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be due to fluctuations in the counter supply and the
coincidence circuit, and were subsequently eliminated.
The standard deviation given in Table I for antimony
was calculated from the deviation of the individual sets
from the mean.

The measured values for the total cross section are in
very good agreement (approximately 1 percent) with
the predictions of theory (Table I and Figs. 2 and 3).
Any attempt to obtain a closer check at the present
time would have little meaning inasmuch as the energies
of the gamma-rays are known only to about 1 percent.
The results of this investigation indicate, therefore,
that the Klein-Nishina formula is in agreement with
experiment in the energy range one to three Mev for
aluminum.
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TasBLE 1. Absorption coefficients for aluminum (cm™).
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The calculation of the coefficients of fractional parentage and of the energy matrices for the configurations
fn is simplified very much by the use of the theory of groups. Tables of results are given.

1. INTRODUCTION

T was shown in two previous papers' that the cal-
culations on complex spectra may be simplified by
the introduction of tensor operators and coefficients of
fractional parentage. These coefficients may be cal-
culated by Egs. (9) of IIT and (11) of III, but it
appears that for the configurations f Eqgs. (11) of III
are too cumbersome for practical use.

By considering the meaning and the properties of the
coefficients of fractional parentage from the standpoint
of the theory of groups, we shall see that these cal-
culations may be somewhat simplified and that a very
fortunate and important simplification takes place
exactly for the configurations fm.

In Section 4 we shall classify the states of f» as the
basis of some group representations and in Section 5
we shall find some properties of the coefficients of
fractional parentage which will avoid the use of Egs.
(11) of III; the results of the calculations will be given
in Tables III and IV. The energy matrices will be cal-

1 G. Racah, Phys. Rev. 62, 438 (1942) and 63, 367 (1943)
(which will be referred to as I and III. We refer to these papers
for definitions and notations.

culated in Section 6, and also these calculations will be
simplified by group-theoretical considerations.

Before treating the very argument of this paper, we
shall give in Section 2 a formula which should have its
natural place in Section 5 of III, but was unfortunately
obtained only after the publication of that paper, and
we shall prove in Section 3 a corollary of Schur’s lemma,
which will be very useful in the following calculations.

2. THE MATRIX OF SYMMETRIC SCALAR
OPERATORS

The matrix components between two states of /* of
the scalar operator (30) of III were calculated in (33a)
of III by taking only the last term of the summation
and then multiplying the result by #(n—1). It appears,
on the contrary, more convenient to limit the sum of
(30) of III to the first #—1 electrons and then to
multiply by #/(n—2). Thus, we obtain easily

("aSL|G|I"a/SL)
=[n/(n—2)] ¥ ("aSL{|i™*(aS:iL)ISL)

a1c1’S1L1

X (l"_lquIL; ! G[ l"_lal’lel)

X (e SLLYISL| }ina/SL). (1)
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This formula advantageously replaces (33a) of III,
since it does not need the use of (32) of ITI. Moreover,
if it is used for operators the eigenvalues of which are
already known, it gives a great number of equations
between the coefficients of fractional parentage.
Operators of this type are not only the operator Q
defined by (34) of III and the operator R which will be
defined by (23), but, first of all, the operators

Z<)(li- 1)=[L({LA1)—nl(+1)]/2 (2)
and
X (si8) = 1S(S+1) —3n/8. 3)
3. A LEMMA

The irreducible representations (a|Ua(s)|a’) of a
group g are generally reducible as representations of a
subgroup ) of g; i.e., a constant matrix R4 exists, so
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that for every element ¢ of 1),
ZI(,GBb]RA‘Ila)(a[ Ua@t)|a)(@'|R4|B'B'Y)
= (| Vs®)[b)8(BB)BB), 4)

where the (8] Vp(t)|b’) are the irreducible representa-
tions of f). Instead of the representations U(s), we
shall always consider the equivalent representations
(“reduced with respect to §’),

(BBb|W 4(s)| B'B'b")
=(BBb| R4 U 4(s)R4|B'BY); (5)

it follows from (4) and (5) that for every element ¢ of §),
(BBb|W A(t)|B'B'6)= (6| V5(1)|b)8(BB')3(88"). (6)

The external (Kronecker’s) product of two irre-
ducible representations of g is generally reducible, i.e.,
a constant matrix S exists, so that

(414504 BBb| S| A181B1b1; A2B2B2bs)(81B1b:| W ai(s)| B B1'by)

B1B1b182B2b281’ Bi'b\/ 82 By'ba’

X (,Bngbgl WAz(S) I 62’32’1)2,) (A 1ﬂ1,B1,bl’; Asz’Bz’bz’ ‘ S[ AlA 2a’AIB’B’b,) = (BBb| WA(S) l B'B'b')ﬁ(AA')&(aa'). (7)

Also the external product of two irreducible representa-
tions of §) is generally reducible and a constant matrix T’
exists, so that

Z (BlBg’be| T_l I Blblebz) (b1| VBl(t) I bll)

bibabi’by’
X (ba| VBa(8) | b2")(B1by' Beby' | T | BiB2y'B'Y')
= (6| Vs(®)[8)38(BB)3(vv). (8)
From (8), (6), and (7) we obtain
> (0| Vs(®)[b")(BiByyBb" | T | B1b1Babs)

bibab”

X (A1B81B1b1; A2B2B2bs| S| 414,04 8B'Y)
= 3 (BiByyBb|T-'| B1b1Bsb,)

bbb’
X (A181B1b1; A 2B2Bab2| S| 4142 ABB'Y")
X" Ve ()]0, (9)

and it follows from the lemma of Schur that the con-
stant matrix 771§ is diagonal with respect to B and b
and is independent of b:

>° (B1ByyBb| T!| B1b1B2bs)
b1b2
X (A181B1b1; A2B2Bsbs| S| A1A 20 ABB'Y)

= (418:1B1+A2B:Bs| X ,| € ABB)S(BB)3(bb"). (10)
Multiplying from the left by T" we have, finally,
(A4181B1b1; AsB:Bsbs| S| A1A 20 A BBb)

=3 ,(B1b:1B:b;| T | B1ByyBb)
X (4181B1+A2B:Be| X | €A BB); (1)

this formula will be very useful for practical calcula-
tions, since it expresses the dependence of the matrix
S on by, b2, and b by means of the simpler matrices 7.

4, THE GROUP-THEORETICAL CLASSIFICATION
OF THE TERMS OF [

1. The Spin and the Orbital Momentum

4]
The configuration /" has ( :_2) independent states

which may be characterized by a set of quantum
numbers T'; if the 4/4-2 eigenfunctions ¢(m.m;) of the
individual electrons undergo a linear unimodular trans-
formation,

¢'(mimi)= 3, $(mami)e(moms; m/m/), (12)

the eigenfunctions ¢(I*, T') undergo the linear trans-
formation which is induced by (12) on the ansitym-
metrical tensors of degree » in the (4/42)-dimensional
space; ie., the ¥(/*, T') are the basis of the antisym-
metrical representation {C442}” of the linear uni-
modular group Cs;42. The rows and columns of this
representation are characterized by the quantum
numbers T'.

