer to this value in later sections.

(2) In 1932 von Hippel" proposed that breakdown
in solids is a by-product of the production of electron
avalanches through electron impact. He pointed out
that any electron which finds itself free in a solid in the
presence of an electrostatic field will be subject to two
opposing inQuences: It will tend to be accelerated by
the field and retarded by the "friction" resulting from
interaction with the vibrational waves of the lattice.
He postulated that breakdown occurs when the average
electron gains energy more rapidly from the field than
it loses it to the lattice for all velocities of motion less
than the value needed to produce ionization by impact.
von Hippel also proposed that the electron would
encounter the greatest friction in ionic crystals when
its energy is of the order of hvp where vp is the frequency
of the optically active mode of lattice vibration. In
other words the barrier is greatest when the electron
has energy in the thermal range.

Seeger and Teller" supplemented von Hippel's theory
by deriving an expression for the rate at which a
conduction electron would lose energy to the lattice.
Unfortunately this calculation alone does not provide a
very satisfactory test of the theory because the collision
frequency is so large in the velocity range where the
friction is greatest that there is no reliable method of
determining the rate of loss. For example, quantum
mechanical perturbation techniques are not accurately
applicable. In spite of the fact that von Hippel's theory
is not subject to precise treatment, it evidently has
many attractive features. For example it does give the
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correct order of magnitude of breakdown field and it
does explain the occurrence of avalanches at least
qualitatively. In addition it predicts temperature de-
pendence of the general type that is observed.

(3) In 1937 Frohlich" proposed a,n independent
impact ionization theory which di8ers from von Hippel's
primarily in regard to the condition employed for
breakdown. Frohlich also postulated that breakdown
occurs as a result of acceleration of electrons through a
friction barrier arising from interaction between elec-
trons and lattice waves. However, he has been guided
by the intuitive motion that the critical conditions are
determined by the behavior of electrons which have an
energy sufficient to ionize the atoms of the solid. As a
result he has proposed an equation for the breakdown
field which difters from von Hippel's and which states
that the field should be suKciently strong that electrons
having energy sufhcient to ionize gain more energy
from the field than they lose to the lattice waves. As
far as the writer can judge, Frohlich believes that von
Hippel's condition is too stringent because it requires
that every electron be accelerated on the average.
Apparently Frohlich believes that breakdown will occur
when any electron which has by whatever means
possible reached the ionization energy will gain more

'A. von Hippel, Zeits. f. Physik 75, 145 {1932);Ergebn. d.
exakt. Naturwiss. 14, 79 (1935); R. C. Buehl and A. von Hippel,
Phys. Rev. 56, 941 (1939); A. K. W. Austen and S. Whitehead,
see reference 1.

' A. von Hippel, Ergeb. d. exakt. Naturwiss. 14, 79 {1935);
J. App. Phys. 8, 815 (1937);A. E. W. Austen and S. Whitehead,
see reference 1."R. J. Seeger and K. Teller, Phys. Rev. 54, 515 (1938};56,
352 (1939).
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FrG. 1. Variation of the size of electron avalanches in Pyrex
with applied voltage {after Haworth and Bozorth}. The ordinate
is expressed in units of the electron charge.

'~ H. Frohlich, Proc. Roy. Soc. 160, 230 (1937);172, 94 (1939};
178, 493 (1941};1&8, 521, 532 (1947); Phys. Rev. 61, 200 (1942).
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energy from the Geld than it loses to the lattice vibra-
tions. In essense, his theory appears to rest on the
assumption that when the breakdown Geld is reached
the distribution function describing the spread of
electron energies will have a maximum well below the
ionization energy, but will possess some type of tail in
the region of the ionization energy. The behavior of
the electrons in this tail determines breakdown. In
partial support of this viewpoint, Frohlich has shown
recently in a somewhat idealized calculation" that the
distribution function actually possesses a portion which
rises with increasing energy above the ionization energy.
This calculation is deGcient in the sense that it does
not include the inHuence of the ionization process itself
on the distribution function. Inasmuch as this inHuence
is probably great, it must be admitted that Frohlich's
case still rests primarily on intuitive grounds.

Since Frohlich, like von Hippel and Seeger and
Teller, assumed that the maximum friction occurs when
the electron has energies near hvo and that the curve
describing dissipation of energy to the lattice falls at
higher energies, his condition for breakdown would lead
to a lower value of the breakdown if both groups of
investigators emp1oyed in same function. Actually
both arrive at about the same values of the breakdown
6eld because they employ functions which dier
essentially by a multiplicative constant. The diBerence
arises from the manner in which the screening of
electrons by the polarization of the lattice is included.
Seeger and Teller assume that the electron is shielded

by a polarization charge determined by the dielectric
constant of the medium, whereas Frohlich. assumes that,
this screening is not of great importance for energies
near the ionization potential.

As we shall see in Section 4 both groups of investi-
gators neglect the interaction of electrons with non-
polar modes of vibration. The calculations of the
present paper seem to show that this interaction, which
is peaked at energies of the order of several electron
volts and which is of primary importance in non-polar
crystals, plays a very important role in ionic solids and
should modify the application of either of the criteria
for breakdown described above. In fact, the present
work seems to show that the criteria of von Hippel and
Frohlich do not diBer appreciably from a practical
viewpoint since the electron friction arising from inter-
action with lattice vibrations is almost as large when
the electron can ionize as it is when the electron has
energies near k08 in the case of polar crystals. Moreover
the present work indicates that statistical Huctuations
are sufFiciently important that both criteria are too
stringent.

It should be emphasized in connection with this

summary that experimental aspects of the topic of
breakdown still merit a great deal of further investiga-
tion. The best available data on the subject is derived
from direct voltage measurements which are carried out
to the point at which rupture occurs. It is conventional

to assume that the applied electrostatic Geld is relatively
uniform and that the electrodes play a minor role in the
breakdown process when relatively reproducib!e results
are achieved. Early work of Gudden and Pohl and
more recent work of McKay" indicates that the intro-
duction of as few as j.0" electrons into a crystal can
have an appreciable inHuence upon the potential distri-
bution through the formation of space charge within
the specimen as a result of the trapping of electrons.
It is possible that the large electrostatic fields which
are achieved near breakdown in the best insulators
sweep away this space charge. However this point, as
well as the inHuence of ionic polarization, merits much
more study than the topic has received to date. Simi-
larly it is possible that the character of the pre-break-
down currents is determined primarily by the electrode-
crystal junction.

These uncertainties will have relatively little inHuence
on the following discussion since we shall be primarily
interested in the manner in which electrons may be
multiplied as a result of acceleration within the crystal.
It seems reasonable to assume at present that this
process is intimately related to the breakdown problem
in many crystals even though we may not have com-
plete understanding of the relationship between the
applied voltage and the distribution of Geld in a speci-
men for which the applied voltage is near the breakdown
value.

2. VIEW'POINT OF PRESENT ANALYSIS

The present paper is devoted to a re-examination of
the impact ionization theory in order to attempt to
obtain a somewhat clearer view of the multiplicative
process. In the opinion of the writer, von Hippel's
approach to the problem of dielectric breakdown pro-
vides a more fruitful starting point than Frohlich's
since it attempts to follow the dynamical behavior of a
free electron throughout its life cycle as it passes from
cathode to anode. It is dificult to believe that it will
lead to essentially incorrect results if due attention is
paid to all of the eGects which inHuence the electron.
It cannot of course be denied that FrohIich's more
formal approach could lead to identical results; how-
ever it appears to be very dificult to subject his method
to the type of detailed approximation which is so
valuable in obtaining a feeling for the inner working of
a problem.

In the last analysis the central problem of dielectric
breakdown in solids is this: At what held strength are
free electrons produced in sufFicient numbers to produce
disruptions %e shall suppose that the free electrons are
produced by an avalanche eGect in which one initial
free electron produces a secondary by impact ionization;
the pair then produce a second pair and the process
continues through e generations at the end of which

"B. Gudden and R. O'. Pohl, Zeits. f. Phys. 7, 69 (1921);
K. G. McKay, Phys. Rev. 74, 1606 (1948}.
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time there are 2" free electrons. For a given material
and field strength n will be proportional to the time
the electrons spend within the crystal and hence upon
the dimensions of the specimen and the point at which
the first electron is initiated, as well as on the bulk
properties of the material.

The following arguments may be employed to obtain
an estimate of the value I should attain for breakdown
to be induced. We shall see in the following sections
that a typical free electron will migrate through a
crystal with a mobility in the vicinity of 1 cm' per
volt-sec. when the field is near the breakdown value of
say 10' volts per cm. Thus the electron will traverse a
distance of 1 cm in about 10 ' sec. In addition to
drifting in the direction of the field, the electron will
undergo Brownian motion or diffusion in the plane
normal to the field. The diffusion coefIicient, which is
) v/3, where X is the mean free path and v is the velocity
of motion, has a value in the neighborhood of 1 cm' per
sec. Thus in travelling 1 cm in the direction of the
field, the electron will on the average wander through
a circle of radius 10 ' cm in the plane normal to the
6eld. We shall assume that its progeny, produced by
impact ionization, also lie within a circle of this radius.
Since the diffusion coeKcient of heat in most solids is
less than 1 cm' per sec. , the energy which the electrons
transfer to the atoms of the lattice in the collisions
between electrons and lattice vibrations will not diffuse
out of this tube in the time in which the electrons
migrate 1 cm. Now if the held is 10' volts per cm, each
electron will transfer 10' ev to the group of atoms in
the tube. The material in the tube would be seriously
disrupted if each atom received as much as 10 ev
(230,000 cal. per mole). Thus it seems safe to assume
that breakdown will occur if the primary electron
produces one electron for each 10' atoms in the tube.
Since there are about 10"atoms in the tube, we conclude
that the primary electron will produce breakdown if it
generates 10" progeny. The foregoing calculation has
been made as if the 10" electrons were present during
the entire traversal of the tube. Actually the atoms in
the tube will begin to receive energy from the electrons
at the'estimated rate of 10 ev per atom only after the
10" electrons have been produced. Thus only the
material near the end of the tube would be disrupted.

