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be due to fluctuations in the counter supply and the
coincidence circuit, and were subsequently eliminated.
The standard deviation given in Table I for antimony
was calculated from the deviation of the individual sets
from the mean.

The measured values for the total cross section are in

very good agreement (approximately 1 percent) with
the predictions of theory (Table I and Figs. 2 and 3).
Any attempt to obtain a closer check at the present
time would have little meaning inasmuch as the energies
of the gamma-rays are known only to about 2 percent.
The results of this investigation indicate, therefore,
that the Klein-Nishina formula is in agreement with
experiment in the energy range one to three Mev for
aluminum.
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The calculation of the coefBcients of fractional parentage and of the energy matrices for the con6gurations
f" is simpli6ed very much by the use of the theory of groups. Tables of results are given.

j.. INTRODUCTION

T was shown in two previous papers' that the cal-
- culations on complex spectra may be simplified by

the introduction of tensor operators and coefIIIcients of
fractional parentage. These coefIicients may be cal-
culated by Eqs. (9) of III and (11) of III, but it
appears that for the configurations f" Eqs. (11) of III
are too cumbersome for practical use.

By considering the meaning and the properties of the
coefFicients of fractional parentage from the standpoint
of the theory of groups, we shall see that these cal-
culations may be somewhat simplified and that a very
fortunate and important simplification takes place
exactly for the configurations f".

In Section 4 we shall classify the states of f" as the
basis of some group representations and in Section 5
we shall find some properties of the coefIIcients of
fractional parentage which will avoid the use of Eqs.
(11) of III; the results of the calculations will be given
in Tables III and IV. The energy matrices will be cal-

~ G. Racah, Phys. Rev. 62, 438 (1942) and 63, 367 (1943)
(which will be referred to as II and III. We refer to these papers
for deanitions and notations.

culated in Section 6, and also these calculations will be
simplified by group-theoretical considerations.

Before treating the very argument of this paper, we
shall give in Section 2 a formula which should have its
natural place in Section 5 of III, but was unfortunately
obtained only after the publication of that paper, and
we shall prove in Section 3 a corollary of Schur's lemma,
which will be very useful in the following calculations.

2. THE MATRIX OF SYMMETRIC SCALAR
OPERATORS

The matrix components b'etween two states of l" of
the scalar operator (30) of III were calculated in (33a)
of III by taking only the last term of the summation
and then multiplying the result by -', e(n —1).It appears,
on the contrary, more convenient to limit the sum of
(30) of III to the first I—1 electrons and then to
multiply by n/(tt —2). Thus, we obtain easily

(l"~L
I Gl l"~'SL)

= Le/(e —2)j P (l"nSL I ~

l" '(a, LS,)lSL)-
aiar'S11. 1

X(l" 'ngSgLg~G~l" 'ng'Sag)

X(l" '(a~'S~L~)lSL~ }l"n'SL). (1)
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Q(1,"l j)= [L(L+1)—m/(/+1)]/2 (2)

P(s; s,) =-,'S(S+1)—3e/8. (3)

This formula advantageously replaces (33a) of III,
since it does not need the use of (32) of III. Moreover,
if it is used for operators the eigenvalues of which are
already known, it gives a great number of equations
between the coe%cients of fractional parentage.
Operators of this type are not only the operator Q
defined by (34) of III and the operator R which will be
defined by (23), but, first of all, the operators

that for every element t of fl,

Z(PBblR~ 'Is)(sl U~(l)
I

o')(s'IR~IP'8'b')
aa'

= (b I
Vs(l) I

b') b(88') b(PP') (4)

where the (bI Vs(t) I
b') are the irreducible representa-

tions of I). Instead of the representations U~(s), we
shall always consider the equivalent representations
("reduced with respect to fj"),

(pBb I W, (s) I
p'8'l')

= (pBbIRg 'Ug(s)RgI p 8'b'); (5)

it follows from (4) and (5) that for every element l of fj,

3. A LEMMA

The irreducible representations (aI U~(s)Ia') of a
group g are generally reducible as representations of a
subgroup I) of g; i.e., a constant matrix R~ exists, so

The external (Kronecker's) product of two irre-
ducible representations of g is generally reducible, i.e. ,
a constant matrix S exists, so that

(AiAinAPBbI S 'I AiPiBib, ; AiPiB, bg)(PiBibiI Wxi(s)! Pi'Bi'bi')
pl+lblpS+sb2pl +1 bt ps 82 b2

X(Pi82bg! WAi(s) IPp'Bz'bp')(AiPi'Bi'bi', AiP2'Bi'bi'IS I AiA&n'A'P'8'b') (PBbI Wz(s) I P 8 b )8(AA')b(an ). (7)

Also the external product of two irreducible representa-
tions of I) is generally reducible and a constant matrix T
exists, so that

(8182vBb I

2' 'I Blb182b2)(blI Vsl(/)
I
bi')

b tb2b)'bs'

X(biI V&i(/)
I
bi') (Bibi'Bib2'I I'I »82v'8'b')

=(bI v (l) Ib')b(88')~(vv') (g)

From (8), (6), and (7) we obtain

2 (bI Vs(l) Ib")(Bi82vBb" I2' 'IBibiB~b~)
b tbsb"

X(AipiBibi, A2piBibiI SIAiAinA pB'b')

= Q (BiBgvBb! T 'I BibiBg)bg
b1bmb"

X(AipjBibi) Aip282biI SI AiA2aApB b ')

X(b"IV (l)lb'), (9)

and it follows from the lemma of Schur that the con-
stant matrix T 'S is diagonal with respect to 8 and b

and is independent of b:

Q (BiBivBbI 2" 'I BibiBgbg)
bgbs

X (A ipiBibi , A ip28ibi I
S

I
A iA2a. A pB'b')

= (A ipiBi+AmpgBg
I X~ I

aA pB)b(88') 8(bb'). (10)

this formula will be very useful for practical calcula-
tions, since it expresses the dependence of the matrix
S on b&, b2, and b by means of the simpler matrices T.

@'(m, 'mi') = P P(m.mi)c(m, mi, m, 'mi'), (12)

the eigenfunctions i/(/", I') undergo the linear trans-
formation which is induced by (12) on the ansitym-
metrical tensors of degree n in the (4/+2)-dimensional
space; i.e., the @(/", I') are the basis of the antisym-
metrical representation {c4i+i}" of the linear uni-
modular group c4~+~. The rows and columns of this
representation are characterized by the quantum
numbers I'.

If we limit c4&+2 to the subgroup c2Xc2&+& defined by

c(m.mi, m, 'mi') = V (m, m, ')c(mimi'), (13)

4. THE GROUP-THEORETICAL CLASSIFICATION
OF THE TERMS OF /"

i. The Spin and the Oxbital Momentum

/4/+2 t .
The configuration l" has

I I
independent statese )

which may be characterized by a set of quantum
numbers I', if the 4/+2 eigenfunctions @(m,mi) of the
individual electrons undergo a linear unimodular trans-
formation,

Multiplying from the left by T we have, finally, where y and c are two independent linear unimodular
transformations, the representation {c4i~2} breaks up

(AipiBibi, AgpiBib2!SI AiAinApBb) into irreducible representations of c2Xc2~+~, each of
which is the external product of a representation Qs
of c& and a representation @,s of cii+i. It is well known

X(A,p,B,+Amp, B,!~~IaApB); (11) that the symmetry schemes of Zs and g), s must be
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TAsxE I. Reduction of 5~ as representation of G~. Table II. Reduction of 5U as representation of bg.

