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The formal prescription for the regularization of divergent
expressions in quantum electrodynamics which has been recently
suggested by Pauli implies very strongly that these same diver-

gences may be similarly canceled in a realistic theory wherein one
has a mixture of 6elds in the manner of Pais and Sakata. Indeed,
it may be readily seen that the Pauli regulator scheme corresponds
6eld-theoretically to a family of spinor Gelds interacting with a
family of neutral vector meson fields; the formalism is mathemati-
cally consistent (at least to the second order in the coupling con-
stants) but physically unsound owing to the appearance of
imaginary coupling constants. An attempt to remedy this defect
by considering the most general mixture which is possible within

the framework of ordinary field theory also leads to failure.
Speci6cally, the current density which is induced in the vacuum
by an external electromagnetic field is calculated to order e' for a
variety of situations but it turns out that no combination of
charged scalar, spinor and vector 6elds —with or without anoma-
lous magnetic moments —leads to a full compensation of the
divergences although the photon self-energy by itself may be made
to vanish. It is concluded that, although the notion of a realistic
approach to the theory of elementary particles remains an
attractive one, the usual linear Geld theories do not in themselves
seem to be adequate for this purpose; there is also always the
possibility that it is the perturbation theory which is at fault.

Zc;=0,

~@M =0, (2')

and the limiting process consists in letting the auxiliary
masses M, (i =1, 2, .) tend to infinity. The conditions

(2) and (2') are suificient to insure that the functions hg
and D~(') are free of singularities on the light cone unlike
their unregularized counterparts. ' These conditions are
also enough to lead to convergent expressions for the
electron self-energy and the polarization of the vacuum
by an external electromagnetic field (with a corre-
spondingly vanishing photon self-energy) provided one
additional rule is added, vis. , these expressions must be
regularized as a whole and not in parts. Upon performing
the anal limiting process, logarithmic divergences reap-

4

1. FORMALISTIC YS. REALISTIC THEOMES

N a recent critique of some of the current procedures
~ - in quantum electrodynamics, Pauli' has emphasized
that the present theory involves the handling of di-

vergent and conditionally convergent integrals the
evaluations of which cannot be inferred in an unam-

biguous way from the theory but must be defined in
each instance. Pending the development of new con-

cepts, he has suggested that one handle the divergences
of the theory in a purely formal way by first regularizing
all singular expressions and then performing a limiting
process. Specifically, if f(x, m) is a singular function
depending on the space-time coordinate x„and the mass

m, the regularized function fe(x) may be defined by the
formula

fg(x) = Zc;f(x, M~) (1)

with cp= j. Mp= m. The coeScients c; are subjected to
the restrictions

tion factors for the electron (unless new conditions are
imposed on the c s).

The above procedure constitutes, in the terminology
of Pauli and Villars, a "formalistic theory" wherein a
purely formal recipe for the performance of calculations
is given, in contrast to a "realistic theory" in which the
mathematical device which eGects convergence —in the
case at hand, it is the introduction of the auxiliary
masses —is not an ad ho@ aGair but rather a consequence
of physical concepts. By a "realistic theory" we shall
mean, in particular, one which attempts to take into
account a11 of the interactions of the elementary par-
ticles with one another. It is the aim of this paper to
determine whether or not a realistic (though semi-
phenomenological) description of elementary particles
can be obtained within the domain of ordinary 6eld
theory. It is perhaps not surprising that the result will
turn out to be negative.

The term "ordinary field theory" as we use it in this work is
meant to denote the canonical formalism of Heisenberg and. Pauli
as applied to the quantization of the scalar Klein-Gordon equa-
tion, the Dirac equation and the Maxwell-Proca equations leading
to a description of particles with spin zero, one-half and one
respectively and with assorted masses and charges. In treating
the interaction of these Gelds with one another, one must add to
the vacuum Lagrangians additional terms which are required to
be in accord with the general principles of relativistic and gauge
invariance. For simplicity, however, one also imposes on the
interaction terms the more special restrictions that they involve
no derivatives of spinor 6eld variables, no derivatives higher than
the Grst of Bose field variables and, in either case, that they
contain the 6eld variables which characterize any one Geld no
more than bilinearly. It need hardly be stressed that, in view of
the divergent nature of these theories, all computations must be
carried through in a manifestly covariant way; this is feasible at
the present time only if the coupling between fields is assumed to
be weak.