It is clear that if 10'- electrons were produced in a
distance shorter than 1 cm, and hence in a time less
than 10 6 sec. , the energy transferred per atom to the
atoms in the tube having a radius equal to the distance
the electron di8uses normal to the 6eld would be
greater than 10 ev because this radius varies as the
square root of the time. Conversely less than 10'2

electrons would be needed to produce the desired
disruption. We shall neglect this variation of the number
of electrons needed with the distance in which they are
produced since it is relatively small for the variations
in electrode spacing normally employed in experiments.

The value of n for which 2"=10" is 40. Thus we

conclude that about 40 generations of secondary elec-
trons should be produced between electrodes from a
single primary if breakdown is to occur as a result of
impact ionization. It is evident that this is a fairly
approximate value; however it is sufFiciently accurate
for the purposes for which we shall use it.

The preceding conditions for breakdown may also be
expressed in the following way: An average free electron
must produce a secondary electron in travelling a
distance I =D/40 in the direction of the field if D is
the spacing between electrodes. Since the electrode
spacing enters into this formulation of the condition
for breakdown, it follows that the breakdown field
should depend upon the electrode spacing, being larger
the smaller the spacing. It has been well established
for mica" that the breakdown field varies inversely as
the electrode spacing. However the measurements of
Austen and |A'hitehead do not permit a precise deter-
mination of the relation.

If the distance A which the electron travels in
producing a secondary is greater than I but less than
D it will start an avalanche; however this avalanche
will not reach sufFicient proportions to cause breakdown,
even though it may be great enough to be detected
relatively easily as a current pulse.

Ke may expect the distance A to decrease continu-
ously with increasing field strength. Thus as the field
intensity is increased we may generally expect to find
a region in which pre-breakdown avalanches are ob-
served whenever breakdown is caused by impact ion-
ization. The size of the avalanches will increase con-
tinuously with increasing 6eld until they become

sufficiently large to produce breakdown.
Should the current produced by held emission of the

type described by Zener and Franz cause breakdown
before A. is smaller than D, the free electrons will not
be able to produce progeny and the pre-breakdown
current will not be very noisy, that is, will not contain
avalanches larger than those produced by the random
arrival of electrons at the anode.

In the following sections an attempt will be made to
analyze the factors which determine the ability of
electrons to multiply in strong 6elds in somewhat more
detail than has been done hitherto. Since quantum
mechanical perturbation methods form the basis for
most of this discussion, it is necessary to emphasize,
along with other investigators, " that these methods
cease to be accurate as soon as the collision frequency
exceeds a value of about 3 10"sec. '. Since the collision
frequency actually does exceed this value in the most
interesting range of electron velocity, the results ob-
tained with perturbation theory have only semi-
quantitative value and must be employed with full
recognition of this limitation. They can be employed
only to infer the type of behavior that may be expected

"A. E. W. Austen and S. Whitehead, see reference 1.
'~The applicability of perturbation theory is discussed in a

previous paper by the vrriter, Phys. Rev. 73, 550 {1948).
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TAsr. K I. Characteristic energies associated with free electrons at
boundary of Brillouin zone (expressed in electron volts).

Diamond
XaCl

e min.

8.9 ev
3.6

11.9
48

11.5
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to occur in practice; precise values of the various
parameters should be determined either with the use
of experiment or by application of methods other than
those based on perturbation theory. In spite of these
drawbacks the theoretical values to be derived and
discussed lead to interesting conclusions.

(l) Excitation of Polar (Optical) Modes
of Vibration

In polar crystals the electron will interact strongly
with the polar or optical modes of vibration of the
lattice. This interaction has been examined in various
approximations by von Hippel, Frohlich and Mott,
Seeger and Teller, and Callen who obtain results that
are similar semi-quantitatively. The maximum inter-
action occurs when the electron has an energy of the
order of hvp, mhere vp is the frequency of the polar
mode of longest wave-length in the reduced zone
scheme. The electron may lose energy to the lattice,
provided it has suScient energy to excite the polar
modes, or it may gain energy if the lattice is thermally
excited. Both types of encounter cause the electron to
be scattered so that it undergoes Brownian motion.
Frohlich and Mott have distinguished carefully between
the transverse and longitudinal polar modes of vibra-
tion, vrhich generally have diBerent frequencies even in
a cubic crystal, and have shown that the longitudinal
modes are principally responsible for the interaction.
As far as the writer is aware all of the investigators
who have considered the friction encountered by an
electron in being accelerated have placed principal
emphasis upon the interaction with polar modes and

3. FACTORS EFFECTING FREE ELECTRON

Consider the behavior of an electron which finds
itself free in an insulating crystal. We shall assume
that the electron possesses thermal energy initially and
that there is a uniform electrostatic held of intensity E
within the crystal. If the electron did not interact
with. the crystal, it would be uniformly accelerated at a
rate eE/m and would with certainty obtain sufhcient

energy to excite or ionize the electrons of the insulator
provided there is sufhcient potential drop between the
point of origin of the free electron and the anode toward
which the electron is accelerated. As von Hippel has
pointed out, the lattice provides in eGect a source of
"friction" for the motion of the electron which prevents
the electron from being accelerated at the rate eE/m.
The various sources of friction may be catalogued in
t.he following way.

have neglected a second eGect which seems to him to
be as important for the problem.

(2) Interaction with Non-Polar Modes

The electron will interact with non-polar modes of
vibration even in a polar crystal. This type of inter-
action is usually considered only in non-polar crystals
since the polar modes are absent in these materials and
the non-polar modes provide the principal source of
scattering. However, the non-polar modes are of con-
siderable interest even for polar crystals, for, as we shall
see below, their influence is greatest when the energy
of the electron is a hundred or so times larger than hvp

and the inQuence of the polar modes has diminished.
The neglect of the non-polar modes of polar crystals is
undoubtedly justifiable in a discussion of the ordinary
problem of electronic conduction for which the kinetic
energy of the electrons does not diGer greatly from
kvo—k8 (8=characteristic temperature). However these
modes should be included when the electron has either
a high energy or a very low energy. The interaction
with these modes evidently is a principal subject of
discussion for the problem of electron multiplication in
non-polar crystals.

In addition to the foregoing impediments to the
acceleration of an electron there are two more obstacles
which merit attention.

(3) Lane Scattering

If in the course of being accelerated, an electron
passes near to the boundary of a Brillouin zone, it has a
finite chance of undergoing Laue scattering. Although
such scattering will not alter the energy of the electron,
it will alter its direction of motion and hence alter the
rate at which the electron gains energy. This process is
particularly important if the free electron does not
possess sufFicient energy to excite the bound electrons
when it is in the first Brillouin zone associated with free
electrons. If the bands associated with free electrons
overlap and if the frequency with which the electron
makes collisions with the lattice vibrations is sufFiciently
great, the electron mill jump from one zone to the next
without spending an appreciable time near the boundary
of zones. However if the frequency of collisions with the
lattice vibrations is small once the electron has gained
energy, or if the neighboring energy bands associated
with free electrons are separated by a gap in energy
that is large compared with the energy of the lattice
vibrational quanta, as is the case between filled and
empty bands for the normal valence electrons of an
insulator, the accelerated electron will eventually reach
the boundary of the zone and undergo I aue reQection.
We shall assume in the following that the conduction
bands overlap, as is probably the case for most insu-
lators. We shall see later that the frequency of collisions
with lattice vibrations is sufFicient;ly large in this case
that the electron probably does not spend appreciable
time near the boundary of the Brillouin zone.
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The first two columns of Table I show the maximum
and minimum energies that would be associated with
the boundaries of the first conduction zone in diamond
and sodium chloride if the electron were perfectly free.
The third column gives an average e, that will be
defined later.

2x 2AC' 5(Ei—E2)
p= —

~l 0 (2N(o)+1)
5 9.VM~

p2z. sin8d8da. (5)
co(o)

'~ F. Seitz, 3IIodere Theory of Sol@'s (McGraw-Hill Book
Company, New York, 1940), p. 563. The basic theory of excitons
may be found in the following: J. Frenkel, Phys. Rev. 37, 17,
1276 {1931);Physik. Zeits. Sowjetunion 9, 158 (1936);R. Peierls,
Ann. Physik 13, 905 (1932};J. C. Slater and %. Shockley, Phys.
Rev. 50, 705 (1936); G. VVannier, Phys. Rev. 52, 191 (1937).' This paper by the writer, Phys. Rev. 73, 550 {1948),will be
referred to as I in the text.

(4) Production of Excitons

As J. B. Sampson and the writer emphasized a
number of years ago," the first electronic excitation
process of which the accelerated electron may be
capable is the production of excitation waves. In fact
this should be the case with certainty if our present
picture of the electronic states in good insulators is
correct. Unless the excitation waves are decomposed
into free electrons and holes by the field or by other
means, the accelerated electron will lose the energy
expended in excitation waves without producing second-
ary charged. particles which can be accelerated in turn

4. ENERGY LOSS SY LATTICE COLLISIONS IN POLAR
AND NON-POLAR CRYSTALS

A. Non-Polar Crystals"

The interaction between free electrons and the lattice
vibrations of non-polar crystals may be treated in a
straightforward way if it is assumed that the lattice
vibrations alter the potential field of the crystal in the
manner erst proposed by Bloch which is sometimes
called the deformable atom hypothesis: It is assumed
in essence that the perturbing potential V~ satisfies
the equation

V„(r)= Egrad V—„(r) (4)

Here V„(r) is the unperturbed potential and E is s,

continuous function whose values at the positions of
the atoms describe the motion of the atoms as a result
of the vibrational waves. The use of the Bloch per-
turbing potential is supported by the fact that it leads
to a T' dependence of mobility upon temperature at
temperatures below the characteristic temperature, in
agreement with experimental observations in pure
diamond, silican, and germanium. As a result, we may
feel justified in employing the results of a previous
paper to discuss the interaction between the electrons
and lattice vibrations in non-polar materials.