Values af 5 and t)

I EE

$ l' I p

0 0 7/2 7
1/2 1 3 6

5/2 5
0 2 S/2 7

3/2 3 2 4
1/2 3 2 6

1 4 3/2 5
0 4 3/2 7

1/2 S i 6
0 6 1/2 7

(000) (00)
{100) (10)
(»0) (10) (»)
(200) {20}
(111) (00) (10) (20)
(21o) (11) (20) (21)
{211) (10} {11) (20) (21) (30)
(220) (20) (21) (22)
{221} (10) (11) (20) (21) (30) (31)
(222) (00) (10) (20) (30) (40)

2. The Seniority Number

dual; since the scheme of Ps has two lines, the lengths
of which are, respectively, (e/2)+S and (I/2) —S, the
scheme of @„,s will have two columns of these lengths.
The basis of these representations of C2&c2~+1 are the
functions 4(l"SMsh); the quantum number Ms
characterizes the rows and columns of Zs, the quantum
numbers 6 those of @„,q.

If we limit c2&+1 to its subgroup composed by the
elements of the representation Z~ of order 2l+1 of the
three-dimensional rotation group b3, the representation

@„sbreaks up into representations Zz of bs, the basis
of which are the functions 4'(l"nSLMsMz). The
quantum number (or set of quantum numbers) a must
be introduced in order to distinguish the different

equivalent representations of b3 which may appear in

the reduction of A„, ~, i.e., the different terms of the
same kind which are allowed in /".

In order to classify in a suitable way these different

terms, it is convenient to perform the passage from

c»+1 to b3 by successive steps.

(00)
(10)
(11)
(20)
(21}
(30)
(22)

(40)

12g(U)

0
6

12
14
21
24
30
32
36

S
F
PH
DGI
DFGHEL
PFGHIKM
SDGHILN
PDFFGHHIIXKLMNO
SDFGGHIIELLMNQ

l

V'~= —
2
—2(s' s~) —2Z~(+—1)(u'"' " u'" ") (17)

owing to (38) of III and to (3) we have, for Q, the
expression

Q=-,'n(4/+4 n) S—(S+—1)—Q, (4t —1)U&" "', (18)

and it may be shown that

of the components of tensors of degree n transform
themselves as components of tensors of degree n —2;
the classihcation of the terms of l" according to the
representations of b~~+1 will therefore introduce a cor-
respondence between some of them and the terms of
l" '. It is easy to see that this correspondence is the
same which was introduced in Section 6, Subsection 2
of III i.e., that the separation of the terms with QWO
from those with Q=O is equivalent to the decomposi-
tion of a tensor by trace operation.

If we subtract (54), III, from (37), III, a.nd add (52),
III, we get

As a first step, we limit c2g+1 to the orthogonal sub-

group b.l+& which leaves invariant the quadratic form
Q((4t —1)U'-" "'= (2/ —1)G(b2(+g), (19)

g (-1)-@(ra)4(-m), (14)

and the representations g&, s then break up into irre-

ducible representations Ss of b2~+&, since the group

b&&+& is of rank l, each Ss is characterized by a set W
of I integral numbers

K'1 «» Mi2 «» ' ' «» R )»«0)

and since in the symmetry scheme of @,s no row ha, s

a length greater than 2, also the m; will not be greater
than 2 and it will be

M~I= ' ' ' =R'rs= 2) Was+I= ' ' =78rs+b= 1)
'N&+b+. 1= ' ' ' ='%~=0. (16)

It is known from the theory of tensors that the

passage from the linear to the metric space (or from

c, to b„) allows the decomposition of tensors by trace
operation or contraction, i.e., some linear combinations

a= (v/2) —S, b= min(2S, 2l+1 —s). (20)

The basis of the representations Ss are the functions
4'(1"avSLM sMz)

The seniority number could also be introduced before
the spin number, by limiting c4~+2 to its symplectic
subgroup which leaves invariant the bilinear antisym-
metric form

Q, Q, (—1)"+" &4,(m,m, )y,-( ~„—~ ). —(21)
—L

' H. Casimir, Proc. Roy. Acad. Amsterdam 34, 844 (1931).

where G(b2&+&) is Casimir's' operator G for the group
b2l+1.

It may also be shown that the numbers u and b, which
characterize the representations Ss according to (16),
are connected to the spin and the seniority number by
the relations
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TABLE IIIa. (WU~ W'U'+f) for W'= (000}, (100), (110},(200), (111),(210).

(000) (00)

(100) {10)

(ooo) (1oo)
(oo) (1o)

0 1

(10)
(110)

0 (1/3)» (2/3)»

(2OO)

(20) (00)

grlUI

(111)
(1o) (20)

(210)
(2O) (21)

{10)
{11)

0 0
0 0

(3/35)' (2/5)' (18/35)'
0 —(1/10)» —(9/10)»

(2/5)'
0

(3/5)'
(3/35)» (32/35}»

(200) {20} 0 0 (2/15)' {9/35)' (64/1o5)'

{210)

(00)
(10)
(20)

(11)
(20)
(21)

1 0
{2/3)' —(1/3)'
(2/9)' —(7/9)'

1 0
(7/9}' (2/9)'

0

0—(1/7)'
0

—1—(3/8)'
(1/8)'

(27/56)»—(7/8)'

(211)

{10)
(11)
(20)
(21)
(30)

(27/35)» —(9/40)» (1/280)»
0 {9/10)» —(1/10)»

(7/8)' (1/8)'
0 0 1
0 0 1

—(3/5)'
0

(1/3)'
(3/16)»

0

{2/5)'
{32/35}» —(3/35)»

(2/7)» -(8/»)»
—(25/112)» (33/56}»

(1/7)' &6/7)»

(220}
(20)
(21)
(22)

(8/15}» —(16/35}» (1/105}»
—(1/8)» {27/56)» (11/28)»

0 0

3. The Special Case of f" TABLE IIIb. (WU((211}U'+f).

It was remarked in Section 6 of III that the seniority
number suSces to distinguish the diferent terms of the
same kind in d", but not for greater /; for 1 &~ 3 we must
therefore seek for a subgroup of b21+1 which contains

2&, and it is a very fortunate chance that such a sub-

group exists exactly for /=3: it is the subgroup of br
which leaves invariant the trilinear antisymmetric
form

(00) 1
(111) (10) 24»

(20) 5832»

(11) 42»
(210) (20) 1701»

(21) 672»

(10) (11)

1 0
8»

—56»

Ul

(20) (21) (30)

0 0 0
15» 0 0

135» 2560» 3080»

—7» 0 15» 20» 0
98» 448» 270» —500» 385»
0 —?» —60» 220» 385»

V(333; mm'm")y, (m)@,(m')y, (m"), (22)
rrsm'sr'"

where V(abc; rrP&) is defined by (17') of II. This group
is the 6rst of the five simple groups which exist besides
the four great classes of simple groups, and is usually
denoted as G2.