If we limit €442 to the subgroup c2X¢s;41 defined by

c(msmy; mi'mi")=~v(mems )c(mm,'), (13)

where v and ¢ are two independent linear unimodular
transformations, the representation {4142} breaks up
into irreducible representations of €yX(Cs141, €ach of
which is the external product of a representation Dg
of ¢; and a representation ., s of €a141. It is well known
that the symmetry schemes of Ds and ., s must be
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TasLE 1. Reduction of Bw as representation of Go.

GIULIO RACAH

Table II. Reduction of Gy as representation of ds.

Values of S and
I II

S S v W U

0 0 7/2 7 (000) (00)

1/2 1 3 6 (100) (10)

1 2 52 5 (1100 (10) (11)

0 2 5/2 7 (2000 (20)
3/2 3 2 4 (111)  (00) (10) (20)

1/2 3 2 6 (2100 (11) (20) (21)

1 4 3/2 5 (211) (100 (11) (20) (21) (30)
0 4 3/2 7 (2200 (200 (21) (22)

1725 1 6 (221) (10) (11) (20) (21) (30) (31)
0 6 1/2 7 (222) (00) (10) (20) (30) (40)

dual; since the scheme of Dy has two lines, the lengths
of which are, respectively, (7/2)+S and (r/2)—S, the
scheme of §.,, s will have two columns of these lengths.
The basis of these representations of €2X €241 are the
functions W(*SMsA); the quantum number Mg
characterizes the rows and columns of Dy, the quantum
numbers A those of 9., s.

If we limit €941 to its subgroup composed by the
elements of the representation D, of order 2/+1 of the
three-dimensional rotation group s, the representation
$n, s breaks up into representations Dy of b3, the basis
of which are the functions V(I"aSLM sM ). The
quantum number (or set of quantum numbers) a must
be introduced in order to distinguish the different
equivalent representations of s which may appear in
the reduction of ., s, i.e., the different terms of the
same kind which are allowed in /.

In order to classify in a suitable way these different
terms, it is convenient to perform the passage from
Cor41 to D3 by successive steps.

2. The Seniority Number

As a first step, we limit ¢s41 to the orthogonal sub-
group D41 which leaves invariant the quadratic form

ém(— 1)me(m)p(—m), (14)

and the representations a5 then break up into irre-
ducible representations Bw of da41; since the group

2141 is of rank I, each Bw is characterized by a set W
of / integral numbers

wi 2w 2 - 2w 20, (15)
and since in the symmetry scheme of . s no row has
a length greater than 2, also the w; will not be greater

than 2 and it will be

25y1=...=wu=27 wa+1=-..=wa+b=1’

Watb41= " * =wl=0-

(16)

It is known from the theory of tensors that the
passage from the linear to the metric space (or from
¢, to D,) allows the decomposition of tensors by trace
operation or contraction, i.e., some linear combinations

U 12¢(U) L
(00) 0 S

(10) 6 F

(11 12 PH

(20) 14 DGI

(1) 21 DFGHKL

(30) 2 PFGHIKM

(22) 30 SDGHILN

(31) 32 PDFFGHHIIKKLMNO
(40) 36 SDFGGHITKLLMNQ

of the components of tensors of degree #» transform
themselves as components of tensors of degree n—2;
the classification of the terms of /* according to the
representations of ;.1 will therefore introduce a cor-
respondence between some of them and the terms of
I"2. Tt is easy to see that this correspondence is the
same which was introduced in Section 6, Subsection 2
of ITT i.e., that the separation of the terms with Q0
from those with Q=0 is equivalent to the decomposi-
tion of a tensor by trace operation.

If we subtract (54), III, from (37), III, and add (52),
II1, we get

1
Gij= _%_ Z(Si' sj)_ 2 Zz(4t— 1)(ui(25——1) .u].(2l-—-1)); (17)
1

owing to (38) of III and to (3) we have, for Q, the
expression

l
Q=in(dl+4—n)—S(S+1) - (41— 1)UE=V* (18)
1
and it may be shown that

S = DU = QI D)G(bary),  (19)
1

where G(b2;41) is Casimir’s? operator G for the group
Dary1.

It may also be shown that the numbers @ and b, which
characterize the representations Bw according to (16),
are connected to the spin and the seniority number by
the relations

a=(9/2)—S, b=min(2S, 2+1—v).  (20)

The basis of the representations Bw are the functions
Y("avSLM sMy).

The seniority number could also be introduced before
the spin number, by limiting €442 to its symplectic
subgroup which leaves invariant the bilinear antisym-
metric form

éme Emz(— 1)metmi=igy, (mymy) po(—mq, —my). (21)

2 H. Casimir, Proc. Roy. Acad. Amsterdam 34, 844 (1931).
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Taste Ila. (WU|W'U'+f) for W’=(000), (100), (110), (200), (111), (210).
W'
(000) (100) (110) (200) (111) (210)
w U ©0)  (10) (10) (1 (20) (00) (10) (20) a1 @0 21
(000) (00) 0 1 0 0 (]
(100) (10) 1 0 (1/3)4 (2/3)} 1
(110) (10) 0 1 0 0 0 (3/35)* (2/5)% (18/35)} (2/5)% (3/5)% 0
(11) 0 1 0 0 0 0 —(1/100* —(9/10)} 0 (3/35)%  (32/35)4
(200) (20) 0 1 0 0 0 0 0 0 (2/15)} (9/35)%  (64/105)%
(00) 1 0 0 0 -1 0 0 0 0
(111) (10) 2/3)r —@1/3)* 0 —(1/1y  —(3/8)% (27/56)} 0 0 0
(20) @2/ —(7/9)% 0 0 (1/8)r —(7/8)} 0 0 0
(11) 1 0 1 0 0 0 0 0 0
(210) (20) (7/9)% (2/9)% 1 0 0 0 0 0 0
(21) 0 1 1 0 0 0 0 0 0
(10 (27/35)% —(9/40)t  (1/280)} —(3/5)% (2/5)% 0
(11) 0 (9/10) —(1/10)} 0 (32/35) —(3/35)%
(211) (20) 0 (7/8) (1/8) (1/3)} (2/n —(8/21)}
21) 0 0 1 (3/16)t —(25/112)t (33/56)%
(30) 0 0 1 0 (1/7)% (6/7)}
(20) (8/15)% —(16/35)% (1/105)%
(220) (1) —(1/8)%  (27/56) (11/28)}
(22) 0 0 1
3. The Special Case of f» Tasie ITIb. (WU | 211 U'+f).
It was remarked in Section 6 of III that the seniority v’
number suffices to distinguish the different terms of the W U N (10 (a1 o) Q2n  G0)
same kind in d”, but not for greater /; for /2> 3 we must 00) 1 1 0 0 0 0
therefore seek for a subgroup of D41 which contains (111)  (10) 244 -1 8} 15% 0 0
®,, and it is a very fortunate chance that such a sub- (20) 58327 1 —56¢ 135t 2560% 3080%
group exists exactly for /=3: it is the subgroup of d; (11) 42} _m 0 150 20 0
which leaves invariant the trilinear antisymmetric (210)  (20) 17017} 98 4484  270% —500% 385}
form @) e 0 —7h —60t 2204 385
’ iz (10 727} —5 40t —27} 0 0
S V(333 mmmu(m)ea(m)g(m"),  (22) an 16y 30— e o
mm'm’! (211) (20) 2520:; —245} —280: —867: —512: 616:
where V(abc; aBy) is defined by (17’) of IL. This group 88 gig-# 8 3(5) _%4 _1ga —2;.71*

is the first of the five simple groups which exist besides
the four great classes of simple groups, and is usually
denoted as Go.