It has been shown that the probability per unit time

p that the electron will interact with the acoustical
modes is

Here C is an energy parameter describing the coupling
between electron and lattice, S is the number of unit
cells in the crystal under consideration, M is the mass
of the atoms of which the lattice is composed, 0 is the
wave number vector of the vibrational quanta, m(o) is
the number of quanta of each type of vibration that is
stimulated as a result of thermal excitation, &g(o) is the
circular frequency associated with the vibrational wave
having wave number 0-, p is the density of values of o.

in wave number space, E~ and E2 are the energies of
the system consisting of electron plus lattice before and
after a collision of the electron with the wave having
wave number 0. In the collision, the wave number k

of the electron is transformed to k' where

k'= k+~r (6)

so that Ei E2 «(k) ——e(k'——)&kc0 if e(k) is the energy of
an electron having wave number k. If we assume that
the electrons are completely free so that e(k) =k'k'/2m,
we 6nd

E,—E2———(k'/2m) (0'+ 2ko cosH) &ha&,

in which 0 is the angle between k and the vector 0.

which satisfies (6) and the equation

E,-E2=0.
The integration in (5) extends over all permitted

values of 0 and 8; however the presence of the delta-
function reduces the integration to one dimension. In
general when one desires to obtain the total probability
per unit time as given by the integral (5) instead of the
differential probability as a function of angle, it is
convenient to replace the integration over 8 by one
over the variable Ei E2, using (7) to—connect the two
variables. Equation (5) is then reduced to a single
integration over the scalar wave number a. Provided k
lies well within the erst Brillouin zone, the integration
over 0 extends from zero to 2k and leads to the results
described in I. On the other hand, if k lies so close to
the zone boundary that the upper limit of r required

by Eqs. (6) and (7) would lie outside the 6rst zone in
0 space, the integration becomes much more involved.
The simplest procedure to follow is to set the upper
limit of integration of cr equal to a constant 0. that is
of order of magnitude of the average radius of the
first zone boundary. This procedure can also be adopted
when k lies well outside the hrst zone.

As long as k lies well inside the 6rst Brillouin zone,
so that there is no limitation on the integration over 0.

imposed by the zone boundaries, the calculations of I
show that the electron is scattered isotropically. How-
ever once the range of 0. is no longer 2k, forward
scattering predominates. The transition between the
two cases occurs when k approaches the zone boundary.

When the electron has thermal energy, as was
assumed to be the case in I, n(0) may be set equal to
koT'//5', where ko is Boltzmann's constant and T is the
absolute temperature. In this case the 1 appearing with
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2n(o) in the integral can be neglected and we find, as in

I,
4 C'kpT mI,

%r k'c'ep M
(9)

in which eo is the density of unit cells. If the entire
factor (2n+1) in the integrand is included, the result is
readily found to be

4 C'k' m (kpT 2)+-I
9s h' ngcMEhck 3)

(10)

(4s/3)k, 'p=lV, (12)

where p = V/Ss is the density of points in wave number
space and X is the number of cells in the specimen,
we obtain

i 16m 1 C' m—=1.9 10"sec. '.
9 h (2mc'e, )& M'

(13)

It is mteresting to observe that e, = 'hk 22/mhas a
value of 11.5 ev (see Table I). The collision frequency
(13) would give rise to a mobility of the order of
magnitude of 0.94 cm'/volt-sec. which is about 100

where c is the velocity of the longitudinal modes of
vibration.

Equation (9) and its extended form (10) are valid
only when the wave number vector of the electron lies
well within the 6rst Brillouin zone associated with the
free electrons. When k does approach the edge of the
zone or extend beyond it, the range of integration of cr

becomes limited as we saw above. This limitation is
particularly important when k lies outside the first zone,
since it alters entirely the dependence of p upon k. A
simple investigation shows that the quantity in pa-
renthesis in (10) becomes independent of k, whereas
the coeKcient varies as 1/k. In other words, the
collision frequency attains its maximum value when k
is near the boundary of the first Brillouin zone.

The rate of energy loss exhibits a similar behavior.
This quantity, which we shall designate as de/dt, may
be computed by replacing the factor 2n+1 in the
integral (5) by tao and carrying out the corresponding
integrals. As long as k lies well within the first zone,
the result is

(—dc/Ck) = (4/9s) (C'/h) (k'/n p) (m/M), (11)

whereas this quantity falls off as 1/k when k lies outside
the first zone. Temperature no longer plays a role
because the electron loses and gains energy at the same
rate from the temperature-stimulated component of
the modes of vibration. If we evaluate the temperature-
independent part of (10) for diamond under the as-
sumption that m is the mass of a perfectly free electron,
that C' has the value 936 ev' and that k has the value
k, satisfying the equation

times smaller than the value for conduction electrons
in thermal equilibrium at room temperature. In fact
this value of the mobility is so low that the perturbation
methods used to obtain it are no longer accurately
valid, for the reasons discussed in I. The mobility and
collision frequency may be employed only as rough
approximations.

Recently Klick and Maurer' have carried out Hall
efFect measurements in diamond which permit an
experimental determination of the mobility. They find
a value of 900 cm'/volt-sec. for thermal electrons
instead of the value of 156 cm'/volt-sec. calculated in I.
If we arbitrarily assume that this difFerence of a factor
6 arises from an overestimate of the coupling constant
C' in I for diamond by that amount, the collision
frequency (13) is lowered to 3.1 10" sec. ' and the
mobility for e= e, is 5.6 cm'/volt-sec.

The interaction of a free electron with the optical
modes of vibration in a non-polar crystal possessing
two atoms per unit cell was discussed in I. Two cases
were treated. If in a reduced zone scheme, we let 0 =0
designate the optical mode of highest energy, that is
the mode which would have highest wave number in
the extended zone scheme, the conservation of wave
number is expressed by the equation

k'= k+o.. (14)

D is an energy parameter, analogous to C in (5) and
K is the 6rst non-vanishing reciprocal vector of the
lattice. This result (see Eq. (59) of I) is derived under
the assumption that the frequency of the optical modes
is essentially constant. The upper value of the quantity
in braces is valid in collisions in which the electron
gains energy and the lower is valid in collisions in
which the electron loses energy. The corresponding
signs before fuo/e apply in the two cases. n will be very
small and may be neglected in comparison with unity,
if the temperature of the crystal is small compared
with the characteristic temperature. We shall focus
attention on this case in discussing the collision fre-
quency since n will be of the order of unity at most and
the principal efFect of the optical modes can be obtained
without considering the thermal quanta.

The rate at which the moving electron loses energy
is obtained by multiplying (15) by Ace and setting n =0.

' C. C. Klick and R. J. Maurer, Bull. Am. Phys. Soc. 24,
No. 4, 26 (j.949).

One of the cases considered was that in which the
matrix component of interaction does not vanish when
o-=0, whereas t4e second case was that in which it does.
The Grst case will be the normal one and we shall
assume that it is valid. The equation analogous to (5)
may readily be integrated as is shown in I and the
resulting collision frequency is

1 D'h2+'2m m2 k n ( Aca, q
~

p= (15)
s &0 3E h'no n+1 & ~ )
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This result is valid even when e is not zero because of
the cancelation of collisions in which the electron loses
and gains energy. The ratio of the rate of energy loss in
colbsions with acoustic modes of vibration to the loss
in collisions with optical modes is

%hen k approaches the boundary of a zone the ratio
k'/E' approaches unity. Thus E becomes essentially
equal to C'/D'. The simplest supposition is that D is
nearly equal to C so that 8 is near unity when k
approaches the zone boundary. Unfortunately there
seems to be little experimental evidence bearing on the
point. If C and D are comparable in materials such as
silicon and germanium one would expect the mobility
in pure crystals to exhibit deviations from the T& law
in the vicinity of the characteristic temperatures, which
are 600'K and 290'K respectively, as the optical modes
of vibration become suSciently stimulated to scatter
the electrons. The fact that such deviations are not
observed may mean that D actually is smaller than C
and that the inhuence of the optical modes is almost
negligible in these materials. In either case the influence
of the optical modes will not efI'ect markedly the
qualitative behavior of the function representing the
collision frequency of the electrons as a function of
energy or wave number: In both cases the collision
frequency varies from about j.0" sec. ' when the energy

of the electron is of the order of kT=0.025 ev to about
10" sec. ' when the wave number vector approaches
the zone boundary, where the curve has its maximum
(Fig. 2).

p = (exp(h—vl/kT) 1), —
7O

(17)

when the energy of the electron is less than k8 so that
it may only gain energy from the polar modes. Here"

3 Av vi
TO—

4~ e'-(~ —~0) ~P k
(18)

where v& and v& are, respectively, the frequencies of the
longitudinal and transverse polar modes of longest
wave-length. These frequencies are related by the
equation

Vp = (K—Ko+ 1)Vi, (19)

B. Polar Crystals

The most important interaction between electron
and lattice in polar crystals is that with the polar
modes of vibration when the energy of the electron is
not too different from k0, as has been emphasized by
Frohlich. Mott and Frohlich" have shown that the
collision frequency of interest for transport theory is

1~-i—
/~

I
1

k'k„'/2m = kv(. (20)

in which ff: is the static dielectric constant of the crystal
and ufo is that arising from electron polarization alone.
The v in (18) is the electron velocity, which is also
equal to kk/m. k„ is defined by the equation
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FN. 2. Schematic representation of the collision frequency P
as a function of energy e in polar and non-polar crystals. Figure
2 (a} represents the collision probability in the case of a non-polar
crystal such as diamond. The frequency has a maximum for an
energy near e,. Both the optical and acoustical branches contribute
to the peak. The collision frequency increases monotonically
toward the peak and then falls. In Fig. 2 (b}, for a polar crystal,
the contributions from the polar and acoustical modes are shown
separately, as well as their sums. The collision frequency for
polar modes attains its maximum when e is near k8, that is, of
the order of 0.1 ev, whereas the collision frequency for non-polar
modes attains its maximum near ~, as in (a}.The collision fre-
quency possesses two maxima.