If we limit b7 to its subgroup 62, the representations
8&r brea, k up into irreducible representations Krr of

G2, since G2 is of rank 2, the Krr are characterized by a
set U=—(uru2) of two integral numbers. If we limit G2

to its subgroup composed by the elements of the repre-
sentation 'Zr of ba, the Ktr also break up into repre-
sentations ZL of br, the basis of which are the functions
4(f"rrUr&SLMBML), and these functions will form our
defirutive system of eigenfunctions of f"

The law of reduction of 9~ as representation of G~ is
given in Table I, that of KU as representation of ba is

given in Table II; we see from this last table that the
quantum number a must be maintained only for
U—= (31) and U—= (40).

Also the quantum numbers U' could be introduced
in a similar way as the seniority number in Section 6

(10) 72-»
(11) 126»

(211) (20) 2520»
(21) 315»
(30) 315-»

35»
—245»

0
0

—27»
0 —27»

—280» —867»
35» —27»
0 27»

0 0
64» 0

—512» 616»
—176» 77»

64» -224»

of III, by classifying the terms of f" according to the
eigenvalues of

R=P r;,,
~&j

(23)

9UI'&'+33U&'&'= 12G(G2)) (27)

where the scalar operator r;; is dehned by the relation

(f'LM
~
r, r ~

f'LM) =6b(L, 3); (24)

the equations which correspond to (17), (18), and (19)
are

r;,= ,' 2(s; s,)—2q, ;—1-8—(u &".u "')—66(u,"'u;&'&), (25)

R=-'u(m+26) —S(S+1)—2Q —9U&r&' —33U(')', (26)



GIULIO

TABLB IVa. (UL
~

O'I.'+f) for U'=(00), (10), (11), (20).

(00)

(10)

{00)
S

{10)

(3/14}& (11/14)& —(5/27)'

(10/21) ~

(20/189)5

{20)

—(1/3) & —(13/27}&

—(»/21) & 0
(65/231) & —(182/297) &

(20)

(21)

(30)

—(27/49}&
(33/98}~

0

—(22/49) &

—(»/14)~
(65/98)&

0
0
0

—(22/49) &

—(65/98) ~

1

(27/49) &

{3/14)~
(33/98)~

1
1
1

-4/7
(55/147)5

0

(33/49) &

—(55/126) &

(13/882}&
{13/27}&

0
0

(11/21)&

(143/378}5
(»/»)~
(26/63)4

0
0
0

(33/49) &

—{125/539)&

(3/11) &

4/7—(8/77) &

(104/147) &

—{16/33)&

(16/33) ~

(1O/21)~
(130/231}

(2/33) ~

(18/? 7}&
{8/11}&

{17/33}&
0

0
(13/33)&
(8/11) &

0
(91/198}&

(5/18)'—(10/297) ~

—(»/33)'
1

0
(35/594)&

-(65/198)»
(35/99) &

—(3/11)~

(16/33)'
1

TABLE IVb. (ULI (21)L'+f).

(2o)

(21)

(30)

(22)

p
F
G
H
I
E
M

5
D
G
H
I
I.

1344-~
4928 &

31360 &

4312 &

18304-~

5390-~
154-k

630630 &

15730 &

2860 &

572-~

2688 &

7920 &

9152 &

1040 &

51480 &

6160 &

18304 &

364 &

16 &

220~
—2?O&

8910&
330~

0

375~
—40$

-74360~
-2535~

0
0

34

13?5~—42250&
0
0
0

0—130~
18590&

980~
0
0
0

—539&

8085&
147~

—19»&

1960&
7

455
0
0
0

—2455
0

2450&—455
1274~
0
0

1
195&
65—2450&

»055
0
0

—585&

351&
1287~
1485~

—65~
226941&

10565

0

1287~
24k

—858~

27505—204&
0

0
297~—429~

2078$
9163&
0
0

0
1078&

—14014&
1078&

2205

1911&
0—51744—3179&
968&—4O~

0
7
1617~

261954&
1320&

—136&
0

0
18$

—23826&—132&
—2244&

152~
0

0
1470&

0—1470&
4590&

0
0

70560&
7260$
—85&

—285&

0
0

1620~
490&

2125~
605&

—15~

0
0—4410&
245&

—4802&

0—1669

0
0

10098&

0
0
0

1700&
1615&

247&

0
0
0

124950&—1683&
95~
—7

0
0
0—1275&
990&
—65&

»&

it may also be shown' that the eigenvalues of G(Gr) are

g(U) =g(u, u, )= (uP+ugu2+us'+'Sur+4u2)/12. (28)
Although this method of introducing the quantum

numbers U avoids the explicit use of the theory of
3 The general expression of the eigenvalues of Casimir's operator

G for every semisimple group @rill be published elsewhere.

groups, the group-theoretical definition appeared this
time more convenient, since the properties of the coef-
6cients of fractional parentage and of the energy ma-

trices, which are connected with this classihcation and
will be obtained in the next sections, could be demon-
strated only with the use of the theory of groups.
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TAsLE IVc. (UI, i (30)I.'+f)

{20)
490-~

5929 &

22022 &

—54~—330&
0

—91&
910&—245&

LI
H

189~ —156~
126& —594&—1755& —2310&

0 0 0
2184& —2785& 0—2106& —4320& —11286&

(21)

P
p
G
Ei
I
A.
M

2695 &

630630 &

ssoss-~
165165 &

17017 &

1232-&
55440-~
11440 &

32032 &

510510 &

3808 &

—578&—55&
—83655&

0
0
0

0
429&

—3465&
0
0
0
0

1092&
0—87360&

12740&
0
0

13&
—77&

—9555&
—2954
5880&
0
0

700~—560~—56784~—7644&
—16848&

0

3$
273&

7203~—4693&
520&

33823&
0

325~—715&
—3971&

18711~
77&—1785&

0—33&
27797~

1232&—6160~
89012&

0

0—364&
227500~—7800&—27625&—1989&

0—4205
1300&
2600&

—1911$
—216580&

153~

0
0

171360&—8160~
79860&—1140$

0
0—6120&

2720~
1568O~

8085&
960&

0
0
0
0

-40755~
121035

0
0
0
0—1881&

163020&
2695&

5. THE CALCULATION OF THE FRACTIONAL
PARENTAGES OF f"

1. General Properties

For the particular case 1=3, owing to the existence
of the intermediate group 62, the coefficients of frac-
tional parentage are the product of three factors:

The eigenfunctions of l", which are the basis of
tc4~+2}" may be obtained by reduction of the repre- = (U'a'L'yy I UaL)(W'U'+y} W U)

X(f" 's'S'+fl }f"»)) (34)

4'(1"a»LMsMr)
=Q 4'(f" 'n'w'S'L'Ms'Mr, ')P(m.m))

X (f" 'n's'S'L'Ms'Mr, ', fm, m&
I
t "n»LMsMr); (29)

and the orthogonality relations (33) break up into

(WU
~

W'U'+ f) (W'U'+f
~

W"U) = 8(WW") (3&)
owing to the particular choice of the scheme which was
made in the preceding section, it follows from the lemma
(11) that the coefficients of this transformation break
up in a product of different factors, each of which p (UaL} U n L+~)(U nL+y~ U n L)
depends only from a smaller number of variables:

(t" 'nYS'L'Ms'Mr. ', &m.mi
~

&"a»LMsMz)
= (S' ', M, 'm.