If we limit Dy to its subgroup G, the representations
Bw break up into irreducible representations €y of
Gs; since G is of rank 2, the €y are characterized by a
set U= (uyu2) of two integral numbers. If we limit G
to its subgroup composed by the elements of the repre-
sentation Dj of ds, the €y also break up into repre-
sentations D, of D3, the basis of which are the functions
Y(fraUsSLM sM 1), and these functions will form our
definitive system of eigenfunctions of f™.

The law of reduction of Bw as representation of G is
given in Table I, that of €y as representation of ds is
given in Table II; we see from this last table that the
quantum number « must be maintained only for
U=(31) and U= (40).

Also the quantum numbers U could be introduced
in a similar way as the seniority number in Section 6

of III, by classifying the terms of f* according to the

eigenvalues of

Rzz Tij

i<j

(23)

where the scalar operator 7;; is defined by the relation
(fPLM | 75| fPLM)=65(L, 3);
the equations which correspond to (17), (18), and (19)

are

rii=3—2(8:8;)—2g:;— 18(us V- u; V)

(24)

—66(u;®-u;®), (25)
R=1n(n+26)—S(S+1)—20—9U®2—33U(%)2,  (26)
and

QU4 33U = 12G(G); @7)
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TasLe IVa. (UL|U'L'+f) for U'=(00), (10), (11), (20).

uU'L’
(00) (10) (11) (20)
U L S F P H D G 1
(00) S 0 —1 0 0 0 0 0
(10) F 1 1 (3/14)} (11/14)} —(5/27) —(1/3)  —@13/2n8
" P 0 1 0 0 (10/21) —(11/21)} 0
@y H 0 1 0 0 (20/189)} (65/231)%  —(182/297)}
D 0 1 —(27/49  —(22/49)} —4/7 (33/49) 0
0) G 0 1 (33/08)F  —(65/98)} (55/147)%  —(125/530)} (13/33)}
I 0 1 0 i 0 (/1) @/11)}
D —(22/49)} (27/49)} (33/49) 4/7 0
F — (11714} (3/14)} —(55/126) —(8/77)} (91/198)}
a1 G (65/98) (33/98)} (13/882) (104/147) (5/18)}
H 0 { (13/27) (1633 —(10/297)
K 0 1 0 (16/33)¢  —(17/33)}
L 0 1 0 0 1
P (11/21)4 (10/21)? 0
F (143/378)t  —(130/231) (35/594)}
G (1/18)h (2/33%  —(65/198)}
(30) H (26/63) (18/77)4 (35/99)}
I 0 @®/11)} —@3/11)
K 0 17/33)4 (16/33)
M 0 0 1
TaBLE IVb. (UL|(21)L'+f).
LI
U L N D F G H K L
an P 1344-} 2204 — 530 — 585t 0 0 0
i 49284 — 270t 147} — 2074 1078} 14704 — 16664
D 31360} 8910} 8085 3514 — 140143 0 0
(20) G 4312-4 3300 147} 12874 1078 — 1470} 0
I 18304~ 0 —1011} 1485+ 2204 4590} 10098}
D 5390~ 375 1960 1144 19114 0 0
F 154- 40 7 —65 0 0 0
- G 630630~ — 743604 455 226941} — 51744} 705604 0
g 15730~ —2535% 0 10564 31794 7260} 17004
K 2860 0 0 192} 968+ 85t 16154
L 57274 0 0 0 Za0h — 285+ 247}
P 26884 34 — 245 12874 0 0 0
F 112-4 —30) 0 243 7 0 0
G 79207 1375 2450} —858t 16173 1620 0
(30) H 640640~ — 422504 455 3071} 261954} 4904 124950}
1 9152-4 0 12744 2750} 13208 2125} 16838
K 1040~} 0 0 S04 ~136} 6054 95
M 644 0 0 0 0 —15 =7
s 1 0 1 0 0 0 0
D 640~} —130¢ 195} 2074 18 0 0
G 51480~ 185004 65 — 4204 — 23826+ — 44104 0
22) H 6160~ 080 —2450} 1078 132 2454 —1275%
1 18304-4 0 1105 9163} — 2244} — 48024 990}
J2 364} 0 0 0 152} — 147 65
N 167} 0 0 0 0 —5 11}

it may also be shown? that the eigenvalues of G(G») are
2(U) = g(uus) = (uP+usms+u>+5u,+4u.) /12, (28)

Although this method of introducing the quantum
numbers U avoids the explicit use of the theory of

3 The general expression of the eigenvalues of Casimir’s operator
G for every semisimple group will be published elsewhere.

groups, the group-theoretical definition appeared this
time more convenient, since the properties of the coef-
ficients of fractional parentage and of the energy ma-
trices, which are connected with this classification and
will be obtained in the next sections, could be demon-
strated only with the use of the theory of groups.
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TasLe IVe. (UL|(30)L'4-f).
LI
U L N P F G H 1 K M
D 490~ — 544 —91# 1894 —156% 0 0 0
(20) G 5929—% —330% 910¢ 126% — 5944 21843 —1785% 0
I 2202273 0 —245% —1755% —2310% —2106% —4320% —11286%
D 26957% —578% 1092% 700% 325% 0 0 0
F 16944 — 554 0 —560% —715% — 364} 0 0
(1) G 630630~% —83655% —87360% —56784% —3971% 227500% 1713608 0
H 55055~% 0 12740% — 7644} 187113% —7800% —8160% 0
K 16516574 0 0 — 16848} 77% —27625% 79860} —40755%
L 170174 0 0 0 —1785% —1989% —1140% 121034
P 1674 0 3% 0 0 0 0
F 12327} 4294 —77% 2734 —33% —420% 0 0
G 554404 —3465% —95554 7203% 277974 1300% —6120% 0
(30) H 114404 0 —195% —4693% 1232 2600% 27204 0
I 3203274 0 5880% 520% —6160% —1911% 15680% —1881%
K 510510~% 0 0 338134 890124 —216580* 8085% 163020%
M 3808% 0 0 0 0 153% 960% 26954

5. THE CALCULATION OF THE FRACTIONAL
PARENTAGES OF f»

1. General Properties

The eigenfunctions of /", which are the basis of
{Ca42} ™ may be obtained by reduction of the repre-
sentation {C4z+2 } 1N (Cary2)

‘I’(l"a’USLMsML)
=Y V(I a'v'S'L'M s ML) d(mem:)

X (l"‘la'v'S’L'Ms'ML', Imsmy | l"oﬂ)SLMsML); (29)
owing to the particular choice of the scheme which was
made in the preceding section, it follows from the lemma
(11) that the coefficients of this transformation break
up in a product of different factors, each of which
depends only from a smaller number of variables:

(" 1Y'S'L'M ML, lmem, l I"avSLM sM 1)
= (S'3M s'ms|S'ESM s)(L'IM 'm,| L'ILM 1)

X W'/ L'+1| WaL)(I*'S"+1| }1™S).  (30)
Confronting this expression with (10) of III, we see
that the coefficients of fractional parentage are the
product of two factors:

(I (a'v'S’L")ISL| }I"awSL)

=W L'+1| WaL)(I"'S'+1| }I"S); (31)
the relations (58) of III are particular cases of this
result. Owing to the unitary of all our transformations,
the factors of (31) satisfy the orthogonality relations