Since To defined by (18) is independent of k, because of
the presence of the ratio t/k, the collision frequency
(17) is determined primarily by the temperature of the
crystal, and becomes very small at low temperatures.
When T approaches 0, (17) leads to values of the
collision frequency of the order of 1/ro, which is of the
order of 0.43 10" sec. ', and hence is sufficiently great
that perturbation theory is not accurately applicable,
as Frohlich and Mott have emphasized.

It is to be stressed that the collision frequencies
calculated by Frohlich and Mott are those of interest
for determining the mobility of the electrons and repre-
sent the frequency with which the electron is deflected
through an angle that is 90' on the average. We shall
discuss the true collision frequency later. This point is

"H. Frohlich and N. F. Mott, Proc. Roy. Soc. 171, 496 (1939}.
'0 H. Callen has re-examined the interaction of polar origin in

polar crystals more carefully than previous investigators in order
to determine the extent to which von Hippel's criterion for break-
down will provide numerical agreement with the observed
breakdown measurements. This work employs standard perturba-
tion theory and hence is subject to the uncertainties arising from
this source if it is to be employed for quantitative purposes.
The writer is indebted to Dr. Callen for an opportunity of seeing a
copy of his manuscript prior to publication.
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not of major concern in the preceding discussion of
non-polar crystals since the scattering is practically
isotropic as long as the electron resides in the 6rst zone.

%hen the energy of the electron exceeds k8, it may
both give to as well as receive energy from the polar
modes and the expression, for the transport collision
frequency is

(21)

Frohlich has found that as long as the wave number
vector of the electron lies inside the 6rst zone, but still
lies in the range for which the energy of the electron is
greater than k8,

1 e'np m
)

A'vok M
(22)

in which tpp ls t.he density of ions, which is 1/a' in the
sodium-chloride lattice if a is the nearest-neighbor
distance, and vo is taken as the frequency of the trans-
verse polar modes. Since k appears in the denominator,
it follows that the collision frequency decreases as the
wave number vector approaches the zone boundary, in
contrast with the situation described previously for the
interaction in non-polar crystals. %'e readily 6nd that
1/rp is of the order of 1.5 10" for a typical crystal such
as NaC1 when k= k,. Thus the collision frequency falls
from a very high value when the energy of the electron
is of the order of k8 to a relatively low value when the
energy is of the order of several electron volts, corre-
sponding to an energy near the zone boundary. In fact
the mobility of the fast electron would be comparable
to that of a thermal electron in a non-polar crystal if
no other inQuence arose to aGect the collision frequency.

Frohlich has shown that the transport collision
frequency falls as 1/k' once the electron has an energy
well outside the erst zone.

The true collision frequency p', which does not
contain an angular weighting factor of the type intro-
duced by Frohlich, is readily obtained from the material
presented in Frohlich's paper. In fact the derivation
follows closely the procedure outlined in Section 5 of
his paper in which the rate of energy transfer is calcu-
lated. This transfer is the sum

hpp(P+ —P ), (23)

in which 0, as previously, is the wave number of the
lattice wave (in the reduced scheme) and cr1 and np are

in which p+ is the frequency of collisions in which the
electrons transfer energy to the lattice and p is the
frequency of collisions in which the electron receives
energy. It is easily found from Frohlich's work that

m 1 1 t 'do
P'= 2pr——(2rs+1) —

I —, (24)
e' M hVO 5k~~1 cr

respectively the minimum and maximum values associ-
ated with a given value of k. The value of p1 (which
Frohlich calls w') is

27Tm V0

(25)

The maximum is 2k when k lies well inside the zone,
whereas it may be chosen to be a constant, as an
approximation, when k is mell outside the 6rst zone.
In either case the integral in (24), which has the value
log(pp/p1), may be treated as if nearly constant. It is
to be noted that the ratio of (24) to (21) is log(pp/o1)
which shows that the collisions are nearly isotropic
when k is inside the zone. The ratio is much larger when
k extends well outside the 6rst zone and increases as
k'log(pp/01) since the collisions cease to be nearly
isotropic.

The preceding scattering is the result of interaction
between the electron and the polarization field arising
from displacement of the ions. This 6eld is identical
with that which would be obtained from a lattice of
point ions if they underwent oscillatory motion. I et
us now consider the extent to which this scattering is
augmented by scattering arising from variations in the
local potential 6eld analogous to that considered for
non-polar crystals. There is no doubt that any such
supplementary scattering is negligible when the energy
of the electron is near k8, however it could be important
for other ranges of energy. The simplest procedure to
follow is to assume that this additional scattering can
be treated by use of the equations derived for non-polar
crystals and based on the deformable atom picture. In
this case a material such as germanium becomes an
approximate stand-in for a crystal such as NaCl since
the characteristic temperatures are about the same
(Ge: 290'K, NaCl: 281'K) and the density of atoms in
the first material is about the same as the density of
ions in the second. However, the atomic weight of
germanium is about 2.5 times larger than the average
atomic weight in the salt. If a correction is made for
this, it is found, using the equations derived in I, that
the collision frequency for a conduction electron having
thermal energy is about 0.7 10" sec. '. This would
yield a mobility of about 250 cm' volt-sec. in the
absence of additional scattering.

If we employ the equations in I which relate the
parameters occurring in (10) to the characteristic
temperature and employ Eq. (12) for the determination
of k, we 6nd that the collision frequency arising from
the acoustical modes is 1.8.10"sec. ' when k= k.. This
value is not negligible in comparison with the contribu-
tion from the polar modes derived with the use of
Fr-hlicb's equations, namely 1.5 10" sec. '. In other
words the non-polar contribution to scattering in polar
crystals would be appreciable at energies above the
thermal range if it were comparable to that expected in
non-polar crystals. This conclusion is valid, even if the
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contribution from acoustical modes of vibration alone
ss cons&dered.

It seems entirely reasonable to assume that non-polar
scattering is as important in polar crystals as in non-
polar materials. The basis for the use of the deformable
atom model, which leads to the relation (4) in deter-
mining the scattering from non-polar fieMs, rests on
the assumption that the relative distribution of the
valence electrons in any unit cell is altered when a
vibrational wave passes through the lattice. Since the
valence electrons on the negative ions play as important
a role in determining the interatomic forces in ionic
crystals, principally through the Born repulsive term
in the expression for the total energy, as do the valence
electrons in non-polar crystals, we may expect non-polar
scattering to be of comparable magnitudes in the two
materials.

Ke should also expect the optical branches as well as
the acoustical to contribute to the non-polar component
of scattering in polar crystals by an amount comparable
with that found in non-polar crystals if the surmise of
the preceding paragraph is correct. Since the non-polar
component becomes most important in polar crystals
when the electron has a wave number near the zone
boundary and since the magnitudes of the scattering
associated with the two branches of the vibrational
spectrum are then comparable (Eq. 16), the inclusion
of the higher branch will at most multiply the collision
frequency computed from the acoustical branch by a
factor two.

To summarize, the collision frequency when plotted
as a function of energy should have the form shown in

Fig. 2 for polar and non-polar crystals. In the first
case the curve has two maxima of comparable height,
whereas only one maximum occurs in the second case.

de/dt—)r, hve(1——/r, ),

1/r2= (1/re) log(0'e/ni),

(30)

(30a)

energy in which the collisions are essentially isotropic,
the transport collision frequency and the true value
do not differ greatly. The source of error that would
result from the assumption that they are equal would
probably not be larger than that made in employing
perturbation theory in calculating the collision fre-
quency. As a result, we shall occasionally replace r„by
the true value v.~.