~

S'ASM-s)(L'fM. 'm,
~

L'ELM. )
X(W'u'L'+f~ WnL)(7" '~'S'+f~ }f"sS). (30)

Confronting this expression with (10) of III, we see
that the coefficients of fractional parentage are the
product of two factors:

(f" '( 'n's'SL') tSL~}f"uvSL)
= (W' 'L'+lI W L)(t"-' 'S'+li }l"sS); (31)

= b(UU") b(un"). (36)

In order to find also relations of the type (61) of III,
we consider now the identical representations of b2&+&

which appears in the reduction of SwiXSw2. Such
representations may only appear if W& ——W2, and since
the tensors of odd degree are diagonal with respect to 8'
(see (70) of III), we obtain in the same way as in
Section 6 of II that

the relations (58) of III are particular cases of this ( ' ' '+W' ' '~ (00' ' '0)0)
result. Owing to the unitary of all our transformations,

= }-( L'+1)~gwjj ~(

the factors of (31) satisfy the orthogonality relations
where gw, is the order of the representation Sw&.

Z(f"»I I~" "'S'+l)(f" 's'S'+ll }~"»)=1 (») Owing to the value (16') of II of (LLMM'~LL00), we
e'8'

get also

g (WaL! W'a'L'+f)(W'a'L'+f
~

W"a''L)
a'L~

=b(WW") 8(aa"). (33)

(Wgn)L)M1) W2a2L2M2~ WyWQ, (00 .0)00)
=g ~w( 1)' "S(—W,W,-)S(a,a,)

Xb(L&L2) b(M&, —M,). (38)
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TABLE V. &(O'U'(40)).

(00)
(10)
(»)
(20)
(»)
{30)
{22)
(»)
(40)

(00) (10) (11) (20) (21) (30) (22) l'31 'l (40)

0 0
1 0

0
1

2 2
2 1
1
3 2
2 2

If, in the general formula, 4

t (WlalL1M1 I
R

I
Wlal'Ll'Ml')

x(W2n2L2M21 Rl Wln2 L2 M2 )

X(WnLMIRI Wa'L'M')*dR

gw (wl laL M1ylw2a2L2M2
I
wlw2$ waLM)

X IdR, (39)

X (Wlw2y Wn L M
I
Wlnl Ll Ml ~ W2n2 L2 M2 )

(38), we get

"(w',n,L,,M,
I
R

I
w, n, 'I.,'M, ')

J
X (W2n2L2M2 I

R
I W2n2 L2 M2 )dR

—
g

—1( 1)Ll+Ll' Ml —211'—g(w W )

X ~(ala2)~(L1L2)b(Mll M2)
I'

xg(al'a2')5(L1'L2')b(M1', —M2') dR, (40)

and confronting this result with the orthogonality
relation'

(W,n,I.,M,
I
R

I
w, n, 'L, 'M, ')*

X (W2n2L2M2
I
R

I
W2n2 L2 M2')dR

gg 1 ~(wlw2)~(ala2)~(L1L2)b(M1M2)

x B(nl'n2') h(L1'L2') b(M1'M2 ) dR, (41)

we obtain from the well-known corollary of Schwarz's
inequality that

(WaI.M
I
R

I
Wa'I. 'M')*

=(—1)L+L' ~ ~'(WnL —MIRI H'a'L' —M'). (42)

Applying this result to the first and third factor in the
we consider the special case W—= (00. 0) and introduce left side of (39), we have

(wlalL1M1, w2n2L2M2I wlw2, waLM(w, w„wa L M
I w«, I, M„w,n, I., M, )

=( 1)L+'—~ ~' Ll "'-+~1-+~1'(g /g, )(WaL M, W—,a,L,M,
I
WW, W, a,I., M,)—

X(WW2y wlnl Ll Ml
I
wn L M

p W2a2 L2 M2 )y (43)

and since, owing to (16') of II and (19a) of II,

we have also

(WlalL1+ W2a2L2
I
W nL) (Wa'L'

I
Wlal'Ll'+ Wla2'L2')

the relation (61) of III is a particular case of this result.
It is easy to see that for /=3 the relation (47) breaks

up into

(w U+fl w'U') = (g~g~ /g~ g ~)'(w'U'+f1 WU) (4g)

= (—I)L+L2 Ll+L'+L2' Ll'— —

L(2L1+1)(2L1'+ 1)/(2I +1)(2L'+ 1)]&(g~/gs, ,)
X(W I.+W, ,I., I

W,n,I.,)
X(Wlal'Ll'I Wa'L'+W2a 'L2'). (45)

where x is independent of the L and depends only on
the W'. The value of x is to a some extent arbitrary,
since it depends from our choice of phases. For the

= (—1)L2+~-~1L(2L+1)/(2L +1)jl particular case W2
—= (10 .0)=—I, which is important for

us, we put x=/= L2, and therefore,
X (LL2 MM2I LL2L1—M—l), (44)

(WaL+1
I
W'n'L') = (—1)L s'

X[(2L+1)gs /(2L'+1)gs ]&( W' 'nL'
+ll WaL); (47)

This equation may be satisfied only if

(WnI.+W2n2L2
I WlalL, )

=(—1)"" '+*I:(2L+1)gw,/(2L+1)gw]'
X (WlalI. 1+W2a2L2

I WnL), (46)
See E. Wigner, Greppeetheork (Friedrich Vieweg and Sohn,

Braunschweig, 1931),p. 204, Eq. (22}.

(UaL+ f I

U'a'L') = (—1)L-'
XL(2L+1)gal /(2L'+1)gll]&(U'a'L'+fl UaL). (49)

2. The Calculation of (I" 'tl'S'+ll }I"u8)

Applying (1) to (3) and owing to (31) and (33), we
have

5 Reference 4, p. 110, Eq. (11).
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TAaLz VIa. {U~x{L)~

U') for U, O'A{31), {40).

(U } XIU')

(20 x 20)
(11 x 21)
(20 x 21)(»x»)
(21 x2 21)
(10 x 30)
(11 x 30)
(20 x 3o)
(21 x 30)
(30 x 30)
(20 x 22)
(21 x 22)
(22 X, 22)

0
0
0

0
0
0
0
0
0
0
0

260

0
0
0
0
0
0—13{11)»
0
0—52
0
0
0

143
0—Nv2

377
13
0
0
0
0
0

3(429)»
45(78)»—25

0
0
0

455—65
1
0
0

12(195)»
38
0
0

—130
0

4(65)»—561
55
0
0—13(5)«

8(143)»—52—38(65)»
12(11)»

0
1
0
49—75
0

(39}«
0

11{42)»
88
0—12(546)»

104

35
0
0
0
0
0
0
30
0

25
21(85)»

0—igi

0
0
0—315

133
0
0
0—4(17)«

—94
0
0
0

0
0
0

245—75
0
0
0
0
0
0—8{665)«—36

M X

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

25 0
0 0
0 0
0 40

TAa~E VI . {U(&{L)(31).

P
D
p
p/
G
H
g/
I
p
E
E'
I.
M
E
0

(10}x}31) (11}y}31)

11{330)»
0
0
0
0

11(85)«

—25(77)»
0
0
0
0
0
0
0
0

(2o}~}31)

0—8(78)»
0
0

5(65)'
0

10(21)»
0
0

Q

0
0
0

(21}x}31)

0—60(39/7) «

—312(5)»
12{?15)«

2024/(7) «

31(1309/3)»
103(5/3)»

0
0

—52(323/23) «

—336(66/23) «

—24{190)«
0
0
0

(3o I x }31)

76(143)»
0—4g(39)»—98(33)»

20(1001)»—20(374)»—44(70)»—57(33)»
18{1122)«—494(19/23}»

73(1122/23)»
0—21(385)»
0
0

(31}y}31)

—6644
4792

4420 336(143)«
336(143)» —902—2684—2024 —48{6545}«—48(6545)» 2680
12661/5 —3366(34)«/5

—3366(34)«/5 17336/5
123506/23 144{21318)»/23

144(21318)«/23 —85096/23—4712—473
1672

220

TABLE VIe. {U~ X{L)~
40).