S @S ||t/ (S| JraS)=1 (32)
and "
‘: (WaLlWo'L'+l) (W a'L'+1| W L)
" =3(WW")é(ac’). (33)

For the particular case /=3, owing to the existence
of the intermediate group G, the coefficients of frac-
tional parentage are the product of three factors:

(f*(’U"'S'L')fSL| } fraUSL)
= (U'a'L'+f] UaL) (W' U'+f|WU)
X (fr1'S"+f] 1/mS), (34)

and the orthogonality relations (33) break up into

o (WU|WU+f) W U'+f|W'U)=6(WW")  (35)

and

zL (UaL|U'o'L'+f)(U'e’'L'+f|U" L)
=5(UU")5(ac). (36)

In order to find also relations of the type (61) of 111,
we consider now the identical representations of D1
which appears in the reduction of BwiXBw,. Such
representations may only appear if W,=W,, and since
the tensors of odd degree are diagonal with respect to W
(see (70) of III), we obtain in the same way as in
Section 6 of II that

(W1a1Li+WaasLs| (00- - -0)0)
=[Q2L+1)/gw, oW1 W2)d(ara2)8(L1Ls), (37)

where gy, is the order of the representation Bw;.
Owing to the value (16") of II of (LLMM’| LL00), we
get also

(WxalLlMl, WzaszMgi W1W2, (00 . 0)00)
=g W{—*(" 1) LM (W W 2) (1)

X O(L1La)d(My, —M,). (38)
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TasLe V. ¢(UU’'(40)).

(00) (10) (11) (20) (21) (30) (22) (31) (40)

8

=
OO0 OoOOO00O
=, ORO00o000
—_-—_, O OO0
NN k= mOOoO
NOWNNN==OO
DO BN s = O
NN == OOO
WURNWRN = =O
WWRIN NN = b e

If, in the general formula,*
f(W1a1L1M1 |R|Wiai'L/'MY)
X (WaasLoMs| R|Waas' Ly’ M)
X(WaLM|R|Wda'L'M')*dR
=gw {(WianLiM 1, WoasLoM o|W W o, WaLM)

X (W1W2, Wa’L'M'] Wlal,.LllMll, Wzaz,Llezl)

X f dR, (39)

we consider the special case W=(00- - -0) and introduce
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(38), we get
f(WlaxLlMll Rl WlallLI’Mll)
X (WzangMz l R' Wzaz'Lz’le)dR
— gW—l(_ 1)L1+Ll’—M1—-M;’6(W1W2)
X 8(a1a2)8(L1Lo)6(M 1, — M)
X e JO(LL LS, ~ M) [(dR, (40)

and confronting this result with the orthogonality
relation®

f (Wros LM | R| Wi L My)*
X (W acsLoM 3| R| Waes' Ly My )dR
— gy (W W) 8(a10)(LaLa) S(M 1M )
X8’ )8(Ly L) s (Mo M) f dR, (41)

we obtain from the well-known corollary of Schwarz’s

inequality that

(WaLM|R|Wo'L'M')*
=(—1)tL-M-M(Wal-M|R|Wa'L'—M'"). (42)

Applying this result to the first and third factor in the
left side of (39), we have

(WlalLlMl, Wzaszle W1Wz, WaLM(Wle, Wa'L'M'l Wloq’Ll'Mll, W2a2/L2/M2’)
= (— 1) LHL=M=M'~Li—Ly'+ Mt MY (g /g w) WaL—M, WaasLoMs|WW e, WiaiLi— M)

X (WWz, W‘aI'Ll'—- Ml,l Woz'L'— M’, H/zaglLQ’le),

and since, owing to (16") of II and (19a) of II,
(LiLsM M| L LsLM)
= (=B ML QLA 1)/ QL+ D]

X(LLy—MM,| LL,L,— M), (44)

we have also

(W1a1L1+ Wzang l WO!L) (WO!,LI | W1011,Lll+ W2Q2’Lz’)

— (_ 1)L+L2—L1+L’+L2’-——L1/
LQLH1)QL/+1)/2L+1)2L'+1) 1 gw/gw,)
X (W'aL-l— Wzangl W1a1L1)

X Wia'Ly |Wo/L'+Waay'Ly').  (45)
This equation may be satisfied only if
(WaL+WsasLy| WiaiLy)
= (=Dt lt e[ 2L+ 1) g,/ (2L1+1)gw
X (WienLi+WaasLs|Wal), (46)

*See E. Wigner, Gruppentheorie (Friedrich Vieweg and Sohn,
Braunschweig, 1931), p. 204, Eq. (22).

(43)

where x is independent of the L and depends only on
the W. The value of x is to a some extent arbitrary,
since it depends from our choice of phases. For the
particular case W,=(10- - -0)=/, which is important for
us, we put x=I=L,, and therefore,

(WaL+!|W'a'L)=(—1)L-¥
XLQL+1)gw/2L'+1)gwH(W'a’L'+1|WaL); (47)
the relation (61) of III is a particular case of this result.
It is easy to see that for /=23 the relation (47) breaks
up into
WUHf|W'U") = (gugw/gugw)}(W'U'+f|WU) (48)
and
(UaL+f|U'&/L))=(— 1)V
XL@L+1)go/ QL'+ 1)guH(U" o L'+f| UaL).
2. The Calculation of (I*~'v’S’+1|}1*vS)

Applying (1) to (3) and owing to (31) and (33), we
have

(49)

5 Reference 4, p. 110, Eq. (11).
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TasLE VIa. (U|x(L)|U’) for U, U’'#(31), (40).
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wixluh S P D F G H 1 K L M N
(20| x]20) 0 0 143 0 —130 0 35 0 0 0 0
(11 x(21) 0 0 0 0 0 1 0 0 0 0 0
(20] x|21) 0 0 —-39v2 0 4(65)% 0 0 0 0 0 0
(21]x1]21) 0 0 377 455 —3561 49 0 —315 245 0 0
(21| x2|21) 0 0 13 —65 55 75 0 133 —75 0 0
(10| x| 30) 0 0 0 1 0 0 0 0 0 0 0
(11 x| 30) 0 —13(11)* 0 0 0 (39)% 0 0 0 0 0
(20| x|30) 0 0 0 0 —13(5)} 0 30 0 0 0 0
(21 x|30) 0 0 0 12(195)* 8(143)% 11(42)% 0 —4(17)% 0 0 0
(30| x|30) 0 —52 0 38 —52 88 25 —94 0 25 0
(20]x|22) 0 0 3(429)% 0 —38(65)} 0 21(85)% 0 0 0 0
(21]x122) 0 0 45(78)% 0 12(11)% —12(546)} 0 0 —8(665)% 0 0
(22]x|22) 260 0 -25 0 94 104 —181 0 —-36 0 40
TasL VIb. (U|x(L)|31).
L (10} x|31) (11]x|31) (20{ x|31) (21]x|31) (30]x|31) Bt]x|3D
P 0 11(330)? 0 0 76(143)% - 6644
D 0 0 —8(78)* —60(39/7)} 0
F 0 0 0 —312(5)* —48(39)} ” 4420 336(143)%
F’ 1 0 0 12(715)% —98(33)% 336(143)* ——902 ]
G 0 0 5(65)% 2024/(7)} 20(1001)*
H 0 11(85)% 0 31(1309/3)% —20(374)} t —2024 —48(6545)*
H' 0 —25(77)% 0 103(5/3)% —44(70)* l —48(6545)} 2680
I 0 0 10(21)} 0 —57(33)% ” —12661/5 —3366(34)%/5
r 0 0 0 0 18(1122)% —3366(34)}/5 17336/5
K 0 0 0 —52(323/23)% —494(19/23)} 123506/23 144(21318)*/23
K’ 0 0 0 —336(66/23)} 73(1122/23)% 144(21318)%/23 —85096/23 l
L 0 0 0 —24(190)% 0 —4712
M 0 0 0 0 —21(385)} —473
N 0 0 0 0 0 1672
0 0 0 0 0 0 220
TasiLe VIc. (U|x(L)|40).
L (00| x|40) (10| x|40) (20| x|40) (30{x]40) (40| x [40)
S 1 0 0 0 —1408
D 0 0 —88(13)% 0 44
F 0 1 0 90(11)% 107
G 0 0 53(715/27)% —16(1001)% —16720/9 —34(2618)*/9“
G 0 0 7(15470/27)% 64(442)* —34(2618)4/9 10942/9
H 0 0 0 —72(462)}
I 0 0 34(1045/31)% —9(21945/31)% —2453/31 60(74613)*/31
r 0 0 —12(1785/31)} 756(85/31)% ’60(74613)*/31 36088/31 ”
K 0 0 0 —84(33)%
L 0 0 0 0 H —4268/31 924(1995)*/31“
r 0 0 0 0 924(1995)%/31 11770/31
M 0 0 0 —99(15)% —106
N 0 0 0 0 528
Q 0 0 0 0 22