2. A FIELD-THEORETICAL INTERPRETATION OF
THE REGULARIZATION PROCEDURE* AKC Postdoctoral Research Fellow.

'W. Pauli, unpublished letter to J. Schwinger; W. Pauli and In actual fact, the need for a realistic approach toF. Villars, Rev. Mod. Phys. 21, 434 (1949).
n e ) 1 u h h t'g e +r@ +s quantum electrodynamics per se is much less acute than

tabulated in the Appendix of reference 5. it seemed two years ago since the present theory works
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well and the modifications to be expected of a future
correct theory will surely be of an ultra-relativistic
nature. On the other hand, it appears very unlikely
that the corresponding problem of the interaction of
nucleons and mesons can be solved except within a
realistic framework and we assume, with Pais' and
Sakata, 4 that only in a theory which takes into account
the mutual interactions of all the elementary particles
can one hope to eliminate the divergences; the essential
limitation of the present investigation is contained in
the fact that we have restricted ourselves to mixtures
of ordinary type 6elds.

It is perhaps interesting to consider 6rst a 6eld-
theoretical model which seems to be the most literal
transcription of the Pauli regulator scheme but which
contains important difficulties in its physical inter-
pretation and hence cannot be taken too seriously from
a realistic point of view. It has, on the other hand, the
virtue of being mathematically consistent and com-

pletely convergent (at least to the second order in the

coupling constants) and does seem to explain the ap-
parent arbitrariness of the regularization procedure.

It is most natural to regard the auxiliary masses

which are involved in the regulator functions and which

accordingly play a mathematical role only as being
associated with real additional 6elds; we consider,
therefore, the case of a family of spinor Gelds (including

the electron field) interacting with a family of neutral
vector Bose fields (including the photon Geld) with

vector coupling linking each spinor and Bose held. One

then 6nds, to the second order in the coupling con-

stants, that all the particle self-energies converge as
well as the current densities induced in the vacuum by
external electromagnetic and mesonic fields provided
certain simple relations exist among the masses and

coupling constants which bear a close resemblance to
conditions (2) and (2'). The photon self-energy is zero.

For simplicity, let us assume that we have, besides

the electron 6eld, two additional spinor fields and,
besides the photon 6eld, one additional Bose Geld. Let
e;, g; and m,. denote the electric charge, mesonic charge
and mass of the ith spinor 6eld and let p be the mass

of the Bose particles. It then follows in a trivial way
from the results of Schwinger' that one has for the
current density induced in the vacuum by an external
electromagnetic field described by the potential A„(x),p

bj „(x)=i/2 d&d' 0(x—x')

XZ ([j.(x, m'), j (x', m')j)o~ (x') (3)

j„(x,m,)=ie;/2 {&i (x, m;) y„P(x, m, )—&&«'(x, m;)y„P'(x, m;)];

here, f(x, m;), P(x, m;) and P'(x, m;), f'(x, m;) are the
field variables which describe the zth spinor and charge
conjugate spinor 6elds respectively, d'ko' is the four-
dimensional element of volume and p(x —x') is, as
usual, +1 or —1 according as the space-like surface
associated with x lies in the future or the past with
respect to the corresponding surface associated with x'.
It is then a consequence of the sufficiency of the regu-
lator conditions (2) and (2') that bj„(x) will converge
and the photon self-energy will vanish provided

ep'+eP+e2' ——0, ep'mp'+ei'mi'+e2'm2'=0. (4)

In a similar way, for the mesonic current density in-
duced in the vacuu~ by an external mesonic potential
U„(x) one finds

i&J„(x)=i/2 ~ d 0&e(x x')—

XQ([J„(x,m;), J„(x', m;) j)pU„(x') (3')

with

J„(x,m, ) =ig;/2 [f(x, m, )y„P(x, m;)
—&t'(x, m;)y„P'(x, m,)J.