5
D
F
6
Qf

H
I
Jl
K
L
Ji
M
E
Q

(00}x}40) (10}x}40) (2o}x}4o)

0—88(13)»
0

53(715/27}»
7(15470/27)»

0
34(1045/31)»—12(1785/31) «

0
0
0
0
0

(3o}x}4o)

0
0

90(11)»—16(1001)»
64(442)»—72{462)»—9(21945/31) «

756(85/31) «

—84(33)»
0
0—99(15)»
Q

0

(40}x}40)

—1408—44
1078—16720/9 —34(2618)«/9

—34(2618)»/9 10942/9—704—2453/31 60(74613)«/31
60(74613)«/31 36088/31—132—4268/31 924(1995)»/31
924(1995}»/31 11770/31—1067

528
22

S(S+1)—3n/4

= Ln/(n-2)3 2 P'(S'+ 1)-3(n-1)/4j

X(l" 'v'S'+l~ }l"vS)' (50)

since S' may have only the taro values S—~~ and S+~,
we obtain from (32) and (50) that

Q„.(l" ' 'S '+l~ }l"vS)'—-
= (n+ 25+2)S/n(2S+ 1),

g. (1--~v'S+«+1
~
}l-.S)

= (n —2S)(S+1)/n(2S+1).

Since, for e=v, v' Inay have only the value v —1, we get

(l"—'v —1 S——', +1 i
}l"vS)'=(v+2S+2)S/v(2S+1),

(l" 'v —1 S+«+l
~

}l"vS)'=(v —2S)(S+1)/v(25+1),

and owing to (58) of III,
(l" 'v —1 S—«+li }l"vS)'

= (4l+4 —n —v) (v+2S+2)S/
2n(2l+2 —v) (2S+1),

(l" 'v 1S+'+li }l"v—S)'—
= (4l+4 n v) (v 2—S)(S—+1)/—

2n (2l+ 2 —v) (2S+1);
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TABLE VII. ~((210), UU').

{11)
(20)
(21)

0
0

12(455) &

(2o)

0
—6/7

6(66)&/7

12(455)"
6(66)&/7

3/7, 0

TABLE VIII. x((211), UU').

(20) (21) (3o)

(10} 0
(11) 0
(20} 0
(21) 0
{'30) —20(143) &

0 0 0 —20(143)&

0 0 10(182)& 10
0 —8/7 4(33)~/7 4A

10(182)& 4(33)&/7 4/7, 3 2
10 4' 2 2

e(v+15'l }VS)= (—1)'+s-"+le(VSl }v+1S'),

or, in a more general form,

e(v'5'l }VS)= (—1)'+s-s'+'"'-"'"e(vS
l
}v'5'). (53)

Another partial limitation in the choice of e(v'5'l }V5)
is given by the fact that, according to (20), every value
of 8' corresponds to two couples of e and 5, which are
related by the equations,

&I&I+2~o= ~o+2/1= 2~+ ~ j (54)

it may be shown that from this fact follows the relation

e(» —2 5& I }v& 1 Sz k)e(vz 1 5& 2 I }v&5&)

e(v, —2 S,
l }v,—15„+z)e(v,—1 5,+5l }»5&)

e(vzSz+ 1
l

}vz+ 1 S.+-,')e(vz+ 1 Sz+2 l }vzSz)
(55)

e(vzS +1l }vz —1 5.+-', )e(v, —1 Sz+-,
l }vzSz)

when vz, Sz, vz, and Sz satify (54).
In order to satisfy (53) and (55), the following choice

of phases was made for I=3:

subtracting (52a) from (51) we also get

(l" 'v+1 5——,
' +ll }l"VS)'

= (n v)(4—l+6 v+—25)S/2n(2l+2 v)(—2S+1),
()n &v+ 1 S+z +—l

I
}i+VS)

= (n —v) (4l+4 —v —25) (S+1)/
2n(2l+2 —v) (25+1).

The phases of (l" 'v'S'+ll }l"vS) are independent of
n and will be denoted by e(v'5'l }VS); they are arbitrary
as long as the phases of (W'n'L'+l

l
WnL) are not fixed.

The latter are partially 6xed by (47), and, comparing it
with (61) of III, we have

3. The Calculation of (W'U'+fl WU) and
(U'L'+fl UL)

The coefficients of fractional parentage off and f' are
equal to unity; those of f' were calculated from (9) of
III, and, in the cases where two doublets with the same
L were allowed, (f'('F)f L

l
}f'n L) was put equal to 0

in one of them, since for doublets of f' with U—= (21)
the eigenvalue of 2&.'vanishes according to (26), (27),
and (28).

From the coefFicients of fractional parentage of ),
f' , an-d f', several elements of (W'U'+flWU) and
(U'L'+fl UL) were obtained and are given in Tables
III and IV. These tables were then extended by using
(48), (49), (35), (36), and also (1) as it was pointed out
in Section 2. In the very few cases where these equations
were not sufFicient for the determination of some ele-
ments, additional equations were obtained from (23) of
III by requiring that (f"UVSLll U&'&ll f"U'v'SL') should
vanish unless v=e' and U=U', since the tensor U("
commutes with Q and E.

Owing to the present status of the experimental clas-
sihcation of the spectra of the rare earths, the terms of
lower multiplicity are not yet interesting; we limited
therefore Tables III and IV to those elements which are
of use in the calculation of the coefFicients of fractional
parentage for f' and for the two highest multiplicities of
f', f', and f'.

6. THE SPECTRA OF f"
1. The Choice of the Parameters

In Section 4 of II we considered the coeScients of
Slater's integrals Ii~ as scalar products of tensors in the
three-dimensional space; we shall now show that they
may also be considered as particular components of
tensors in the (2l+1)-dimensional space.

In full analogy to Section 3 of II it is possible to
de6ne as an irreducible tensor of the "type" W in the
(2l+1)-dimensional space each operator whose com-
ponents transform by a (2l+1)-dimensional rotation as
the elements of the basis of the representation 8&r
of hzz+z

In the three-dimensional space u(~) was a tensor,
and its components N, (~) transformed as the spherical
harmonics I'(k&1); in the (2l+1)-dimensional space
u(~) alone is no longer a tensor, but it may be shown
that the quantities (2k+1) tu, &~& transform as the
functions f((20 0)kq) if k is even, and as the func-
tions $((110 0)k&1) if k is odd, i.e., all the quantities
(4t+1)tu &"& or (4t —1)&u &" '& for 1~&tel are together
the components of a sole tensor.

TABLE IX. x((220), UU').

(2o)

e(v'5'I }vS)=( i)s for v odd,

e(v'5'l }VS)= (—1)s'+&"-'&" for v even.
(56)

(20)
(21)
(22)

3/14
3(55)~/7—3(5/28) ~

3(55)&/7—6/7, —3
3/(7)'

—3(5/28) &

3/(7)'
3/2
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TAszx X. x({221},UU'}.