S(S+1)—3n/4
=[n/(n= 2] & [S'(S+1)—3(n—1)/4]

X (»w'S'+1| }imS)?;  (50)

since .S may have only the two values S—% and S+3,
we obtain from (32) and (50) that

S oW S—% 41| }imS)?
= (n+25+2)S/n(25+1),

o (In'S+-§ +1] JimS)?
=(n—25)(S+1)/#(25+1).

(51)

Since, for #=1, »" may have only the value v—1, we get

(-l9—1 S—3% +1| }1"0S)2= (v425+2)S/v(25+1),
(=1 S+3F +1] }"0S)*= (v—25)(S+1)/v(25+1),

and owing to (58) of III,

(Irw—1S5—% 41| }i™sS)?
= 4l4+4—n—v)(v+25+2)S/
2n(2l4-2—1)(25+1),
(n—p—1 S+1% +1] }ImS)?
= l4+4—n—2v)(v—25)(S+1)/
2n(2l4+2—2)(2S+1);

(52a)
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TasLe VIL x((210), UU").
(11) (20) Qn
(11) 0 0 12(455)%
(20) 0 —6/7 6(66)%/7
(21) 12(455)* 6(66)4/7 3/7,0
TasLe VIIL x((211), UU").
10) (11) (20) (21) (30)
(10) 0 0 0 0 —20(143)}
(11) 0 0 0 10(182)* 10
(20) 0 0 —8/7  4(33)%/7 43
(21) 0 10(182)F  4(33)i/7 4/7,3 2
(30) —20(143)} 10 4V3 2 2

subtracting (52a) from (51) we also get

(o1 S—1% +1] HmS)?

= (1—1)(d14-6—1-+28)S/2n(21+2— 1) 2S+1),

(941 S+3 +1| HmS)?

=(n—1)@dl+4—2-25)(S+1)/
2n(2l142—2)(2S+1).

The phases of (I""1'S’+!| }1"S) are independent of
n and will be denoted by (»'S’| }4S) ; they are arbitrary
as long as the phases of (W'a’L'+1|WaL) are not fixed.
The latter are partially fixed by (47), and, comparing it
with (61) of III, we have

(52b)

e(+18"[ }uS) = (—1)H55"He(2S | }o4-157),
or, in a more general form,

€S| }0S) = (—1)H+S—8+0"=0/2(35] }2'S’).  (53)

Another partial limitation in the choice of €(v'S’| }2S)
is given by the fact that, according to (20), every value
of W corresponds to two couples of v and S, which are
related by the equations,

1428 =1.4251=2/41; (54)

it may be shown that from this fact follows the relation
(v1—2 S1] jui—1 S1—3e(v1—1 S1—3 ]| }0:S))
e(01—2 51| Jri—1 S14-3)e(v1—1 S1+3| }01S1)

€(02Sot1] Joot+ 1 Sat-)e(va+1 Sa4-3| }2250)

T e(@aS:t1] Jor—1 Set-De(or—1 S+ 3] 2:52)

(55)

when v, Sy, v5, and S, satify (54).
In order to satisfy (53) and (55), the following choice
of phases was made for /=3:

é(ﬂ’S,l }vS): (_ 1)5/
('S’ }uS) = (—1)8+0"—0)2

for v odd,
(56)
for v even.
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3. The Calculation of (W'U’+f| WU) and
(U'L'+£|UL)

The coefficients of fractional parentage of f and f? are
equal to unity; those of f* were calculated from (9) of
II1, and, in the cases where two doublets with the same
L were allowed, (f2(*F)f L|}f*a L) was put equal to 0
in one of them, since for doublets of f* with U=(21)
the eigenvalue of R vanishes according to (26), (27),
and (28).

From the coeflicients of fractional parentage of f,
1%, and f3, several elements of (W/U’'+f|WU) and
(U'L’+f|UL) were obtained and are given in Tables
III and IV. These tables were then extended by using
(48), (49), (35), (36), and also (1) as it was pointed out
in Section 2. In the very few cases where these equations
were not sufficient for the determination of some ele-
ments, additional equations were obtained from (23) of
III by requiring that (f*UsSL||U®||f*U'v'SL’) should
vanish unless v=1" and U=U’, since the tensor U®
commutes with Q and R.

Owing to the present status of the experimental clas-
sification of the spectra of the rare earths, the terms of
lower multiplicity are not yet interesting; we limited
therefore Tables III and IV to those elements which are
of use in the calculation of the coefficients of fractional
parentage for f* and for the two highest multiplicities of

/3% £ and f7.
6. THE SPECTRA OF f»
1. The Choice of the Parameters

In Section 4 of II we considered the coefficients of
Slater’s integrals F* as scalar products of tensors in the
three-dimensional space; we shall now show that they
may also be considered as particular components of
tensors in the (2/4-1)-dimensional space.

In full analogy to Section 3 of II it is possible to
define as an irreducible tensor of the “type” W in the
(214-1)-dimensional space each operator whose com-
ponents transform by a (2/4-1)-dimensional rotation as
the elements of the basis of the representation Bw
Of bzz+1.

In the three-dimensional space u®> was a tensor,
and its components #,*> transformed as the spherical
harmonics YV(kg); in the (2/4-1)-dimensional space
u® alone is no longer a tensor, but it may be shown
that the quantities (2k+1)¥x,* transform as the
functions ¥((20- - -0)kq) if & is even, and as the func-
tions ¢((110- - -0)kq) if k is odd, i.e., all the quantities
(4t4+1)4u, @ or (4t— 1)y, @D for 1<t<! are fogether
the components of a sole tensor.

TasLE IX. x((220), UU’).