Both &&J„(x) and correspondingly the self-energy of the
neutral vector meson will converge if

gp +gl +g2 0 gp mp +gl m12+g2 m2'=0. (4')

Finally, for the self-energy density operator of the ith
spinor particle X(", one has

K&'&=1/2 Li&«&'&(x)x&"(x)+charge conjugate], (5)

where (8&, 8/Bx&,)=—

X'*'(x)

=e 2)t d&0'{D(x—x')(yg&&&, +2m, )h&" (x—x', m')

+D&'&(x—x')(y&, By+2m;)Z(x —x', m') }P&'&(x')

+g 2J d&0'{Z(x—x', &02)(yg8 +&2m;)6"&(x x', m 2)—

+6&'&(x—x', p2)(y&, &&&,+2m, )

Xh(x —x', m') }f&'&(x'). (5')

'A. Pais, "On the theory of elementary particles, " perh. Eon.
Ac. Amsterdam, Vol. 19 (1947).

4 S. Sakata, Prog. Theor. Phys. 2, 145 (1947).' J. Schwinger, Phys. Rev. 75, 651 (1949).
'We employ natural units throughout with k=c=i. The

symbol (F}0denotes the vacuum expectation value of E.

This converges if
ep+I{;;2=0,

whence it is clear that one may set

g,=~e;

(6)

(6)



REALISTIC FIELD THEORIES

which is fully compatible with the earlier restrictions

(4) and (4'). We wish also to remark that the self-

stress of the ith spinor particle vanishes in this for-
malism; one gets for 5= J'Tud'x evaluated for a par-
ticle at rest the value ppp;/2pr (eP+gP)/4pr which eqaals
zero by (6).'"

Ke observe that in order to obtain convergence in
this scheme it has been found necessary to employ
imaginary coupling constants. This has the consequence
that the Hamiltonian is not Hermitian and probability
is not conserved. The physical meaning of the present
formalism is hence obscure unless a limiting process is
performed, in which case the whole affair reduces to a
purely formal prescription for performing calculations.

It is interesting to see what this formalism (which is

suggested by the use of regulators in quantum electro-
dynamics in problems of order e') implies for the kind
of regularization to be used for transitions of higher
order. One infers that all internal photon lines are to be
regulated separately; also, that each closed electron
loop is to be regulated as a single unit (the terminology
"internal photon line" and "closed electron loop" is
that associated with the Feynman diagram). ' It is clear
that one will lose the gauge invariance of the theory by
regulating independently the individual segments which
constitute a closed electron loop for charge would be no
longer conserved in detail. The simplest case of a closed
electron loop occurs in the calculation of the polarization
of the vacuum where one must regularize the expression
as a whole. "

remark that we have not considered the cases of par-
ticles with spin higher than one or the case of charged
massless vector mesons —these remain as real though
perhaps academic possibilities. )

The basic theory which has been used is that of
Schwinger' except as modifications have become neces-
sary whenever one has had to transcribe an expression
containing time derivatives from the Schrodinger to the
interaction representation. "The equation of motion in
the interaction representation assumes the form

ib@[o]/bo =X(x, &r)O[o], (7)

where 4'[a] is the state vector of the system and
X(x, o) is the Hamiltonian density for the interaction
between one of the 6elds in question and the external
electromagnetic 6eld. To the 6rst order in the coupling
constant, one may then write for the solution of (7)

where 4[—~ ] is the state vector which characterizes
the initially undisturbed vacuum state of the system.
For the induced current density 8j„(x) one then finds

i t —([j„(x,o), 3C(x', a')))pdpp'. (8)

3. THE POLAMZATION OF THE VACUUM

%e ask 6nally the question: Can one obtain a mathe-
matically and indeed physically consistent picture of
elementary particles by the expedient of mixing ordi-

nary fields? To answer this question, it turns out to be
sufficient to consider the polarization of the vacuum by
an external electromagnetic 6eld. The requirements of
gauge invariance somewhat restrict the number of
possible situations which need to be investigated and
we have accordingly considered the cases of an electro-
magnetic 6eld interacting with a scalar field, with a
spinor field (with vector and tensor coupling) and with
a vector field (with vector and tensor coupling). (The
6rst two of these 6ve possibilities have already been
extensively treated in the literature, & "'0 but we include
them here for the sake of comparison. We must also

~ A. Pais and S. T. Epstein, Rev. Mod. Phys. 21, 445 (1949).' F. J. Dyson, Phys. Rev. 75, 486 (1949).' J. Rayski, Phys. Rev. 75, 1961 (1949}.
' A. Pais and G. E. Uhlenbeck, Phys. Rev. 75, 1321 (1949);

Umezawa, Yukawa, and Yamada, Prog. Theor. Phys. 3,
317 (1948), 4, 25 (1949}; R. Jost and J. Rayski, Helv.
Phys. Acta, in press. We have recently learned from Professor H.
Yukawa that H. Umezawa and R. Kawabe (Prog. Theor. Phys. ,
in press) have also examined the case of vector mesons with vector
coupling using basically non-covariant methods with results that
are essentially in agreement with ours; in particular, they are led
to impose the same conditions that we do (Eqs. (29) and (29'}) to
insure the vanishing of the photon self-energy.

