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where V is the atomic volume. The values of A calcu-
lated in this way for Zn and Al are given in Table III.
The specidc heat of the superconducting electrons ca1-
culated in this way is 87 times as great as the lattice
specific heat for Al (Debye 8=419i4) and 33 times as
great as that for Zn (Debye 8=320").The accuracy of
this interpretation of C. ,l. is, of course, strongly de-
pendent on the accuracy with which the magnetic
threshold curve follows a parabolic law. Our results for
Al and Zn as well as those obtained elsewhere'" show
that the magnetic threshold curves are not exactly
parabolic and consequently it cannot be excluded that
for Zn and Al further approximation would lead to some
deviation from the T' function for C,.,i.

~ .W. O. Misener, Proc. Roy. Soc. A166, 43 (1938).
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The phenomenological interaction operator between neutrons and electrons is usually assumed to be
—ps B. {ys magnetic moment of the neutron, B magnetic 6eld of the electrons. ) Bloch has pointed out that
other operators are possible. It is shown that the class of operators considered by Bloch is equivalent with
the form —ps. {8+LCM) where M is the spin momentum density of the electrons, H=B-AM and C is
an indeterminate constant. DiGraction by ferromagnetic crystals and magnetic double refraction are cal-
culated for this interaction. Present experimental evidence excludes the value C=O. Experimental methods
for measuring C are discussed.

I. THE GENERALIZED INTERACTION OPERATOR equation

T is commonly assumed that the magnetic interaction
between neutrons and electrons is described by the

interaction Hamiltonian

IIint — Ps ' ~

where p, is the neutron's magnetic moment, 8 the Pauli
spin operator acting on the neutron wave function and 8
the magnetic 6eM. of all electrons. It was pointed out
by Hloch, ' however, that other, more general forms of
the interaction Hamiltonian are possible and that the
decision should be left to experiment. The purpose of
this paper is to examine the experimentally veri6able
consequences of the class of Hamiltonians proposed by
Bloch„ to interpret the existing experimental evidence
in this respect, and to suggest experiments which can
give a definite decision on the interaction operator.

The interaction of neutrons with ferromagnetic
crystals is most likely to supply the desired information.
For the case of thermal neutrons, inelastic scattering is
small, and the neutron can be described by a wave

~ This work was sponsored by ONR.
' F. Sloch, Phys. Rev. 51, 994 (1937).

(V'+ko')f —(2m/k')LV(r)+(H; i)A„jr=0, (2)

where (Hint)A, is the interaction operator, averaged over
the e1ectron wave functions of the ground state, P is the
Pauli spinor of the neutron, k02=2mE/k' in the usual
notation and V(r) the nuclear "quasi-potential. "

The magnetic field of the electrons 8(r) is

X a*go(ri. r,)dri dr, . (3)

In non-relativistic approximation, and in absence of
orbital moments, the expectation value of the current
em= j is

j=cV'XM, M=+ Co*ir;Co g'dr„
a-I J n~l

where 40 is the Pauli spinor and o the Pauli moment
operator. The symbol g' means that the integration is
carried out with respect to the space and spin coor-
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dinates of all but the i'th electron. ' As usual in the
classical theory, one can express 8 by

8=4&M+8,

where H is irrotational;

vga=0,
while

v 8=0.

(5)

where C is an undetermined constant. If a single mag-
netic ion interacts with the incident plane wave of
neutrons, Born's approximation gives for the scattered
amplitude

ra exp(ik, r)
exp(iq r)

r
4'sc~

27rh2

X(V(r) —ps (H+4mCM) jxodr (9)

where yo is the constant spinor of the incident wave

$0= xo exp(ihp'r) q=ho —h

and k is the propagation vector of the scattered wave.
The I'ourier integral

h(q)=)t H(r) exp(iq r)dr

An interaction Hamiltonian more general than (1) is

(H;.a)A, ———ys (H+4nCM),

The scattered amplitude is now, in terms of M:

ere,xp(ikor)
t V(r) exp(iq r)dr

2m b'r

trq(q m)
+4sps

(
—Cm

i xo. (18)
q' )

Equation (18) is identical with Bloch's result. *We have
shown that the interaction Hamiltonian (8) is equiva-
lent to Bloch's assumption. If, in particular, C= j., we
obtain the result derived by Schwinger' from the
Hamiltonian (1) whereas C=O leads to the earlier
formula of Bloch.'