(20) (21) (22)
(20) 3/14 3(55)4/7 —3(5/28)}
(1) 3(35)4/7 —6/7, —3 3/(7)}
(22) —3(5/28)} 3/(73 3/2
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Taste X. x((221), UU").
(10) an (20) @1) (30) @31
(10) 0 0 0 0 5(143)} —15(429)3
(11) 0 0 0 14(910/11)# 2(10)* 2(39)4/11
(20) 0 0 2/7 —10(6)Y/7 V3 9(3/7)*
(21) 0 14(910/11)% —10(6)¥/7 —1/7,12/11 5(2/11) 3v2/11
(30) 5(143)% 2(10)} V3 5(2/11)% —1/2 3/2(11)%
31 —15(429)} 2(39)%/11 9(3/7)} 3v2/11 3/2(11)% 1/22
TasLe XI. x((222), UU"). will be proportional to ((20)k+f|(10)F), ((20)k

(00) (10) (20) (30) (40)
(00) 0 0 0 0 —30(143)}
(10) 0 0 0 —3(1430)%  9(1430)*
(20) 0 0 6/11 —3(42/11)  9v2/11
(30) 0 —3(1430)% —3(42/11)* -3 1/(11)}

(40) —30(143)% 9(1430)* 9v2/11 1/(11)} 3/11

In the seven-dimensional space the quantities

> [Q2k41) (2 41) Jruy ® guy 1,

kak’q’

X ((200)(20)kg, (200)(20)k'g'| WUKQ)  (57)

will transform as ¢(WUKQ), and, in particular, the
quantities

2k 1) P s, (kkg— g £ROD)

kq

X ((200)(20)%+(200) (20)k| W U0)
=3 (2k+1)(u; P - uy )

X ((200)(20)%k+ (200)(20)k| WU0) (58)
will have the tensorial properties of ¢(WUS).
Since, according to (45) of II,
FlPL) = (PLM| (C®-Co®) | L),
or also
S(PL)= Q[ICP 3 (LM | (™ -us®) | 2LM),  (39)

we shall substitute to the f; the linear combinations
N L2k 1B C®3) 72,
X ((200)(20)k+(200)(20)k | WU .S),  (60)

where the .V; are convenient normalization factors and

W,U,= (000)(00),
Wl a= (220)(22).

Since the only parents of the functions ¥((000)(00).S),
¥((400)(40)S), and ¥((220)(22)S) are, respectively, the
functions

¥((100)(10)F),
the coefficients

((200)(20)k+(200) (20)k | WU :S)

(61)

¥((300)(30)F), and  ¢((210)(21)F),

+f](30)F) and ((20)k+ f| (21)F), which are given in
Table IV. Taking the values of (3||C*||3) from (51) of
II and remembering that

f¥=Dyfs, (62)

where the D, are the denominators of Table II® of
TAS,* we define for the configurations f7,

eo=f'=n(n—1)/2,

ex=90/ T+ /424 [4/T1-+ 15/462,
e2=14312/42—1301*/77+35/%/462,
es=1112/42++414/77—171*/462;

the term 9/°/7 was added for convenience in e; without
changing its tensorial properties, since both f° and e,
are scalars in the seven-dimensional space.

The general expression of the energy matrices of f»
will be

(63)

eoE'-e B -6, B2 e3 E? (64)

instead of
fOF o+ f2F o+ fAF 4+ fF 6,

the E' are linear combinations of Slater’s parameters,
which are, however, different from those adopted em-
pirically in (96) of II:

(65)

E'=F,—10F,— 33F ,— 286F,
E'=(70F s+ 231F4++2002Fs)/9,
E?=(Fy—3F+7Fg)/9,

E3= (5F2+6F4—91F5)/3 )

(66)

TasLE XII. ¢(WW'(220)).

(000) (100) (110) (200) (111) (210) (211) (220) (221) (222)
©) 0 o0 0 0 0 0 o0 1 0 0
(100) 0 0 0 0 0 1 0 0 1 0
) o0 o 1 o0 0 O0 1 1t 1 0
(200) 0 0 0o 1t o o0 1 1 0 1
(111) o0 0o o o0 1 1 1 1 1 0
(210) o 1 o0 0 1t 2 1 0 2 1
(i) o o 1 1t 1 1 3 1 2 1
(220) 1t 0o 1 1 1 o 1 2 1 1
(221) o 1 1 0 1 2 2 1 3 1
(222) o o o0 1t o0 1 1 1 1 1

* E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, London, 1935),
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TasiE XIIL c(UU’(22)).

(00) (100 (11) (20) (21) (30) (22) (31) (40)
(00) 0 0 0 0 0 0 1 0 0
(10) 0 0 0 0 1 0 0 1 0
(11) 0 0 1 0 0 1 1 1 0
(20) 0 0 0 1 1 1 1 1 1
(21) 0 1 0 1 2 1 0 2 2
(30) 0 0 1 1 1 2 1 2 1
(22) 1 0 1 1 0 1 2 1 1
31) 0 1 1 1 2 2 1 3 2
(40) 0 0 0 1 2 1 1 2 2

the formulas for f? assume now the form

0'S= E'4-9F!
$P=E"+33E}
2 D=E'4-2E'+ 286 E*— 11E?
$F=E (67)
JG= E*+2E'— 260E*— 4E*
2 H=E'—9F?

M = E'4- 2B+ T0E* - TE?

For n>2, the e; are matrices whose order equals the
number of allowed states for a given SL; the elements
of these matrices may be calculated by means of (1),
but most of the calculations may be avoided by con-
sidering the tensorial properties of the e;.

e1 is a scalar also in the seven-dimensional space; it
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is therefore diagonal in the »USL scheme, and its
eigenvalues are independent of L and U. We have from
(67) that

e(PSL) = gut-3—2(s1-s9), (68)

and owing to (50) of III and (3) we obtain that, in
general, the eigenvalues of e, are

ex(fUSL)=9(n—1)/2+(v+2)/4—S(S+1). (69)

The matrices e; and e; are particular components of
tensors in the seven-dimensional space. The dependence
of their elements on U and L will be analogous to (28)
of II, but the result is somewhat more complicated,
since, in the decomposition of the external product of
two irreducible representations of b7, some representa-
tion may appear more than once. We now have

(froWUSL|e;| fo'WU'SL)

=Y o AW U L+W ;US| aWUL); (70)
or, owing to an obvious extension of (46),
(froWUSL|e;i| fo'W'U'SL)
=Y s Bs(WUL+W'U'L|BW;U.S)/2L+1)}.  (71)

The number of values which may be assumed by « and
8 equals the number of times that the representation
Bw; appears in the decomposition of BwXBw+ and
will be denoted by c(WW'W ;). A method for calculating
these numbers is given by Weyl.®

TasLE XIVa. (U|o(L)|U") for U, U'(31), (40).