We have used the notation j„(x,&r) in the right-hand
side to emphasize that the operator which enters into
(8) must be appropriate to' the interaction representa-
tion. %e remark, however, that, since we are interested
in corrections to the current density of order e', it is
only the linear part of the Hamiltonian X~(x'), say,
which is relevant, and indeed it is only the linear part
of the current density operator, say, j„(x) which enters
into the commutator. Furthermore, we discard that
part of (j„(x,o.))p which does not involve the external
Geld. Assuming, 6nally, that the external electromag-
netic field cannot create pairs, we may rewrite (8)
somewhat more conveniently, viz. ,

5j„(x)= (j„(x,o)—(j„(x,a))g=p)p

i/2 ) ([—j„(x),BC'(x')])pp(x —x')dpp'. (8')

We consider the application of (8') to the several indi-
vidual cases.

(a) Charged scalar field Let U(x) an.d U~(x) be the
6eld variables which characterize the charged scalar
field and let A„(x) denote the unquantized potential in

"S.Kanesawa and S. Tomonaga, Prog. Theor. Phys. 3, 1, 101
(1948).
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1

dy[exp{im'z iz/—4 (1—y') I/z7, OA„(x)
—1

2= —D„*U* D„U—m'U~U,

terms of which the external electromagnetic field is and 5 leads ultimately to the following expression
described. The external current J„(x) is then given by (n= 1/137):
J„(x)= —(h„~—8„8,)A.(x). The Lagrangian density
for a charged scalar f&eld interacting with an external
electromagnetic field is"-

where D„=8„—~ed„, D„=8„+ieA„;one then finds for
the charge-current four vector s„which is associated
with the above Lagrangian

—n/24&r s&J (x) —n/120&r ( /m') J„(x)
—a/1680&r ( /m')'J„(x)+ . . . (13)

s„=b Zdo&/bA„=ie(D„*U* U —U*D„U)
aJ

In tabulating these and succeeding results, it has been
convenient to employ the notations

On going over to the interaction representation one has

3C = ie(8—U~ U —U*B U)A
j„=ie(B„U*U —U*B U) 2e2U*U—(A„+n„n„A„),

&t& ——1/im' exp(im'z)/z' e(z) dz;
J

(14)

where n„(x) is the unit normal to the spacelike surface
o at the point x (&&„2=—1). After a brief calculation
wherein one employs the relations

[U(x), U*(x')7= LU*(x), U(x') 7=i'(x x'), —
(U*(x)U(x')+ U*(x') U(x) )0

——a "&(x—x'),

one finds from (8') and (9) that

bj„(x)= —e'J E„„(x x')A, (x')do—&',

where

E = —aa(» aa —as&» aZ

+a as~» 5+a~» a a„Z

+b (—5&'& Z — 5&».K+2m'5&»Z). (11')

The induced current density no longer involves the
timelike normals N„(x) which is as it should be, can-
cellation of the surface-dependent terms having been
effected by use of the identity

where e(z) =z/~z~ and z is a scalar invariant with the
dimensionality of a coordinate squared; it is then clear
that Ii diverges as (1/z), , or as the square of a momen-
tum while I2 goes as (log z), 0. We shall reserve a
discussion of (13) until later.

(b) Charged spirtor field with mugr&etio moment
e/2m —eb. Let f(x), P(x) and f'(x), rP'(x) designate the
spinor field and its charge conjugate field, respectively.
It is then well known that the addition to the Lagran-
gian density

2= —1/2 g(y„B„+m)P 1/2 P'(y„8„—+m)P'
+&e/2 (lyly P'yA—')A„

of a term of the form

2'=ieb/4 (&lo„„P P'o„„P')F„„,—

where o„.=(y„y„—y,y„)/2 and F„„=B„A„B„A„is the-
external electromagnetic field, leads to an anomalous
magnetic moment for the spinor particle amounting to
—e8." Indeed, the current density is now properly
given by

—1/2. JI do&'F(x, x')B„e(x—x') 8„6(x—x')

=n„(x)N„(x)F(x, x). (12) ' =bJ (~+~)d"/bA ="/ '(~y &

As has been emphasized by Jost and Rayski, &0 the
induced current bj„(x) as given by (11) is by no means
clearly gauge invariant; indeed, for gauge invariance
one should have BK„„/Bx.=0 but instead one finds
BK„„/Bx„=2b(x)8„5o& which is undetermined.