1361

{10)
(11)
(20}
(21}
(30)
(31)

(10)

0
0
0
0

5(143)&

—15(429}&

0
0

14(910/11}&
2{10)&

2(39)~/11

(20)

0
0

2/7—10(6}&/7

9(3/7) &

(21)

0
14(910/11)&—10(6')&/7—1/7, 12/11

5(2/11) &

3%2/11

(30)

5(143)&

2(10)&

v3
5(2/11}&

-1/2
3/2(11) &

(31)

—15(429)&

2(39)~/ii
9(3/7}'
3v2/11
3/2(11}~

1/22

TABLE XI. x((222), UU').

(00) (10) (zo) (30)

0—3(1430)&

—3(42/11) &

—3
1/(11)~

(00) 0 0 0
(10} 0 0 0
(20) 0 0
(30) 0 —3(1430)& —3(42/11) &

(40) —30(143)~ 9(1430)~ 9V2/11

(40)

—30(143)&

9(1430)&

9@2/11
1/(11)&

3/ii

will be proportional to ((20)k+f ~
(10)F), ((20)k

+f~ (30)F) and ((20)k+f~ (21)F), which are given in
Table IV. Taking the values of (3~~C'~'~~3) from (51) of
II and remembering that

f'=Dofk, (62)

where the Df, are the denominators of Table II' of
TAS,* we define for the configurations f",

In the seven-dimensional space the quantities

Q I (2k+1)(2k'+1))tu&&"&ouo&"'&o
Icqk'q'

X ((200)(20)kq, (200) (20)k'q'
~
W UEg) (57)

eo f = u——(n —1)/2,
e& 9f'/7+——f'/42+ f4/7 7+f'/462,
eo = 143f'/42 130f4/7—7+35f'/462,
e =11f'/42+4f'/77 7f'/46—2;

(63)

will transform as &k(IVUEQ), and, in particular, the
quantities

Q(2k+1) u &" & &u. o"& (kkoq q~ kk0—0)

x ((2oo) (2o)k+ (2oo) (2o)k
i
wUo)

the term 9fo/7 was added for convenience in e& without
changing its tensorial properties, since both f and e&

are scalars in the seven-dimensional space.
The general expression of the energy matrices of f"

will be

=go(2k+1)l(u, &'& uo "&)

X ((200) (20)k+ (200) (20)k
i

IVUO) (58)

ego+ @1+'+e2E +e~ (64)

for'o+ f'& +f'&'4+ f''Fo,
will have the tensorial properties of II (WUS).

Since, according to (45) of II, the E' are linear combinations of Slater's parameters,
which are, however, diferent from those adopted em-
pirically in (96) of II:f&( f'L) = (f'LM

~

(C&&" Co&'&)
~
f'LM),

or also

f&,.(f'L) = (3|IC "&~'3)-'(f'LMi (u&&".uo&'&) & f-"LM), (59)

we shall substitute to the f&,. the linear combinations

5;Qo(2k+1) l(3(]C&'&))3) '-f&„.

X ((200) (20)k+ (200)(20)k
i
IV;U;6), (60)

where the X; are convenient normalization factors and

Eo J o
—10F'2—33F4—286F6,

E' = (70F.+231F4+2002Fo)/9,
E'= (F2 3F4+7Fo)/9, —
E'= (5Fo+6F4 91Fo)/3;—

(66)

TABLE XII. c(WW'(220}}.

(111) (210) (211 l (220) (221) (222)(000) (100) (11o) (zoo)

0 0
0 0
1 0
0 1
0 0
Q 0
1
1 1

1 0
0 1

0 0 0
0 1 0
0 0 1
0 0 1
1 1 1

1 2 1
1 1 3
1 0 1
1 2 2
0 1 1

IV & U& =—(000)(00),
Wo Uo=—(400) (40),
IVo Uo=—(220) (22).

1 0 0
0 1 0
1 1 0
1 0
1 1 0
0 2 1
1 2 1
2 1 1
1 3
1 1 1

0 0
0 0
0 0
0 0
0 0
0 1
0 0
1 0
0 1
0 0

Since the only parents of the functions Ik((000) (00)S),
&k((400)(40)S), and P((220)(22)S) are, respectively, the
functions

the coeScients

(000}
(100l
(110)
(200)
{111)
(210)
(211)
(220}
(221)

tk((1oo)(1o)F).. 4((300)(3o)F), and &k((210)(21)F),

((200)(20)k+ (200) (20)k
~
W~UP)

*E. U. Condon and G. H. Shortley, Theory of Atoreic Spectra
(Cambridge University Press, I,ondon, 1935),
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(00)
(10)
(113
(20}
(21)
(30'j
(22}
{31)
{403

TAaLz XIII. c(UU'(22)}.

(00) (10} (11} (20} (21) (30}

0
1
0
1
2
1
0
2
2

(22) (31) (40)

1 0 0
0 1 0
1 1 0
1 1 1
0 2 2
1 2 1
2 1 1

3 2
1 2 2

the formulas for f' assume now the form

O'5 =E'+9E'

2'D =E'+2E'+ 286E' —11E'

2'G =E'+2E' —260E-' —4E'

'I =E"+2E'+ 70E-'+ 7E'

'I'= E'+33E'

'Il =E'

2'H =E'—9E'

(67)

For I&2, the e; are matrices whose order equals the
number of allowed states for a given SI.; the elements
of these matrices may be calculated by means of (1),
but most of the calculations may be avoided by con-
sidering the tensorial properties of the e;.

e1 is a scalar also in the seven-dimensional space; it

is therefore diagonal in the eUSI. scheme, and its
eigenvalues are independent of I.and U. We have from
(67) that

er(f'SL) =qr2+2 —2(sr s2) (68)

and owing to (50) of III and (3) we obtain that, jn

general, the eigenvalues of e1 are

e,(f"vUSL) =9(n v—)/2+v(v+2)/4 S—(S+1) .(69)

The matrices e2 and e3 are particular components of
tensors in the seven-dimensional space. The dependence
of their elements on U and L will be analogous to (28)
of II, but the result is somewhat more complicated,
since, in the decomposition of the external product of
two irreducible representations ef br, some representa-
tion may appear more than once. We now have

(f"vWUSLl e,
l
f"v'W'U'SI)

A (W'O'L+W~U, Sl crWUL); (70)

or, owing to an obvious extension of (46),

(f"vWUSL I e,
l
f"v'W'O'SL)

=Pe Be(WUL+ W'U'L
i PW, U;S)/(2L+1) &. (71)

The number of values which may be assumed by 0. and

P equals the number of times that the representation
ff)w, appears in the decomposition of Ss &f',Ss and
will be denoted by c(WW'W~). A method for calculating
these numbers is given by Weyl. '

TAELE XIVa. (U~ q(L)
~

U') for U, U'W(31), (40).

(U U')

(11 & 11)
(20 q 20)
(10 97 21)
(20 y 21)
(21 p 21)
(11 & 30)
(20 cp 30)
(21 q 30)
(30 q 30)
(00 p 22)
(20 q 22)
(22 y 22)

0

0
0
0
0
0
0
0
1
0

144

—11
0
0
0
0

(»)»
0
0
83
0
0
0

0—11
0

6N—57
0
0
0
0
0

3(429)»
69

0
0
1
0

63
0
0

(195)»—72
0
0
0

0—4
0

(65)»
55
0

2(5)'—(143)»
20
0

4(65)»—148

3
0
0
0—105

(39)»
0—2(42)»—15
0
0
72

0
7
0
0
0
0
3
0

42
0

3(85)'
39

0
0
0
0—14
0
0

-4{17)»—28
0
0
0

0
0
0
0

42
0
0
0
0
0
0—96

M N

0
0
0
0
0
0
0
0
0
0
0
56

TABLE XIVb. (U( vp(L) (31).