w u"H S P D F G H 1 K L M N
(11] o|11) 0 —11 0 0 0 3 0 0 0 0 0
(20| ¢{20) 0 0 —11 0 —4 0 7 0 0 0 0
(10| ¢|21) 0 0 0 1 0 0 0 0 0 0 0
(20| ¢|21) 0 0 6v2 0 (65)% 0 0 0 0 0 0
(21| p|21) 0 0 —-57 63 55 —105 0 —14 42 0 0
(11| ¢|30) 0 (11)* 0 0 0 (39)% 0 0 0 0 0
(20| ¢|30) 0 0 0 o 2(5)} 0 3 0 0 0 0
(21| ¢]|30) 0 0 0 (195)% —(143)% —2(42)% 0 —4(17)% 0 0 0
(30| ¢|30) 0 83 0 —72 20 —15 42 —28 0 6 0
(00| ¢|22) 1 0 0 0 0 0 0 0 0 0 0
(20 ¢|22) 0 0 3(429)% 0 4(65)} 0 3(85)% 0 0 0 0
(221 ¢]|22) 144 0 69 0 —148 72 39 0 —96 0 56

TasLE XIVb. (U|e(L)|31).
L (10{¢[31) (11]el31) (21]¢[31) (30| ¢|31) (31]¢]31)
P 0 (330)% 0 17(143)% 209
D 0 0 12(273)% 0
F 1 0 —36(5)% —16(39)* ” 624 —80(143)*”
F 0 0 —3(715)} 24(33)4 —80(143)* —616
G 0 0 11(7)% 4(1001)%
H 0 (85)% —2(1309/3)} (187/2)% ” —1353/2 —5(6545)*/2
H' 0 (77)% —74(5/3)} 31(35/2)} —5(6545)%/2 703/2
I 0 0 0 30(33)* —2662/5 528(34)*/5
r 0 0 0 0 528(34)%/5 —88/5
K 0 0 —28(323/23)} 4(437)% I 6652/23 96(21318)9/23“
K 0 0 42(66/23)} 0 06(21318)}/23  —5456/23
L 0 0 —6(190)* 0 —464
M 0 0 0 —6(385)% 814
N 0 0 0 0 —616
(0] 0 0 0 0 352

8 H. Weyl, The Classical Groups (Princeton University Press, Princeton, New Jersey, 1939), p. 229.
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TasLE XIVc. (U|¢(L)]40).

SPECTRA 1363

TasLe XVL y(f4, 32U, 3U’).

L (20| ¢|40) (21| ¢|40) (22| ¢|40) $(10) S8(11) 3(20) £(21) £(30)
S 0 0 2(2145)} 2(10) 0 0 0 —12(33/5)% 0
D 11(13)} —6(26)* 9(33)} 2(11) 0 6/5 0 0 6
F 0 3(455)% 0
G —4(715/27)} —131(11/27)% —4(11/27)% £4(10) 0 0 0 8(11/15)% 0
G’ (15470/27)% 17(238/27)% —17(238/27)4  3(11) 0 29/15 0 0 —1/3
H 0 —12(21)} 3(286)% 4(20) 0 0 6/7 —8(11/147)  4/V3
I 7(1045/31)% 0 3(3553/31)} #(21) 8(11/15)% 0 —8(11/147)% —-2/21 —4/3
r 3(1785/31)% 0 75(21/31)} £4(30) 0 -1/3 4/V3 —4/3 1/3
K 0 —2(119)} 0
L’ 0 22(1015/31)3 142(62875/3311)*‘

]I\} 8 — 84 09/31) _(.:22540)9) TasLE XVIL y(f4, .U, &U").

4(20) aen a@2)
TasLe XV. y(f%, »U, #U"). 2(00) 0 0 —12(22)}
s2(11) 12(20) 2(21) 21(20) 3(3/175)% —4(33/35)% —(3/5)%
1#(10) 0 0 —6(22)} £(20) 221/140 8(11/245)% —(7/80)%
£(21) 8(11/245)% 2/7 0
2(11) 2 0 0 1(22) —(7/80)% 0 1/4
32(20) 0 10/7 2(66)4/7
32(21) 0 2(66)%/7 2/7
TasLE XVIIL y(f5, AU, 51U").
2. The Calculation of e; #(10) #(11) #(20) #(21) +(30)
For the values of W and W’ which satisfy (16), (o) 0 0 0 0 0

c(WW'(400)) equals unity if W=W’ and w;=2, and (10) 0 0 0 9(11)4 0
vanishes in any other case; it follows that e, is diagonal ~ 3'(20) 0 0 3/ @3/t -2}
with respect to v and vanishes for v=2§, and also that  4(10) 0 0 0 —(55/3) 0
for v>28 s4(11) 0 —-1/3 0 0 —5/3

, e 3 0 5(115//1747)! s 2/2\;33

(oW USLIes| fraWW U'ST) #(30) 0 —53 23 —2/3  —1/3

=b(nuS)(WUL+WU'L|(400)(40)S)/2L+1).  (72)

By considerations which are very similar to the
method used in Section 7 of II for calculating the energy
matrices of d” (and in particular for the proof that the
relative positions of the quartets and sextets of d°
are exactly opposed to those of the terms of d? with the
same L), it may be shown that 8(#vS) is independent of
n and that for two values of v and S which correspond
to the same value of W the b(#uS) differ only in the
sign. We can therefore write

(fnoUSL|es| froU’SL)y= = (WUL|es]| WU'L), (73)

where the upper sign holds for the values of » and S
which appear in the first colimn of Table I, and the
lower sign for the second column.

The actual calculation of (WUL|es| WU'L) is sim-
plified by the lemma (11): introducing it in (72) we
have that

(WUL|ex| WU'L) =35 2,(W, UU") (U | x+(L) | U"), (74)

where x, is independent of L and x,(L) is inde-

pendent of W; the maximal number of independent

(U] x+(L)|U") is ¢(UU’(40)) and is given in Table V.
Not only (WUL|es| WU'L), but also

S L(UL| UL+ f)(Us| x42(L2) | UY)
X (U L4 f|U'L) (75)

is expressible as linear combination of the (U | x,(L)| U’);
it is therefore convenient to calculate at first the ex-
pressions (75), and then to assemble the results in the
summation (1), where the coefficients of fractional
parentage have the form (34). It is also possible to
avoid at all the summations (75) for most of the values
of L, after the different (U|x,(L)|U’) allowed by
Table V are obtained from few simple x,5(Ls).

Although almost all the allowed x, appear in the
expressions (75), the linear combinations (74) are
generally proportional to each other, and it is therefore
possible to express the results by means of one x(L) for
every couple UU’, with the sole exception of U=U"’
=(21), where both x,(L) allowed by Table V are
necessary for expressing the different es(W). The func-
tions (U|x(L)|U’) are tabulated in Tables VI, the
values of x(W, UU’) in Tables VII-XI.

3. The Calculation of e;
Together with e; it is useful to consider the operator
Q=—462} 3, (2k+1)}U®?
X ((110)(11)k+(110)(11)k| (220)(22)S)

=33V~ U®?, (76)
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TasLe XIX. y(f3, U, 2U’).