A detailed evaluation of (11) wherein the method of
integration is along the lines described in references 1*

'2 G. Wentzel, QNantentheorie der S'ellenfejder (Deuticke, 9 ien,
1943).* In performing the integrations, we have followed the conven-
tion of Pauli and Villars in assigning to J'd4k. k„ks exp (&kg') the
value —b„„(x j2z )e(z) although it might seem just as appropriate
to have written —b„„(~'/2z')(~(z) —zb(z)). In any case, it may

ieb/2 a„(4o„A —4' A'o.). —

It seems to be of some importance to consider this pos-
sibility as a real one for there is no u priori reason why
spin one-half particles (apart from the electron and
positron) should be described without an anomalous
magnetic moment term. It is a simple matter to deter-
mine the Hamiltonian density and the current density

be readily seen that the only essential effect of the inclusion of the
8(z} term is to modify all quadratic divergences in the same way
so that none of our conclusions with respect to the compensation
of the divergences are in any way affected.

"W. Pauli, Rev. Mod. Phys. 13, 203 (1941).
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in the interaction representation, vis. ,

X=X,= i—e/2 (Py„P f—'y„P')A„

ie—h/4 (4'o.A 4'—o"0')F",

i.=ie/2 (4vuN 0'—vA') ie—h/2 ~.(4o A 0'—o.A')

e'h(—f/+ g'P') (A„+n„n„A„)

e'b'/—4 {P[op&(y„+n„n„y„)+(p„+n„n„y„)o,&]P

+4'[& „&,(V„+n„n„V„)

+(y„+n„n„y„)o,& jP'IF, & (15').

Equations (8'), (15), and (15') together with the rela-
tions

{.4-( ), A(*')]+=—5'.e(*—*'),
(4' (*)A(x') )o = (5'"&(x' —*)—i5'(x' —*))e./2

lead ultimately to the following expressions for the
induced current density. It is convenient to write hj„(x)
as the sum of three parts, v~s. ,

hj (x)=hj &'&(x)+hj &"'&(x)+hj &"(x). (17)

hj„'"&(x) is the current density one would get if one had
the vector interaction only between the spinor particle
and the electromagnetic field (corresponding to an elec-
tric charge but no anomalous magnetic moment),
hj„"&(x) is the current density one would get if one had
the tensor interaction only (corresponding to an anoma-
lous magnetic moment but no electric charge) and
bj„'"'&(x) is the cross term. Then

hj „&"(x) = —e'Jt E„„(x x')A„(x')d&—o',

gauge invariant —indeed, as Pauli has pointed out, '
&&I'„„/Bx„=—4h(x)&&„5«&—the introduction of tensor
coupling does not lead to any new non-gauge invariant
terms. This means that, insofar as the question of the
photon self-energy is concerned, it is irrelevant whether
or not we have tensor coupling.

Upon carrying through a more explicit evaluation,
one finds eventually that

hj &"&(x)=in/27r

dy[exp {im's is—(4 (1—y') I/s], oA„(x)

/n6 "s82J'„(x)—a/15' (Q/m') J„(x)

—a/140m" ( /m')'J„(x)+, (21)

hj, '""(x)=nhm/m" N~J„(x)+ nhm/3 x ( /m') J„(x)

+ahm/30m" (Q/m')'J„(x)+, (21')

h j„&'&(x)= —ahnm'/2&r". J„(x)
—nh'm'/12' (82+ 2) ~/m') Jp(x)

—nh'm'/207r ( /m')'J„(x)+ . (21")

(c) Cttarged vector fteld urith magnetic moment

(1—y)e/2m. I.et U„(x) and U„*(x) be the field variables
which characterize the charged vector field. Here, too,
it is possible to add to the Lagrangian density"