The rate of transfer of energy to the lattice was
discussed in the previous section and is given in various
cases by Eqs. (11), (16), and (23) which may be placed
in the form

de/d—t) r, =kck(1t'r i) &

1/r = (4/9~) (C'k'/k'noc) (m/M)
X[1+(9/16) (D'E'/C'k') ), (29a)

hi= (e/m) r (27)

in which r — is the transport collision frequency. The
rate of gain of energy from the 6eld is thus

de/dt) s (e'/m) E'r., —— (28)

Since the largest values of de/dt) r, occur in the range of

5. BEHAVIOR OF AN AVERAGE ELECTRON

I.et us now consider the field EII at which a free
electron would receive on the average more energy from
the applied field than it expends in exchange with lattice
vibrations for all values of its kinetic energy. This is
the field at which breakdown would occur, according
to von Hippel s theory. The condition satisfied by E~~ is

de/Ck) s+de/dt) c= 0 (26)

for the energy e at which de/Ck)r, is a maximum. Here
de/dt)z is the rate of gain of energy from the field and
de/Ch)r, is the rate of transfer of energy to the lattice
vibrations. We shall assume that the average electron
undergoes Brownian motion and possesses a mobility

PO~.AQ (.RVS ra~i

(b)
FiG. 3. Schematic picturization of the curves representing

energy gain and loss as a function of time in polar and non-polar
crystals. Figure 3 (a) shows the gain and loss curves corresponding
to the two terms in Eq. (26). The case illustrated represents one
in which the electrostatic 6eld is less than but nearly equal to
F~, so that dejdt)@ crosses de/dt)I, twice. An electron having
energy less than that associated with the erst crossing, namely I,
will be accelerated on the average. The second crossing, designated
as H, represents a point of instability. If the electron has greater
energy it will be accelerated on the average. Electrons having
energy between the cross-points will move toward I on the
average. Figure 3 (b) shows the corresponding case for a polar
crystal. In this case there are four cross-points, of which only
three are shown (designated as II, III, and IV). The cross-point
of lowest energy which could be designated as I, is not shown
since it occurs too close to the origin. The cross-points I and III
represent enerpes of relative stability for the electron distribution
whereas II and IV are unstable points. III and IV evidently are
the analogues of I and II in Fig. 3 (a). (Pote: Through an error the
subscripts are omitted in the quantities d~jdt which designate
the gain and loss curves. The lower symbol designates the loss
curve in both 6gures. )
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in which 7O is given by (18) or (22). Equation (29) is
to be employed for the non-polar interaction in polar
and non-polar crystals when k is near the zone bound-
ary, whereas (30) is to be employed for the polar
interaction in polar crystals when the electron energy
is near koe.

In terms of the quantities defined above E~' is given
by the maximum value of the quantity

m/e'(kek/7 rg) (31)

in non-polar crystals, and by the maximum value of
either (31) or

m/e'(hvo/r r2) (32)

in polar crystals.
In diamond, the maximum value of (29a) is about

3.8 10" sec. ' and E~ is about 4.0 107 volts per cm if
we take C'=936 ev'. It should be emphasized again
that the absolute value of this may be considerably in
error because of the inaccuracy accompanying the use
of perturbation theory and inaccuracies in the numerical
values used for various parameters. For example, the
values are 0.6 10"sec. ' and 6.7 10' volts per cm if we
decrease C' by a factor of 6 as suggested by the experi-
ments of Klick and Maurer.

In sodium chloride, the peak in scattering frequency
near thermal energies leads to a value of E~ of about
1.6 10' volts per cm, whereas the peak arising from
non-polar scattering produces a value of about 1.2.10'
if we assume the collision frequency is 3.6 10" sec. '.
In other words the values are essentially equal within
the accuracy of the present analysis.

In the absence of an external electrostatic field, the
free electrons which occur in an insulator will possess a
velocity distribution given by the Maxwell-Boltzmann
distribution function. As the field intensity grows,
however, the distribution may be radically altered
because an electron possessing thermal energies may
gain energy from the field more rapidly than it loses it,

to the lattice. This rate of gain is given by Eq. (28)
which may be expressed in the approximate form

de/dt) e= (e'/m) (E'/p), (33)

since 1/~„ is closely equal to the true collision fre-
quency. Thus, as E increases toward E~, the distribu-
tion function will be affected first in ranges of energy
most distant from the peaks in p. This means that the
Maxwell-Boltzmann distribution will be altered most
easily in non-polar materials, which have high mobilities
in the thermal range of energies. The mobility of
diamond is about 900 cm' volt-sec. at room temperature
according to Klick and Maurer. In this case the thermal
electrons begin to gain energy from the field more
rapidly than they lose it when the electrostatic fieM is
about 5 kv per cm. Hence, the distribution is pushed
to higher energies when the field exceeds this value and
the electrons are no longer in thermal equilibrium with
the lattice. The distribution which does obtain may

6. EXTENT OF DEVIATIONS FROM
AVERAGE BEHAVIOR

In the preceding section we discussed the average
behavior of a free electron. %e shall now examine the
extent to which an appreciable deviation from the
average behavior can occur. This problem is of interest
in trying to decide whether or not breakdown and
related properties are determined by the average
electron or by improbable Quctuations.

As a typical problem let us consider an electron
which moves in the direction of the force exerted by
the field and which starts with energy e~. Consider the
probability that it will be accelerated to energy e2

without making any collisions. An electron of this type
would be accelerated at the rate eE/m, where E is the
field intensity. Hence it would gain energy from the
field at the rate

de/Ct = eEv = eE(2e/m) & (34)

be expected to be stable as long as E is small compared
to EH, which has been estimated above to lie between
6 10' and 4 10' volts/cm, because p increases and
hence de/dt)z decreases with increasing energy. The
average energy of the electrons in this type of stable
distribution is determined by the value of e at which
Eq. (26) is satisfied for the value of E applied to the
crystal. This energy is 1 ev for diamond when E is
about 3 10' volts per cm, if we assume the room
temperature mobility is 900 cm'/volt-sec.

The Maxwell-Boltzmann distribution should be much
more stable in ionic crystals than in non-polar sub-
stances because the collision frequency possesses a
maximum for energies near k8. The mobility of electrons
in sodium chloride is about 100 times less than in
diamond at room temperature. It follows that the
Maxwell distribution will be radically distorted only
when E becomes comparable to E~.

%e saw in the previous section that the collision
frequency of electrons in ionic crystals possesses two
maxima (see Fig. 2) when regarded as a function of
energy. Equation (26) may possess four roots, two
lying on each side of the maxima of p(e) (Fig. 3) when
E is suQiciently large, but still smaller than E&. An
electron which finds itself on the high energy side of
the second root, which lies on the high energy side of
the maximum in p(e) occurring near k8, will gain energy
from the field on the average and eventually reach the
energy corresponding to the third root which lies on
the low energy side of the peak that occurs near e,.
Thus just as in non-polar crystals, there may be a
group of electrons which possess energies that are large
compared with kT and yet preserve an energy balance.
The difference between the behavior in the two crystals
lies in the fact that the high energy group is the only
one in non-polar crystals whereas it contains only
those electrons which escape the thermal distribution
in polar crystals.
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The probability P(t) that it will move for a time t

without making a collision satisfies the differential
equation

dP/dt = pP— (35)

In the following, we shall assume that Quctuations
in which the electrons make no collisions, or at most a
very small number of collisions, are the most important
group and shall employ (36) to estimate the probability
for the group. It is apparently very di6icult to treat
quantitatively the frequency of collisions intermediate
between the average and the extreme case represented
by (36) because of the absence of a simple relation of
the type (34). We shall see below that fluctuations of
the type (36) play an important role in lowering the
breakdown 6eld below the value E~ determined by
assuming that only the average behavior of electrons
is important. If intermediate distributions of collisions
are more important than those in which essentially no
collisions occur, the breakdown 6eld will be lowered
even further, so that, the following discussion can be
viewed as giving a lower limit to the importance of
fluctuations.

The following semi-quantitative argument seems to indicate
that the fluctuations which are most important in determining
breakdown in practice probably are those in which the electron
is accelerated essentially from rest to the energy required for
breakdown without making any collisions. Let us consider a
somewhat idealized situation in which the collision frequency p
is independent of energy. This assumption actually represents,
to a fair approximation, the situation which occurs in ionic
crystals if the curves of Fig. 2 are similar to the actual case.
We shall also assume that the electron loses all of its forward
momentum on the average each time it makes a collision with
the lattice so that the kinetic energy it gains from the field
between two colbsions a time t apart is {erat}'/2m, irrespective of
its kinetic energy at the time of the first collision. Thus if the
electron starts from rest and makes n collisions spaced a distance
t apart, the kinetic energy gained from the field is (eEt)'/2m.
In the following we shall consider time intervals between collisions
which are suKciently long and applied fields that are sufBciently
strong that the collisions can be regarded as elastic. This means,
of course, that we will be treating cases well removed from the
average behavior in which gain and loss balance one another.

If I is the energy required to produce ionization and if this
energy is obtained after n collisions, which we shall regard for
simplicity as equally spaced, the time t between collisions must
satisfy the equation

I=n(erat) ~/2'.
Thus the time required to gain the energy I after a sequence of n
collisions is {n)4'1, where t1 is the time that would be required if
the electron were accelerated with no collisions.

in which p is the average frequency of collision, which
we have discussed in previous sections. Since p is known
as a function of energy and since the energy is known
as a function of time in the problem of interest to us
in this paragraph, p may be regarded as a function of
time. Hence,

( I" l ( t'" pd'l
P(t)=exp] — pdt [=exp( — ' (. (36)

) & ~ „ de/dt&

16 C' m'
p=Ae, A=

27m A4noc M
(3&)

Combining this with (34), we readily 6nd that the
integral in (36) is

(2/3) (1/Ee) (m/2) &(e2)&p~ —(e~)&p~), (38)

in which pq and p~ are the values of p when the electron
energy has the values e& and e2, respectively. If we take
e~ to be of the order of thermal energy and e~ to be of

The probability that the electron shall undergo n collisions in
the time (n)&t& is given by the expression

(pt1)"n"~'I'„=, exp( —(n) &pt ) {A)
n ~

in which p is the average number of collisions per unit time.
Moreover the probability that the electron shall spend a time t&

without making a collision in the time interval (n}&t1 is

G= p({n)&—1)t exp( —pt ). (~)
The ratio of {A) to (8) may be placed in the form

P /G= ((n)&—1) ' exp( —((n}&-1}Ptl—(n/2) loge
+n+(n —1}logpt1} (C}

if Stirling's approximation is employed. We shall set

n=)' and Pt1 =n
so that the exponent in (C) becomes

—nX+)2 —X' logX+ X' 1ogn+n —loga. (D)

For given n this function has roots at the points

X=n{i—x} and ) =1+y,
where

2a —log ~ 1

3n ' a—1—2 logn

There is a minimum between these roots at X=0.3n in which we
are principally interested. Equation (C} has the value

—0.11n~+n —logn

at this minimum. At fields near observed breakdown values a
varies between about 10 and 30 if p is assumed to have a constant
value near 10" sec. '

~ For n=10, {D) has the value —3.3, so
that G is only slightly larger than P, and we may expect a mixture
of Buctuations to be important, those in which the electron is
accelerated to the ionization energy with very few collisions being
only moderately preferred if at all. On the other hand, (D) is
—13 and —74 when a is 15 and 30, respectively, so that G is then
far larger than P„ for values of n near the minimum,

The quantity (D) possesses a positive maximum when X=n or
when n= P'tP. In this case the time interval (n)41 is PtP for which
the mean number of collisions is p2tp. Thus this maximum corre-
sponds to the average situation and not one in which Quctuations
are occurring.