II. INTERACTION WITH A FERROMAGNETIC
LATTICE

The wave equation of the neutron is

2'
(V'+kop) f——[V(r)—ps. (H+4n CM) 7/= 0. (19)

h2

In a periodic lattice, V, H and M are periodic functions
of r and can be represented by I'ourier sums

V(r) =Q v exp(2siA„r), (20)

H(r) =P h. exp(2s. iA„r), (21)

M(r) =P m„exp(2vriA„r), (22)

where A„are the reciprocal lattice vectors, and the
summation index n is understood to mean a triplet of
integers (e~n~l8). The coefficients m„are

can be expressed in terms of M as follows: Let

M(r) exp(iq r)dr=m(q), (12)

1
m. =- t M(r) exp( —2s.iA. r)dr,

cell

(23)

and therefore,

M(r) = m(q) exp( —iq r)dq,

where v is the volume of the unit cell, which is also the
domain of integration. Analogous expressions give e„
and h„.

Substitution of the Fourier sums into Kqs. (5), (6)
and (7) gives

1
H(r) =

~ h(q) exp( —iq r)dq.
(2s)' ~

Substitution of (13) and (14) into (5), (6) and (7) yields

Therefore,

A. . (h.+4~„)=0

A„xh.=o.

4sA. (A. m„)
h„=—,(IWO)

A„'
(26)

q (h+4sm) =0.
whereas ho remains indeterminate. This corresponds to

(16)

Equations (15) and (16) can be solved for h:

h= —4sq(q m)/q'

'H. A. Kramers, &eed4gen der Quaetentkeork {Akademische
Verlagsgesellschaft, Leipzig, 1938), p. 408.

* Bloch defines the constant C as the limit of the integral

1 sds,a
4r 8 r'

as the surface S is contracted to zero; ds is the surface element.
The value of the integral depends on the shape of S.' J. S. Schvringer, Phys. Rev. 51, 544 (1937).

4 F. Bloch, Phys. Rev. 50, 259 (1936).
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the physical fact that the macroscopic mean value of H The approximation in Eq. (31) is justified if
depends on the shape of the magnet, even if it is infi-

nitely large. zo~R' g,cp

%e can now proceed as in the dynamical theory of Ok' —(k+2 A )'o
—q+ &

x-rays. ' The wave function has the form

p= exp(ilr r)P„c exp(2miA„r), . (27)

where the c„are constant spinors. For convenience we

put
2m

w(r) = [V(r)—ps (H+4sCM)]
k2

(s a)(s.a)=a' (36)

Since we are not interested in the nuclear forces, we
consider only the magnetic term in zv„.' Furthermore,
we consider only lattices with a center of symmetry so
that m„=m „.

Because of the anticommutative properties of the
Pauli matrices

=P w„exp(2s. iA„.r), for any vector a.
Equation (35) can be written

where according to Eqs. (20), (21), (22), and (26)

f8~my
' m„'(C'+cos'p„—2C cos'p )

we= &0+4s's'
I

Cma I
~ (29) ( $2 ) ~~0 k 2—(g+27pA )2

k' ( A„'

8ubstitution of the sums (27) and (28) into Eq. (19)
yields:

[ko' —(k+2mA„)']c„—g„w„„c„=0 (30)

(ko2 —k2) co—woco =0 (31)

Vfhen the direction k is far from a Laue reQection, only

co is large, and we have

2'«—
I H„+4m CM, I, (37)

k2

where p„ is the angle between m„and A „.Usually,
HA, is very small as compared to 4mmp. If C is of the
order of one, we can neglect the first term of the second
member. The validity of Eq. (37) depends then on the
numerical value of the dimensionless quantity

with
2m

wo ———[VA,—ps (Ha, +4sCMA, )],
k2

(32)