2= —1/2 (D„*U„* D„*U„*)(DU —DU ) m'U—*U„—
a term of the form

2'=icy/2 (U„*U„U„*U„)F„„;—
where

A„„=4{&t„. 5&'& B„Z+&t„th,«& B„h

—h„„(Bgh&'& B&5+m'b&'&5)];

ut&(x) 8e2hm Jt g&'&(x—x )g(x—x )J (x )d&o
'

hj„&"(x) =4e'h' { M„,.(x x')F,.(x')d&o', —

where

M„p.=d„{h.„(a„t1&'& a,a+apt&, &'& a„a)

+h„(B.A&n B„h+B„t&&'& B.t&&)

(18')

(19)

(2o)

this extra term leads to an alteration of the magnetic
moment of the vector meson from e/2m to (1—y) e/2m. "
There is again no obvious reason why the vector form
of interaction should be favored over the tensor and we
consider both possibilities. The current density which is
associated with the total Lagrangian is given by

s„=h (Z+2')d&o/bA„

=ie[U„*(D„U„D„U„) (D„*—U„* D„*U„—*)U„]—
ieyi&„(U—„oU„U„*U„)—

On carrying through the transition to the interaction
representation, one finds for the linear terms in the
Hamiltonian density

—h„b„.(a,a&'& a, t&,—m'a&'&t&, )]. (20')

We observe once more that hj„(x) no longer involves
surface-dependent terms, these having canceled in view
of (12). We also note that, while hj„&"&(x) is in fact not

X&—— ie(U„*f„„f„„*—U„)A„—
iey/2 (U—„*U.—U„*U„)F„., (22)

where f,„=B,U„t&„U„.The curr—ent density operator
assumes much more formidable proportions (we keep
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terms to e'):
bj„&"(x) = —e'y' "M„p,(x x'—)Fp.(x')dcp' (27)

= (ie(U„*f.p f—,„*U.)—er[(A pU, *—A, U„*)U +U.*(A„U.—A.U„)]
&en—pn„[(A „U.* A.—U„*)U.+U.*(A.U. A.—U.)]
e'n—.n„[(A„U„' A—„U„*)U.+U.*(A„U, A—.U„)]—e /m n&,n~(f p*f~o+fvr*f& p)Aa
e'y/—m' n& n„(f„„*U.+U.*f.„)F&,)

+ ( ie—yB,(U.*Up U—„*U.)
e'y/—m'8&,'[ {f&..*(*')U, (*)+Up*(x)f&.(x') }A (x')]*=*
e2yn„—n&[U.~(A&,Up A„U&—)+(A&,Up* ApU&—,') U,]
e'y/m—' n, n&, (f &,*B.Up+ B,Up* f.&,)A,

+e'y/m' [(n„n,Bp'+ n„n, Bp'+n„n„B„'+2n pn„n, n&8&,')
({U,*(x)f.,(x')+f.p*(x') U„(x) I A.(x') )]..
e'y'/m'—Bg'[ {U.*(x')U(„x)+U„'(x)U„(x') I F&,„(x')].=,
e'y—'/m'n„np(U, *B„U„+B„Up* U,)F„

({U.*(*)U.(x')+ U.*(x')U.(*)IF"(*'))]*=.) (22')

the Grst grouping of terms on the right-hand side of (22')
is the interaction representation transcription of the
"vectorial" part of the current density with the second
grouping corresponding to the "tensorial" part.

One may next calculate the induced current density
bjp(x) using (8'), (22) and (22') together with the
relations

[U.(*), U.*(x')]=[Up*(x), U.(x')]
= i(b„„—1/m' 8„8„)A(x —x')

«.*( )U, (*)+U,*(")U."( )).
= (bp„—1/m'8 8,)h&c&(x—x').

It is again convenient to express bj „(x) as the sum of a
pure vector part bjp&'&(x), a pure tensor part bj„&'&(x)

and s, cross term bj„'""(x),i. e.,

bi p(x) = bi p'"'(x)+bj '"(x)+bj '"(x) (24)

where

with

M„,.=8,[2bp.b.,h&»5

+1/m-' b„(8 5&» 8 5+8 6&» B„a)
—1/m'b (5&». 8 B„cb,+BpB„a&» Z)

—1/mc b„p(8 8&,h&» 8 8&,k+BpB&,h&» 8,8&,Z

—Bp8.5&» 5 cpc&» B—p8.6)]. (27')

To bring about the cancellation of the surface-de-
pendent terms in bjp(x), use was made of (12) plus the
additional identity