The previous calculation for the case in which p is constant
shows that the group of statistical fluctuations in which the
electron is accelerated to the energy I with very few collisions is
favored strongly over types intermediate between this and
average behavior whenever n is 15 or greater. We may assume
that the same conclusion is valid when the integral in the exponent
of (36) is 15 or larger.

Let us consider the special case of interaction with
the acoustical modes of vibration when the crystal is
at the absolute zero of temperature. In this event we
see from Eq. (10) that
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the order e„ the second term in parenthesis is com-
pletely negligible in comparison with the 6rst. More-
over, if we assume ps

——3.8 10" sec. ' and e,=11.5
which are essentially the values for diamond used in
the previous section, (38) is

A =E(e/m) r„ri exp(3.8Eir/E).

This equation may also be placed in the form

(43)

before receiving sufhcient energy to produce a secondary
(see Section 2):

48 10'/E (39)

or 1.5 10"/E, if E is expressed in units of volts per cm.
If E is taken to have the value of 4 10' ev found in the
last section for E~, the integral becomes about 3.8.
Hence

P=exp( —3.8) =0.023. (40)

This result is valid not only for the hypothetical
example chosen. We note from Eqs. (31) and (32) that
Err is proportional to 1/r ri where r is the collision
time of interest for determining the mobility and other
transport coeflicients and vt, is the true collision time.
Since r& and 7 are nearly equal for the electron energies
of interest to us, it follows that E~ is proportional to
the quantity p2 appearing in (38). As a consequence P
may generally be expressed in the approximate form

P=exp( —3.8Eir/E) (41)

for 6elds near EH in any material for which (38) is valid.
The integral appearing in (36) may be evaluated by

methods similar to those used above in the case in
which the collision frequency p is determined by polar
modes of vibration. In this case p varies as 1/(e)& when
~ exceeds the peak value which occurs near e=k8.
The expression analogous to (38) is

(1/Ee) (m/2) &(e,)&p, log(e, /e, ) (42)

Here ei may be taken to be k8, e2 ——e, and pi is the peak
value of the collision frequency. The value of P derived
from this expression when E=E~ does not diBer
substantially from that derived with the use of (38) if
values of the constants are chosen to correspond to the
case of NaCl described in the previous sections.

%e may note in passing that the time required to
accelerate an electron from rest to an energy of 10 ev
when the field is E, is m%E, where s is the terminal
velocity namely 2 10' cm sec. The time has the value
3 10 "sec. for the example employed in the previous
paragraph when E=E~——4-10' volts per cm.

The time required for an electron to drift 1 cm in a
field of strength E is approximately m/eEr, where, as
previously, 7- is the collision frequency of interest for
transport. During this time the electron will make
m/eEr„r, collisions. This is also the number of "trys"
the electron will have to be accelerated to an energy of
the order of 10 ev without making a collision during
the period in which it migrates 1 cm. The product of
the number of trys and the probability P of success
per try is the number of times the electron would
actually be accelerated to 10 ev without a collision in
travelling unit distance. The reciprocal of this quantity
is simply A, the average distance th|: electron travels

exp(3. 8Eir/E),
8Eyy

(44)

with the use of (31) and (32). e' designates the quantity
hvo appearing in (32) in the case in which E~ is evalu-
ated from the polar modes and designates an appro-
priate mean value of bc' in the case when E~ is evalu-
ated from the non-polar ones.

In the example cited early in this section, for which E~
is taken to be 4 10' ev and p2 is 3.8 10" sec. ', corre-
sponding to diamond, the time required for an electron
to drift 1 cm on the average in a 6eld of magnitude E~
is about 5.3 10 ' sec. The electron would make about
2 10 collisions during this period of time. Correspond-
ingly the coeflicient of the exponential in (44) is of the
order of 8.10 ' cm if e' is taken to be of the order of
0.1 ev. Thus, A is about 4 10 ' cm when E=E~.

The dependence of A upon E evidently arises princi-
pally through the exponential term in (44). For practical
purposes the coeS.cient may be taken to be equal to
e'/eEir when E is near EH Ais of t.he order of 1 cm
when E=0.2E~.

Thus the present calculations show that in general
the distance which the electron travels before producing
a secondary electron varies from about 1 cm to about
10 ' cm as E varies from 0.2E~ to E~. Evidently the
field for which A =D/40= 0.025D lies within this range
when D has the value associated with a normal test
specimen. In other words the value of the 6eld for
which breakdown occurs is usually less than Ey~,

although it is close to this value, when the impact
ionization theory is valid. Statistical fluctuations play
an important role in the sense that they permit break-
down to occur before the field reaches E~ provided the
specimen is larger than about 10 ' cm. As described in
Section 2, we may expect to observe avalanches in the
range of Geld strength between that for which A=a
and that for which it is 0.025D.

The value of E at which A is 0.025D, which we may
call E&, is determined by the equation

0.025eE~'D
Ee=3.SEE/log

Eg6

It follows readily from (43) that A will decrease by a
factor 40 if E is increased by about 20 percent when E
is in the vicinity of 0.2E~. Hence the value of the 6eld
strength at which avalanches begin should be only
about 20 percent smaller than the breakdown 6eld if
the coefficient 3.8 appears in the exponent of (44).
Now this coefficient was derived from (38) by setting
E=E~ and is essentially the ratio (e,/me')& where e is
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the velocity of the longitudinal sound waves. As a
result, it should be relatively insensitive to the errors
in the various quantities computed in the previous
sections.

Figure 1, which shows the avalanches observed by
Haworth and Bozorth in Pyrex, indicates that the
6eld must change by a factor of about 5 in order to
have the avalanches change in size from one electron
to a value of the order of 10' electrons. This dependence
on 6eld strength corresponds to a coefficient in the
exponent of (44) that is of the order of 50 times smaller
than that we have derived. In other words, the ava-
lanches observed by these investigators seem to be
much less sensitive to 6eld strength than those predicted
from Eq. (44). The electronic pre-breakdown currents
observed by von Hippel and others also appear to be
much less sensitive to field than currents based on
Eq. (44) would be.

The behavior of the avalanches observed by Haworth
and Sozorth would be readily understood if it could be
postulated that the electrons involved need tunnel
through a much smaller portion of the friction barrier
than that considered in the evaluation of (38). This
would be the case, for example, if these avalanches
were produced as the result of the freeing by impact of
relatively loosely bound electrons which are attached
to foreign atoms. In this case the electron being acceler-
ated would require a lower energy than is needed to
ionize the atoms of the bulk material. Hence the electron
would be required to make a much less improbable
transition through the friction barrier. This point
would be worth detailed experimental investigation,
for it may prove possible to obtain pre-breakdown
avalanches of controlled size by selected contamination
of suitably chosen solids.

The value of the breakdown field for diamond deter-
mined from the foregoing avalanche theory is about
8 10' volts per cm. This is very close to the value to
be expected from the field ionization theory of Zener
and Franz, The absolute values of the breakdown 6elds
obtained from the approximate equations which have
been derived for the two types of theories cannot be
given great credance. However the results suggest that
breakdown may actually occur by field ionization in
diamond.

V. THE EXCITATION PROCESS

Consider now the behavior of an electron which has
an energy near to or greater than e, and which is in a
6eld suSciently strong that it will gain more energy
from the 6eld than it loses to the lattice. An electron
of this type will be accelerated until it is sufFiciently
energetic to excite or ionize the electrons of the lattice,
the process on which attention will be focused in this
section.

For simplicity, we shall assume that the cross section
for excitation when regarded as a function of energy

dq= (Onpde/Ee). (48)

An electron which starts with an energy less than e,
will have unit probability of producing excitation when
its energy has attained the value satisfying the equation

log'(e/e. )= (2Ee/a„npe ). (49)

The quantity on the right has a value between 0.1 and
0.01 for diamond when E has the range of values of
0.2EII estimated previously provided o.„.. is given the
value 10 "cm' corresponding to a typical atomic cross
section. The values for sodium chloride lie in the same
vicinity. In both of these cases, Eq. (49) is satisfied
when e/e. lies between 1.3 and 1.1. The principal
conclusion to be drawn is that the electron does not
produce excitation or ionization as soon as its energy
reaches the threshold value ~, when tT has a more or
less normal value. Instead the electron continues to be
accelerated and produces excitation or ionization only
when the energy is somewhat larger than e,. It follows
that the primary electron will be left with an energy
larger than k8 on the average after the excitation
process although it may not have an energy as large as
e,. Thus even in an ionic crystal the primary electron
will usually end with an energy in the range where it
can be accelerated further until it is blocked by the
peak associated with lattice collisions occurring near e,.
This conclusion evidently is valid only if E is near to EII.

If the excitation collision produces a second free
electron, the primary and secondary electrons should
divide the energy in excess of that needed to produce
ionization so that both will end up with an energy
larger than k8.