P
D
p
pl
G
II
Ql
I
il
E
E'
I.
M

0

{10lq l31} (11 l efvl 31)

{330)»

0
0

{85)»
(77)»

0
0
0
0
0

0

{21lql31)

0
12(273)»—36(5)»—3(715)»
11(7)»—2(1309/3)»—74(5/3)»

0
0—28(323/23)»

42(66/23)»—6{190)»
0
0
0

(30l yl31)

17(143)»
0—16(39)»

24(33)»
4(1001)»
(187/2)»

31(35/2)»
30(33)»

0
4(437)»

0
0—6(385)»
0
0

(31l v I31)

209—200—80(143)»—616
624—80(143)

836—1353/2 —5{6545)»/2—5(6545)»/2 703/2—2662/5 528(34)»/5
528(34)»/5 —88/5
6652/23 96(21318)»/23

96(21318)»/23 —5456/23—464
814—616
352

H. Acyl, The Classical Groups {Princeton University Press, Princeton, New Jersey, 1939), p. 229.
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TAsx.z XIVc. (Ui q (I.) i
40). TABLE XVI. y{f4, ,'U, 4'U').

5
D
F
G
G'
H

p
E
I.
E

(2o I ~ ) 40)

0
11(13)&

0—4(715/27) &

{15470/27}~
0

7(1045/31) &

3(1785/31)&
0
0

(21) &j4O)

0—6(26)&

3(455)~
-»1(»/27) ~

17(238/27}&—12(21)&

0
0—2(119)&

22(105/31}&—84{19/31)&

0

{22(q ~40)

2(2145}&
9(33}&

—4(11/27}&

—17{238/27}&
3(286)&

3(3553/31) &

75(21/31) &

0
4{627/31)&

12(385/31}&—(2530)&

g'(10}
g'(11)

4S(10)

0
6/5

4s {20) 4'(21)

—12(33/5) &

0

4S(30)

0
6

8(11/15)& 0
0 —1/3—8(11/147}& 4/v3—2/21 —4/3—4/3 1/3

TABLE XVII. y(f', ,'U, 4'U').

4'{10) 0 0 0
4'{i1) 0 29/15 0
4'(20) 0 0 6/7
43(21) 8(i1/15) & 0 —8(11/147)&

4'(30) 0 —1/3 4jv3

,2(10)

P(11}
g~(20)
''(21)

TABLE XV. y{f', ,'U, S2U').

(2o)

0
10/7

2(66)&/7

SS(21)

—6(22) &

0
2(66)&/7

2/7

0'{00)

2'{20)

'(20}
4'(21}
'(22)

41(2O)

3(3/175) ~

221/140
8(ii/245}&—(7/80)'

41{21)

0

—4(33/35) &

8(11/245) &

2/7

41(22)

—12(22)&

—{3/5)&

—(7/80)'
0

I/4

TABLE XVIII. y(f, ,4U, &4U'}.

2. The Calculation of el

For the values of W and W' which satisfy (16),
c(WW'(400)) equals unity if W=W' and wi=2, and
vanishes in any other case; it follows that e'2 is diagonal
with respect to v and vanishes for v =25, and also that
for v&25

(f"swUSL
~

e2~ f"swv'SL)
= b(nvS) (WUL+ W U'L

~
(400)(40)S)/(2L+ 1)&. (72)

3'(00)
,4(10)
34(20)

s4(1o)
4(11)

s'(2o)
e'(21)
s'(3o)

&4(1O)

0
0
0—(55/3) &

0

54(11)

0
0
0

0—1/3
0
0—5/3

e4 {20)

0
0

3/(7)'

5{11/147)&
2/%

s4{21)

0
9{11)»
(33/7) &

—(55/3)'
0

5(ii/147)&—4/21—2/3

&4(30)

0
0—2(21)~

0—5/3
2/v3—2/3—1/3

By considerations which are very similar to the
method used in Section 7 of II for calculating the energy
matrices of d" (and in particular for the proof that the
relative positions of the quartets and sextets of d'
are exactly opposed to those of the terms of d' with the
same L), it may be shown that b(niiS) is independent of
n and that for two values of e and 5 which correspond
to the same value of W the b(nsS) differ only in the
sign. We can therefore write

(f-.VSL~ e, ~f'V'SL) =~(WVL~e,
~

WV L), (73)

where the upper sign holds for the values of e and 5
which appear in the first column of Table I, and the
lower sign for the second column.

The actual calculation of (WUL~e2~WU'L) is sim-

pli6ed by the lemma (11):introducing it in (72) we
have that

(WUL~e ~WU'L)=P x,(W, UU')(U~x, (L)~U'), (74)

where x~ is independent of L and x~(L) is inde-
pendent of fV; the maximal number of independent
(U~ x~(L) ~

U') is c(UU'(40)) and is given in Table V.
Not only (WUL

~
e2~ Wv'L), but also

QL2(ULj U2L2+f)(U2~ X,2(L2) ~

Us')
X (Um'L2+ f i

U'L) (75)

is expressible as linear combination of the (U j x„(L)
~

U');
it is therefore convenient to calculate at first the ex-
pressions (75), and then to assemble the results in the
summation (1), where the coeflicients of fractional
parentage have the form (34). It is also possible to
avoid at all the summations (75) for most of the values
of L, after the di6'erent (U~z~(L)

~

U') allowed by
Table V are obtained from few simple x»(L2).

Although almost all the allowed y~ appear in the
expressions (75), the linear combinations (74) are
generally proportional to each other, and it is therefore
possible to express the results by means of one x(L) for
every couple UU', with the sole exception of U= U'
—= (21), where both x,(L) allowed by Table V are
necessary for expressing the different e2(W). The func-
tions (U~x(L)

~

U') are tabulated in Tables VI, the
values of x(W, UU') in Tables VII—XI.

3. The Calculation of e3

Together with e3 it is useful to consider the operator

0= —462& Pp(2k+1) &Ii&'&'

x ((110)(11)0+ (110)(11)k I
(220) (22)s)

=33(U &"'—U""), (76)
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Tmzx XIX.y(P, ,'U, PU').

/{20)

/(22}
P(20)
3'(21)

/(10)
P(21)
62{20}
5'(21)
/{30)
(»)

s~(1O)

0
0

3(33/20) &

43/(30)~

44$

3/m
0

0—5/6
0
0

—5(5/72}&—(13/48) &

(20)

0
3/7—3(33/98) &

0
11/7—11/7(6) &

4/v3

s'(21)

36/(5) &

0—11(6)&/7

3/7(11)&

43/(30) ~

—12/7(6) ~

25/231
29/6(22)&

2/2242

ss(30)

3(5)&/2—4'—3/2'
0—5(5/72) &

4/A
29/6(22) &

1/4(11)&

—36v2

—(39/8) &

0
3/2(22) &

AS—(13/48)~
0

2/22v2
1/4(11)&

1/44

Tax.z XX.y(j' 4'U, 66U'). for n&7 it is

4'(00)
P(20)
4s{20)

ss(11) ss(20)

0
0—2(2/7) &

ss(21)

0—6(12)~

2(33/7) &

a(v+2, v) = (1—v)/(7 —v),
a(v+4, v) = —4/(7 —v),

(84)

and it may be noted that these equations satisfy the
relation

which has the same tensorial properties as e3, from (24)
of III and (27) we have

14—e

P„(f"vUSLIe3+QI f"vU'SL)=0. (85)

Q = 2L(L+ 1)—12G(G2), (77)

and therefore its matrix is diagonal in the Ul. scheme
and has the eigenvalues

co(v, L) = -', L(L+1)—12g(v). (78)

We have from (67) tha, t

The fact that a(n, v) depends on v but not on S
suggests that Eqs. (82) to (85) are connected with the
properties of the symplectic group which leaves in-

variant the form (21), but the investigation of these
properties is beyond the scope of this paper.