1/2 )I—dce'F(x, x') {8„8„8,[c(x x') A—(x x')—]
—e(x—x'),8 „8 Ba(x—x') I

= [(npnyBp +nynpBp +npnpBp

+2n„n.n,n, B,')F(x, x')], ,. (12')

We note that, as in the spinor case, it is bjp&"&(x)

which is not gauge invariant and the introduction of
the tensor coupling does not lead to any new non-gauge
invariant terms which means, as before, that the
amount of tensor coupling wiH not play a role in the
discussion of the photon self-energy. Indeed, we observe
that the Grst part of E„.(25') is exactly three times the
corresponding quantity for the case of a charged scalar
Geld (11') whereas the second part leads to a gauge
invariant current; one may readily verify that for the
charged vector meson Geld BE /p8 „x=68(x)Bph"&.

The ultimate evaluation of Bjp(x) leads to the fol-
lowing results:

bj„'"&(x) = —3ia/4&r

bj "(x)=—e' I E„„(x x')A„(x')dce'—(25) 1

dy[exp {im's —is/4 (1—y') I/s], ,A „(x)

with

E„,=3[—Bph&» B,E—B„a&» B„c&

+a„a„a&» a+a(» a„a,Z

+bp, (—b.'" Z — 5&"& 6+2m'5&'&c&)]

—2/m'[8 8 c&«» Z+ 6&» BpB„Z

—8 8 5(».8„8 5—8 8 5(» 8 8 6

—1

+a/4&r (a&—a2/2) J„(x)

a/24~ (82+3/5—)( /m') J (x)

—17a/1680&r ( /m')'J (x)+, (28)

bj &"'&(x) = —y/2 (S,+a,/2) J„(x)

+ay/8~ (~,—2/3)( /m') J„(*)

+ay/40&r ([]/m') 'J„(x)+, (28')

+b (8 8 a&» B,B.Z — S&» Z)] (25') bj &'&(x)= ~'/a4~ —(S, S,)J„(x)—

bj &"'& (x) = —2e'y) Idee'[6&» (x x') Z(x x'—)—
—1/m' 8,6&»(x—x') B,i& ( xx')]J„(x'); (26)

+ay'/16m" (8&—2 d2/3+4/3) ([]/m') J„(x)
—ay'/96' (c&2+4/5)

X (P/m')'J (x)+ .. (28")
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2 V.„=iV,.+3K., (29)

2Z(m &'&)'= Z(m &'&)'+ 3Z(m, &")', (29')

these equations are the analogs of the regulator condi-
tions (2) and (2') and clearly allow many possibilities.

A corresponding cancellation of the divergences which

arise in the gauge invariant terms in the current density
is not possible however. As has been observed by many
authors, " the charge renormalization factors in the
scalar and spinor cases (the latter with vector coupling
only) diverge logarithmically and have the same sign.
The introduction of an anomalous magnetic moment for
the spinor Beld intensihes the difhculty in that it leads

4. DISCUSSION

The essential content of the preceding section is
contained in Eqs. (13), (21-21") and (28-28"). We
have already remarked that the amount of tensor
coupling has no bearing on the photon self-energy
whether we are considering spinor or vector mesons. If
we let X„,S,„and X. denote the number of charged
scalar, spinor and vector fields which interact simul-

taneously with the external electromagnetic field and
m„&", m, „&" and m„&" the corresponding masses, then
it is evident that the photon self-energy will vanish
provided

to a logarithmically divergent J„term. Unfortunately,
this last inanity cannot be canceled by the corre-
sponding one which occurs in the case where we have a
charged vector meson Geld (with vector coupling only)
for here, again, the signs in the two situations are the
same. Indeed, in the vector meson case we obtain also a
quadratic divergence in the charge renormalization
term. Finally, the introduction of tensor coupling for
the vector meson Geld leads to a ( )'J„divergence.

The inference to be drawn from all this is certainly
not that the realistic approach is an incorrect one.
Indeed, the very closedness of quantum electro-
dynamics on the one hand together with the complete
failure of all meson theories on the other are fully com-
patible with and emphasize the necessity for a realistic
description of elementary particles. %e can only con-
clude that the usual linear field theories do not seem to
be adequate for the job although the possibility that it
is actually the perturbation theory which is at fault
cannot be completely ignored.
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