One of the most important conclusions to be drawn
from the preceding discussion is the following: Once
an electron which is free in an ionic crystal has escaped
from the portion of the velocity distribution which
occurs on the low energy side of the peak in collision
frequencies near e=k8, it will continue to remain out
of this portion of the distribution during its subsequent
history. This conclusion is valid provided E is suKci-

can be expressed in the form

~(e) =~ (a /~) log(e/~. ) (~ & ~.). (46)

Here 0. is the maximum value of the cross section,
e, is the threshold energy at which excitation is possible
and ~ =2.71&, is the energy at which the maximum in
0- occurs. This expression is to be employed only when
6 ~r Ee.

The probability dq that the electron will make a
collision resulting in excitation of the bulk atoms of the
solid in time Ch is

(47)

where no is the density of atoms and v is the velocity of
the electron. We shall assume that the electron gains
energy from the field at the rate eeE, so that (47) may
be written



F RE l3E R I C K SE I TZ

1 Ee'
— exp(nE~/E).

x, eE~'
(52)

Here 0. is a constant considerably smaller than the
corresponding constant 3.8 which appears in (44) since
it assumed that the primary electron need not experi-
ence as radical a Buctuation in gaining energy suKcient
to ionize an impurity atom as is necessary to ionize an

ectly close to EII that the electron gains more energy
from the 6eld than it loses to the lattice in the range
of energy between the two peaks occurring near ke
and e,. Moreover, any secondary electrons it produces
will not join the distribution on the low energy side of
ktY. This means that a free electron and its progeny
will behave in essentially the same way in polar and
non-polar crystals when the 6eld is strong once the
electron has been accelerated beyond the low energy
range.

Consider next the excitation of impurity atoms which
are present in concentration n;, which we shall suppose
to be appreciably smaller than no. Let us suppose that
the primary electron has been accelerated to an energy
suQicient to ionize the impurity atom as a result of an
unusual fluctuation, the energy of this electron being
of the order of 2 ev above that of the average electron
which is at energy equilibrium. If a; is the cross section
for ionization of the impurity atom, the probability
that the unusually energetic primary will produce
ionization of one of the impurity atoms in time t is

(50)

in which e is the average speed of the electron.
The unusually energetic electron will eventually lose

its excess energy since on the average it seers an
unfavorable balance of exchange of energy with the
lattice. For examp1e, if its energy is 2 ev higher than
average and if it loses about 0.1 ev on the average in
each collision with the lattice, it will fall back among
the average electrons in the time required for about,
20 collisions. If T is the time the electron has the
excess energy, the probability that it will ionize an
impurity atom during this period is

(51)

This is of the order of 10 ' if we assume that n, =10"
per cc, a;=10 "cm' ~=10' cm per sec. and T=10 '4

sec.
Consider now the distance A; that the electron must

travel in order to ionize an impurity atom. Equation
(44) was derived under the assumption that the primary
electron will ionize an atom of the bulk material the
6rst time it has been accelerated to the region where it
has sufBcient energy to do so. The discussion which
centers about Kq. (49) of the present section shows that
this assumption is reasonable as long as a has a
typical atomic value. The equation for A; which replaces
(44) will have the approximate form

atom of the bulk solid. The coeScient 1/s; takes ac-
count of the fact that the primary electron which gains
sufBcient energy to ionize the impurity atom as the
result of a Quctuation need not actually produce ion-
ization. The remaining coefficient in (52) is assumed to
be the same as in (44) since the frequency of collisions
with the lattice will be nearly the same when the
electron has energy sufhcient to ionize impurities and
to ionize the atoms of the bulk material.

A; has the value D when E satis6es the relation

E=aEIr/log(eErr s;D/Ee'). (53)

This in turn is about nE~/10 if s.; is assumed to be 10 '
and the other quantities are given typical values. In
other words, avalanches which result from the ionization
of impurity atoms by electron impact will begin to be
observed at Gelds that are much smaller than E~.
Moreover, the size of these avalanches should grow
much less rapidly with Geld strength than those which
originate in the ionization of the bulk material. It
seems possible that avalanches of this type were
observed by Bozorth and Haworth, and that the noisy
pre-breakdown currents observed in other materials
originate in the same way. It has also been suggested
that these avalanches are associated with sudden
changes in the electrode-crystal contact as a result of
the strong Geld there.

8. THE FIELD-DECOMPOSITION OF EXCITONS

It is generally supposed at the present time that the
Grst excited states in an insulating solid correspond to
excitation waves which are the analogue of the discrete
excited electronic levels of an atomic or molecular
system in which the electrons remain bound to the
nuclei. Unless the excitation waves become decomposed
into free electrons and holes by some agency, the
accelerated electron which has produced the wave will
have expended its energy without having produced a
secondary charged particle. In this case the 6rst
excitation process would present a barrier analogous to
the processes in which the electron transfers its energy
to the lattice vibrations described previously. The
electron would need to pass the excitation barrier in
order to obtain sufBcient energy to produce secondary
free electrons.

Let us consider the possibility that the excitation
waves are decomposed by the applied 6eld in the manner
Grst proposed by Oppenheimer" for the hydrogen atom.
The theory of this eGect has been highly developed for
atomic hydrogen by Lanczos~ who obtained excellent
agreement with observations of von Traubenberg" on
the disappearance of the spectral lines of atomic
hydrogen in the presence of an electrostatic Geld. These
investigators 6nd that the Hy line of the Balmer

"J.R. Oppenheimer, Phys. Rev. 31, 66 (1928).
~ C. Lanczos, Zeits. f. Physik 62, 518 (1930);68, 204 (1931}.
~'H. Rausch v. Traubenberg, Zeits. E. Physik 54, 307 (1929);

56, 254 (1929);62, 289 (1930); 71, 291 (1931).
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spectrum, which originates in a transition from the level
having total quantum number v=5 to the level for
which m=2, vanishes when the Geld intensity is about
700 kv per cm. The lifetime of the level for which m=5
then becomes less than the time required for emission
of radiation (about 10 ' sec.). The level for which n= 5
has a binding energy of 0.54 ev in the 6eld-free atom.
An analysis of Lanczos' results for levels in the neighbor-
hood of n=5 shows that the critical 6eld varies about
as 1/n'. In other words, it varies essentially as the
square of the ionization energy of the level.

The binding energy of the excitation states of the
crystals are not accurately known. To obtain approxi-
mate values, we may assume that the electron and hole
attract one another with a Coulomb force that is
screened as a result of the high frequency dielectric
polarization of the lattice. The energy states of the
excitation wave associated with zero translational
momentum are then given by an equation of the
hydrogenic form:

(54)

Here p is the refractive index of the crystal and n is a
quantum number which may take the values m=1, 2, 3,
~ . . The factor two in the denominator enters because
the reduced mass of the system is half the electronic
mass. This expression should be more nearly valid for
large quantum numbers than for small. Relative to the
dissociated state the 6rst excited state possesses the
energy

E2 —(1.7/p')——(ev). (55)

Since the indices of refraction of diamond and sodium
chloride are 2.42 and 1.54, respectively, E2 is 0.049 ev
and 0.30 ev in the two cases.

In the case of diamond, the excitation states would be
dissociated by a Geld well under 100 kv per cm, that is
by a Geld that is very small compared mith E~. In fact
the excitation waves should be dissociated as a result of
thermal fluctuations in the vicinity of room temperature
if this estimate of the binding energy of electron. and
hole is at all reliable.

The case of sodium chloride is more questionable
since E& does not diGer greatly from the value for the
level n=5 in hydrogen. In fact, Mott' has proposed on
the basis of an analysis of the ultraviolet absorption
bands of the alkali halides that the energy of the first
excitation state is about —1.7 ev relative to the
dissociated state. Presumably the 6eld required to
dissociate this excitation state would be near to if not
actually greater than E~.

The calculations of the preceding section show that
if cr is in the neighborhood of 10 ' cm', which is a
typical value, the average accelerated electron makes
its 6rst exciting collision with the electrons of the bulk
material when its energy is about 1.2 times larger than

the threshold value. The threshold is about 7.5 ev in
sodium chloride, according to measurements of optical
absorption. It follows that the electron may well have
sufhcient energy, namely 9 ev, to produce ionization
when it 6rst transfers energy to the electrons of the
bulk solid. In other words the probability that the
electron which has been accelerated will produce a free
electron and hole instead of an excitation wave is not
negligible compared with unity. This process will be of
major importance for breakdown in the alkali halides
and other ionic crystals. It will also occur in non-polar
materials, but need not occupy the same critical position
if excitation waves are decomposed as easily as the
results derived from (51) suggest.

To summarize, it appears reasonable to suppose the
excitation waves which are stimulated by an accelerated
electron will decompose in fields that are much smaller
than E~ in a non-polar insulator such as diamond. On
the other hand, the situation seems to be much more
nearly on the border line in the case of an ionic crystal
such as sodium chloride. In this case it is possible that
the primary electron is able to produce secondaries
when the field is below or near E~ only as a result of
fluctuations in which the electron succeeds in obtaining
sufFicient kinetic energy to produce pairs directly, or at
least to produce excitation waves which are suSciently
high in the spectrum that they can be dissociated by
the field.

9. INFLUENCE OF BRILLOUIN ZONE

The calculations of Section 3 (Table I) show that a
perfectly free electron would meet the first Brillouin
zone when its energy lies between 3.6 ev and 4.8 ev in
sodium chloride, depending upon its direction of travel.
In diamond the corresponding energies are 8.9 ev and
11.9 ev. The crystalline potential will modify these
values to some extent. In any event, it seems probable
that the accelerated electron must cross a zone bound-
ary before it can produce electronic excitation or
ionization in sodium chloride, whereas this is probably
not the case in diamond.