52(10) s2(11) 52(20) 52(21) 52(30) 52(31)
12(10) 0 0 0 36/(5)t 0 —36v2
2(11) 0 3/V2 0 0 3(5)¥/2 —(39/8)%
#(20) 0 0 3/7 —11(6)}/7 —4V3 0
2(21) 3(33/10)% 0 —3(33/98)% 3/7(11)% —-3/2V2 3/2(22)%
$2(10) 0 0 0 43/(30)} 0 43
2(11) 0 —5/6 0 0 —5(5/72)} —(13/48)%
:2(20) 0 0 11/7 —11/7(6)% 4/V3 0
$2(21) 43/(30)* 0 —11/7(6)} 25/231 29/6(22)* 1/22v2
+2(30) 0 —5(5/72)} 4/V3 29/6(22)} —1/12 1/4(11)%
:2(31) 4V3 —(13/48)% 0 1/22v2 1/4(11)} 1/44
TasLe XX. y(fS, 58U, $U'). for n<71itis
65(11) 65(20) 65(21) a(v+2, v): (1—1))/(7—7)), (84)
500 0 0 60 , a(v+4) 'D) = _4/(7_7))1
5 —
2588; 8 _2(% /) 2(3§}%9 and it may be noted that these equations satisfy the

which has the same tensorial properties as e;; from (24)
of IIT and (27) we have

Q=3L(L+1)—12G(G»), a7

and therefore its matrix is diagonal in the UL scheme
and has the eigenvalues

w(U, L)=3L(L+1)—12¢(U). (78)
We have from (67) that
eo(f23L) = — 3, (79)
and since for every »
Q=66 3 ((u;®-u;0)— (u,®-u,;®)), (80)

i<j
we obtain that for every term of f* with maximal spin
es(fr "HL)=—3w(U, L). (81)

The values of ¢(WW’(220)) are given in Table XII’
but the results are much simpler than could be expected
from that table. The calculations show that

(fmUSL|es+Q| foU’'SL)
=a(n, v)(foUSL|es+Q| f2U'SL), (82)

(/o sL|es+Q] f*sL)=(f"sL|es+ Q| f12L)=0; (83)

relation

14—
S W (foUSL| es+ Q| foU’SL)=0.

v

(85)

The fact that a(n,?) depends on v but not on S
suggests that Egs. (82) to (85) are connected with the
properties of the symplectic group which leaves in-
variant the form (21), but the investigation of these
properties is beyond the scope of this paper.

For v7%9" we found also

(f5 2L es| f5 L) = (2/5)(f* L | es| f* L),
(f8 o' L | es| f8 £LL) = (9/5)¥(f* o'L| e f* £'L),
(f% oL |es] ¢ uL) = (1/6)(f* oL | ] f* 4L),
(7 L\ es] /7 s2L) = (3/2)¥(f® L | es] f° 52L).

The values of ¢(UU’(22)) are given in Table XIII,
but the calculations show that also when ¢(UU’(22))>1
we can write without any exception

(86)

(fUSL|es+Q| f7'U'SL)

=y(f*, oSU, 'SU)(U| o(L)|U’). (87)
The functions (U|¢(L)|U’) are tabulated in Tables
X1V, the values of y(f*, vSU,v'SU’) which do not
follow from (81), (82), (83), or (86) are given in Tables
XV-XXI1V.

TasLE XXI. y(f$, U, &U’).

(11) 63(20)

e(21) 6(30) #(31)

A(10) 0 0 0
S(11) 0 (6/5)} 0
8(10) 0 0 0
3(11) 0 11/3(5)} 0
3(20) 0 0 —6v2/T
2(21) —(110/3) 0 (22/147)
#(30) 0 —(5)¥/3 4(2/3)}

—48(2/5)} 0 —36
0 V3 3(13/10)}
46/(15) 0 —8(6)*
0 —19/3v2 (13/60)%
—22/7V3 8(2/3)* 0
—16/21(11)4 5/3v2 1/(22)4
4/3(11)} 1/3V2 —1/(22)}
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TasLE XXIV. y(f7, U, 2U’).

6! (00) 61(10) ¢1(20) 61(30) 61(40) 72(00) 72(10) 72(20) 712(30) 72(40)
2(20) 4 0 0 6/(55)%  2(42/5)% 6(2/55)% (11 0 0 0 2(10)% 0
2(20) 0 0 —16/(7TT)}  —2(6)  6(2/77)%
£Q20) 0 0 —61/(770)} 8(3/5) —6/(385)F #(21) 0 —(66)4 (6/7) 1 (3/7)%
A(21) 0 32 @/ —V3 1/(7)4 .
A(22) —433/5F 0 —1/(22)} 0 2/(11)3
= From (71) and from the orthogonality between the
functi 00)S), 40)S), and 22).S) follow th
TasLe XXIIL y(f7, U, #0"). rtexlr;i;c;nss ¥((00)S), ¢¥((40)S), and ¥((22)S) follow the
7(20) 74(21) 74(22) ZL(2L+1)(U| X(L)] U)
=2 12L+1)(U] e(L)|U)=0 (88)
s:(?g) 8 P 303 , —120(11)* and
o) _om oo 2 > QL) U x(L) | U)(U'| o(L)| U)=0, (89)

which were useful for checking Tables VI and XIV.
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The Moment of Inertia and Electric Dipole Moment of CsF from Radiofrequency Spectra*

J. W. TriscHKA**
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The electric resonance method of molecular beam spectroscopy was used to obtain spectra resulting from
induced changes in the space-quantization of the rotational state J=1 of CsF in a homogeneous electric field.
An analysis of the spectra for several values of the field intensity and for two different vibrational states gave
the following molecular constants, I.=(15146)107% g cm?, u.=(7.88+0.17)1078 e.s.u., B.=(185+7)103
cm™) a,=(1.8540.19)107% cm™, 7= (2.34=0.05)1078 cm, w.=270=+30 cm™. I, is the moment of inertia,
e is the electric dipole moment, B. and a. are rotational constants, 7. is the internuclear distance and w. is

the vibrational constant.

HE molecular beam electric resonance method!
yields spectra in the radiofrequency region re-
sulting from changes in the space-quantization of a
single rotational state of the molecule when the molecule
passes through a homogeneous electric field, upon which
is superposed a weak, transverse, oscillating field. In
previous experiments with CsF determinations were
made of the moment of inertia and electric dipole
moment,! and of several nuclear-molecular interaction
constants.? In this paper the results of further experi-
ments with CsF under the high resolution conditions
described in reference 2 are presented. The moment of
inertia and electric dipole moment are redetermined
with considerably greater accuracy and additional
constants are obtained from a study of the vibrational
effects.
The apparatus has been described in detail else-
where."? The spectra were observed by fixing the fre-
quency of the oscillating electric field and varying the

* Publication assisted by the Ernest Kempton Adams Fund for
Physical Research of Columbia University.

** Now at Syracuse University, Syracuse, New York.

1 H. K. Hughes, Phys. Rev. 72, 614 (1947).

2 J. W. Trischka, Phys. Rev. 74, 718 (1948).

magnitude of the steady, homogeneous field, a valid
method of observation if the electric field intensity is
sufficiently strong,? as was the case in the present
experiments. Frequency was measured to 1 part in
10,000 with a General Radio Type 624A heterodyne
frequency meter, which had been checked against
standard frequencies broadcast by WWV. The electric
field intensity in the homogeneous field was calculated
from the potential drop across the field and the distance
between the parallel plates forming the field boundaries.?
“B” batteries were used as a voltage supply. A Type K
potentiometer, connected to a calibrated volt box, was
used to measure voltage to 1 part in 5000. The standard
cell of the potentiometer was checked with another cell
recently calibrated at the Bureau of Standards. No
effects due to thermal e.m.f.’s were observed.

All voltage readings were corrected for the contact
potential difference between the plates of the homo-
geneous field. This quantity was measured by making
a run with the applied field intensity in one direction,

3 There is a typographical error in the value of the field gap
reported in reference 2. The distance between the plates was
0.493140.0004 cm.