For v/ v' we found also

e,(f' 'L) = —3(o,

and since for every e

Q= 66 Q((u. o) .u .(&))—(u. (&) .u .(&&)) (8o)

(f5 2L

(f6 IL
(f6

(fvI 2L

e3

83

e3

83

f' 'L)=(2/5)&(f' PL eg f';-L)
f' 4'L) = (9/5) '(f' o'L e3 f' 4'L),
f' 4L) = (I/6)'(f' 2L

I e3I f' 4L),

f L)= (3/2)&(p LI eal f ~L)

(86)

we obtain that for every term of f" with maximal spin

e (f" "+'I)=—3~(v L) (81)

The values of c(WW'(220)) are given in Table XII'
but the results are much simpler than could be expected
from that table. The calculations show that

(f"vVSL
I
e,+ D

I
f"vV'SL)

= a(n, v)(f'v USLI e3+OI f"vU'SL), (82)

(f' 6L
I
e3+"

I

f' 6L) = (f' 7L
I e3+ "If'7L)=0' (83)

The values of c(UU'(22)) are given in Table XIII,
but the calculations show that also when c(UU'(22)) )1

we can write without any exception

(f"vUSL,
I ee+Ql f"v'O'SL)

=y(f", vSU, v'SU')(Ul p(L) I
U'). (87)

The functions (Ul y(L) I
U') are tabulated in Tables

XIV, the values of y(f", vSU, v'SU') which do not
follow from (81), (82), (83), or (86) are given in Tables
XV—XXIV.

TAal.z XXI. y(f', ,'U, 63U'}.

23(20}
23(22}

«'(10)
4'{12)
4'(20}
4'(21)
4'(30)

ss(10)

0
0
0

{110/3)
0

(6/5)'

11/3(5) $

0

-(5)~/3

s'(20)

0—6N/7
(22/247)&
4{2/3)&

6s(21)

—48(2/5) &

0

46/(25)»
0—22/NS—16/21{11)&

4/3(11) ~

s3(30)

0
VS

0—29/3'
8(2/3) &

5/3%
2/3@2

ss(31 )

—36
3(13/10)&

—8(6)'
(13/60) &

0
2/(22)'—2/(22) ~
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TAsLE XXII.y(tl, „'U, e'U'l. TAsLE XXIV. y(f', 32U, pU').

6'(l0)

0

e~(20)

6/(55)&

4'(20) 0 0 —61/(770) &

4'{21) 0 3(22}& (2/7) &

'(22) —4(33/5) ~ 0 -1/(22) ~

I&(30) 6'(40)

2{42/5) & 6{2/55)& 32{11)
32{20)

8(3/5) & -6/(385) &

—vS 1/(7) &

0 2/{11)&

72(00) q2(l0)

0 0
0 0
0 —(66)&

0—16/(77) &

(6/7)'

r'(30)

2(10)&

—2(6)~

1

r2(40)

0
6(2/77}&

(3/7}&

3'{00)
34{10}
g4 {20)

-'(20) 74(21)

0
0—(5/7)'

0
6(33)~

2(11/7) &

TAsI.E XXIII.y(f7, 34U, 74U'}.

74(22)

—12(11)~
0—1

From (71) and from the orthogonality between the
functions P((00)S), P((40)S), and P((22)S) follow the
relations

2 (2L+&)(~l x(L) I ~)
=&~(2L+&)(Ul ~(L) I ~)=o (gg)

aild
Z~(2L+&)(~l x(L) I

~')(~'I v (I) I ~) =o, (g9)

which were useful for checking Tables VI and XIV.
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The Moment of Inertia and Electric D ipole Moment of CsF from Radiofrequency Spectra*

J. W. TRISCHKA**
Colf4mbiu UrtiversQy, Seto York, Sew York

(Received July 1, 1949)

The electric resonance method of molecular beam spectroscopy was used to obtain spectra resulting from
induced changes in the space-quantization of the rotational state J= 1 of CsF in a homogeneous electric field.
An analysis of the spectra for several values of the Geld intensity and for two different vibrational states gave
the following molecular constants, I.= (151+6)10 ' g cm~, p.=(7.88&0.17)10 '8 e.s.u. , B.= (185&7)10 '
cm ', a,=(1.85&0.19)10 ' cm ', r&=(2.34+0.05)10 ' cm, ore=270+30 cm '. I& is the moment of inertlar
p. is the electric dipole moment, B, and a, are rotational constants, r. is the internuclear distance and co, is
the vibrational constant.

HE molecular beam electric resonance method'
yields spectra in the radiofrequency region re-

sulting from changes in the space-quantization of a
single rotational state of the molecule when the molecule
passes through a homogeneous electric field, upon which
is superposed a weak, transverse, oscillating field. In
previous experiments with CsF determinations were
made of the moment of inertia and electric dipole
moment, ' and of several nuclear-molecular interaction
constants. ' In this paper the results of further experi-
ments with CsF under the high resolution conditions
described in reference 2 are presented. The moment of
inertia and electric dipole moment are redetermined
with considerably greater accuracy and additional
constants are obtained from a study of the vibrational
effects.

The apparatus has been described in detail else-
where. ' '- The spectra were observed by fixing the fre-
quency of the oscillating electric 6eld and varying the

* Publication assisted by the Ernest Kempton Adams Fund for
Physical Research of Columbia University.**Now at Syracuse University, Syracuse, New York.' H. K. Hughes, Phys. Rev. 72, 614 (1947).' J. W. Trischka, Phys. Rev. 74, 718 (1948}.

magnitude of the steady, homogeneous field, a valid
method of observation if the electric field intensity is
suKciently strong, ' as was the case in the present
experiments. Frequency was measured to 1 part in
10,000 with a General Radio Type 624A heterodyne
frequency meter, which had been checked against
standard frequencies broadcast by WWV. The electric
field intensity in the homogeneous field was calculated
from the potential drop across the field and the distance
between the parallel plates forming the field boundaries. '
"8"batteries were used as a voltage supply. A Type K
potentiometer, connected to a calibrated volt box, was
used to measure voltage to 1 part in 5000. The standard
cell of the potentiometer was checked with another cell
recently calibrated at the Bureau of Standards. No
eBects due to thermal e.m. f.'s were observed.

All voltage readings were corrected for the contact
potential difference between the plates of the homo-
geneous field. This quantity was measured by making
a run with the applied field intensity in one direction,

'There is a typographical error in the value of the field gap
reported in reference 2. The distance between the plates was
0.4931&0.0004 cm.