The semi-quantitative features of this problem have
been investigated by Houston' in the case in which
lattice collisions can be neglected. He has shown that
the wave number vector of the electron approaches the
zone boundary and undergoes a Bragg reflection as it
reaches the plane boundary when the field is not too
strong. Thus, in the absence of other disturbances, the
electron alternately would be accelerated and deceler-
ated by the 6eld and the action of Sragg reQections.
Two disturbances are provided by the fact that the
electron may either undergo 6eld emission" from one
zone to the next or be transferred by a collision with
lattice waves. The second process will occur only if the
bands overlap or at least are not separated by more
than the energy of the highest lattice vibrational
quantum. It seems safe to assume that the conduction
bands overlap in the insulators of interest to us.
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The probability of the electron tunneling across the
zone boundary is determined by the quantity e appear-
ing in Kq. (1) in the theory of Zener, Houston, and
Franz. If we select Ae to be O.S ev, a is close to unity
in both diamond and sodium chloride when E=E~~.
Thus, the electron has an appreciable probability of
jumping the gap through Geld perturbation in one
cycle of motion, provided the gap is 1 ev or less and the
field is near E~.

Now we know from the discussion of Section 6 that
on the average an electron will make several inelastic
collisions with the lattice waves during the time in
which it is being accelerated to an energy near ~,.
Thus if the bands overlap, as we assume to be the case,
the collisions with lattice waves should bring about a
transfer from one zone to another.

In other words the barrier presented by the zone
boundaries does not appear to oGer a serious irnpedi-
rnent to the acceleration of electrons. Apparently it
may be surmounted either by 6eld perturbation when
E is near EII or as a result of collisions with lattice
waves.

10. ANISOTROPY OF BREAKDOWN FIELD

The disruption that accompanies breakdown in
almost all crystalline substances exhibits crystalline
symmetry. "In brief, the breakdown paths usually are
oriented along very deGnite crystallographic directions.
On the other hand, the measurements of von Hippel
and Davisson" on the infIuence of the breakdown field
on crystaOographic orientation seem to show that the
6eld is isotropic. In any event this appears to be the
case in sodium chloride at room temperature. It seems
very difFicult to reconcile these two facts on the basis
of any of the theories of breakdown proposed to date.
As von Hippel and Davisson have emphasized, one
would expect both the tunnelling theories of Zener and
Franz and the impact-ionization theories to lead to
anisotropy in the general case. It is possible that
sodium chloride is a special exception. It is also possible
that the actual breakdown 6eld in the alkali halides is
determined by the condition that the Geld be sufFiciently
strong to decompose the excitons produced as a result
of impact excitation. In the latter case it is possible
that the Geld required is independent of crystal orien-
tation.

11. SUPPLEMENTARY COMMENTS

Professor R. de L. Kronig" has pointed out to the
writer that liquid argon exhibits breakdown at 6elds of

'«L. Inge and A. Walther, Zeits. f. Physik 64, 830 (1930);
71, 627 (1931);A. von Hippel, Zeits. f. Physik 67, 707 (1931);
68, 309 (1931);J. Lass, Zeits. f. Physik 69, 313 (1931).The most
extensive work in the field has been carried out by J. %'. Davisson,
Phys. Rev. 70, 685 (1946).

~~ A. von Hippel and J.W. Davisson, Phys. Rev. 57, 156 (1940).
'~ R. de L. Kronig and A. E. van der Vooren, Physics 9, 139

(1942); R. de L. Kronig, Zeits. f. Physik 118, 452 (1942).

about 1 10' volts per cm. Kronig has interpreted this
breakdown in terms of Zener's theory, although it is by
no means certain that the avalanche theory is not valid.
To obtain agreement with Zener's theory it is necessary
to assume that d, e in Eq. (2) is about 3 ev. It is possible
that the nature of the breakdown could be determined
by studying the dependence of the breakdown Geld

upon temperature since this 6eld would fall with
decreasing temperature jtf the avalanche theory is
correct. Since liquid argon is dehnitely a non-polar
substance, one would expect only a single peak in the
electron friction curve; moreover this should occur at
energies of several electron volts. %e may infer from
the experimental results on argon that the collision
frequency at this maximum would be of the order of
5 IO" sec. ' if the preceding theory is correct. The
corresponding mobility is about 3 cm' volt-sec.

Hutchinson" has measured the mobility of conduc-
tion electrons in liquid argon in 6elds of the order of
10 kv per cm by measuring transit times and Gnds
values of 40 cm'/volt-sec. , which are reasonable for a
non-polar material for electrons having energies in the
thermal range. Hutchinson also reports electron multi-
plication in solid argon; however it is difIicult to say
whether or not this multiplication is the result of
volume avalanches.

12. CONCLUSION

The principal conclusions to be drawn from the
preceding investigation are as follows:

(1) The intera, ction between a free electron and the
lattice vibrations is qualitatively different in polar and
non-polar crystals. In non-polar crystals, such as
diamond, silicon, and germanium, there is a single peak
in "electron friction" which occurs when the free
electron is near the boundary of the first Brillouin zone
and its energy is of the order of several electron volts,
depending upon the crystal. The previous treatments
of the interaction between an electron and the lattice
in an ionic crystal have neglected the infIuence of
non-polar modes of vibration and have taken into
account only the interaction with polar modes, which
is a maximum when the electron energy is near koan

(ko ——Boltzmann's constant, 8=characteristic tempera-
ture). It is proposed that the influence of non-polar
modes is as large as that of the polar modes. The
function describing electron friction in polar crystals
has two peaks. One peak, arising from polar interaction,
occurs for energies near 008 and the second, arising from
non-polar interaction, occurs for energies near the zone
boundary. The existence of the second peak reduces
considerably the practical di8erence between the criteria
for breakdown proposed by von Hippel and by Frohlich
since the high energy peak occurs near the energy at
which ionization begins.

(2) The lowest value of an applied electrostatic field

~ G. W. Hutchinson, Nature 162, 610 (1948}.



ELECTRON MULTIPLICATION IN CRYSTALS 1393

for which a free electron of arbitrary energy will gain
energy more rapidly from the Geld than it loses energy
to the lattice vibrations is determined. This GeM

strength, which is designated E~, is the value at which
breakdown would occur according to von Hippel's
theory of the breakdown process. It is found that
statistical fluctuations in the energies which free elec-
trons possess in the presence of a Geld are so great that
breakdown actually can occur when the GeM is as small
as 0.2E~ for specimens of normal size. Calculations
have been made on the assumption that Quctuations in
which the electron makes very few collisions are the
most important. This breakdown occurs as the result
of the production of electron avalanches in which 10"
electrons are freed by impact collisions. E& is estimated
to lie between 4.0 10' and 6 10' volts per cm in diamond
depending upon the coupling constant employed be-
tween lattice and electron. The corresponding value is
about 1.5 10' volts per cm in sodium chloride. Since
the derivation of these values involves improper use of
perturbation theory they can be regarded only as rough
approximations, as is true of the theoretical results of
previous investigators. The breakdown Geld for dia-
mond, estimated with the use of avalanche theory thus
lies between 8 10' and 1.2 10' volts per cm, whereas
the theoretical value for NaCl is about 0,3 ~ 10' volts
per cm. The difference between the calculated value
for NaCl and the observed value of 1.5 10' volts per
cm near room temperature indicates the approximate
character of the calculations. The value of the break-
down potential calculated for diamond with the use of
the impact theory is not very different from the value
estimated with the use of the Geld emission theory of
Zener and Franz. The calculations are not suSciently
accurate to be decisive.

(3) An investigation of the dependence of the size of
energy Quctuations on Geld strength shows that the size
of avalanches caused by impact ionization of the bulk
material shouM increase by a factor of 10" when the
electrostatic Geld changes by about 20 percent if the
field is near the breakdown value. The avalanches
observed by Haworth and Bozorth in Pyrex correspond.
to an exponent about 50 times smaller. It is concluded
that these avalanches may arise from the ionization by
impact of impurity atoms which have relatively loosely
bound electrons. The pre-breakdown currents observed

by von Hippel and his co-workers may have the same
origin.

(4) Since the electron friction is relatively small for
electrons having thermal energies in non-polar crystals,
the free electrons cease to be at thermal equilibrium
with the lattice at relatively weak fields. It is estimated
that the average energy of free electrons in diamond is
1 ev when the applied Geld is about 3 10' ev. It is
evident that electrons in this distribution should be
able to excite impurity atoms in such a way as to
produce effects such as ionization and luminescence.
Two groups of free electrons will be a quasi-equilibrium
in polar crystals in strong Gelds somewhat below the
value for breakdown. One of these groups is essentially
in thermal equilibrium with the lattice, whereas the
second group resembles the average group present in
non-polar crystals in having a much higher average
energy.

(&) &t is concluded that excitation waves are decom-
posed by the applied Geld in diamond when the Geld is
near the breakdown value. The theoretical evidence is
less conclusive in the case of the alkali halides. It is
possible that breakdown occurs in these materials only
when the Geld is sufBciently strong that the electron
has an appreciable probability of running through the
excitation range associated with the production of
excitation waves without actually producing such
waves and produces ionization instead.

(6) The barrier presented by the gaps at the bound-
aries of the Brillouin zones does not offer an appreciable
impediment to the acceleration of electrons. The elec-
tron can jump between zones as a result of scattering
collisions with the lattice if the zones overlap. In any
case the perturbation produced by the Geld probably
will permit the electron to leak through the barrier as
long as the Geld is near the breakdown value.

(7) Experiments of Kronig and van der Vooren and
of Hutchinson on the breakdown Geld of rare-gas liquids
and solids support the viewpoint that non-polar coup-
ling between electron and lattice is large when the
energy of the electron is near a value associated with
the Brillouin zone if it is assumed that breakdown in
these materials is the result of electron avalanches.
Unfortunately the experiments do not make it possible
to determine whether this mechanism or that of Zener
and Franz prevails.