Sent
mp =n,

k'ko'
(38)

where VA„HA„and MA, =mp are the macroscopic mean
values of the nuclear potential, the Geld intensity and
the magnetization. If the s direction is chosen parallel
to (H~„+4WMA„), the obvious solutions of Eq. (31)
are the two eigen states of the s-component of s, i.e.,
x~ and x ~, respectively. If we caD the corresponding
wave numbers k=2s/'h, k+ and k, respectively, we

have from Eqs. (31) and (32):

2m
k '—k '=—[VA apIHA+4~CMa. I].

k2
(33)

k02 —(lr+2sA „)'
(34)

~ M. von Laue, Eoetgenstrah/ieterferensee (Akademische Ver-
lagsgesellschaf t, Leipzig, 1941).' A. Achieser and J. Pomeranchuk, J. Exper. and Theor. Phys.
U.S.S.R. 18, 415 {1948).

This result, with the special value 6= i, was derived

by Achieser and Pomeranchuk' for neutron wave-

lengths large in comparison to the lattice spacing.
Equation (33) should be valid for unrestricted wave-

lengths, except near-I. aue interference directions.
%e have to justify the approximation made in Eq.

(31). If all quantities but wo are neglected, we obtain
for c„(TWO)

K mCO

and on the manner in which the function

f(N) =
ImoI

(39)

7 For the nuclear quasi-potential the approximation cannot be
justiaed directly. An indirect justi6cation has been given by
M. L. Goldberger and F. Seitz, Phys. Rev. 71, 296 (1947).

Halpern, Hamermesh, and Johnson, Phys. Rev. 59, 981 (1941).

decreases with increasing n.
The Fourier coeflicients m„of M have been estimated

for Fe by Halpern, Hamermesh, and Johnson' and
could be used for the estimate. However, it is easier to
use an argument due to the analogy with the dynamical
theory of x-rays. The quantity n is of the order of
5 i0 for neutrons, the same order as the corresponding
quantity in x-rays. The behavior of the function f(n)
is determined by the microscopic distribution of M(r)
which is close to the electronic density of the mag-
netically unsaturated electrons. ' But in x-ray theory, the
corresponding quantity is the total electronic density
so that the similarity of the two cases is obvious. %e
can conclude from the experimental verification of the
dynamical theory of x-rays that our approximation is
justified.

However, the approximation method breaks down if
C(&i. In this case, the term m„'cos'cp„ in the first
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member of Eq. (37) will predominate, and make the
justjL6cation impossible. But, in this case, the entire
effect of "magnetic birefringence" expressed by Eq.
(33) will be immeasurably small, unless H~„ is made very
large. In this latter case, i.e.„when HA, is of the order
of mo, the above argument holds again.

The case of I.aue interference in the dynamical theory
will not be investigated here since actual ferromagnetic
crystals are so imperfect that they can hardly be
expected to approach the infinite ideal crystal.

IIL EXPERIMENTAL POSSIBILITIES FOR DETER-
MINING BLOCH'S CONSTANT C

A. Laue Interference

For a sufficiently small ferromagnetic crystal, Born's
approximation can be used to calculate the wave scat-
tered from an incident plane wave of the form (10). It
is a mell-known result of the kinematic theory of x-rays
that the scattered "integrated intensity" of an inter-
ference maximum characterized by

is proportional to the square modulus of m xo, where
w is given by (29) and xp ls given by the form (10).
In general, this scattered intensity will depend on the
spin state yo of the incident wave. This results in
polarization eBects for the beam transmitted through a
polycrystalline magnetized plate. These efI'ects have
been theoretically investigated by Halpern, Hamer-
mesh, and others~" for the usual assumption C=1.

The easiest method for measuring C seems to be an
experiment in which the magnetic term in (29) is made
to vanish for all existing Laue maxima. In this case, no
single transmission eGect is observab)e. If a mono-
energetic beam of neutrons has the longest rejecting
wave-length for the lattice (e.g. , twice the spacing of
the 110planes in Fe), then the incident beam is reflected

by 180' by those crystals which are in reQecting posi-
tion, whereas all other crystals act as a transparent
medium. In this case, k, ko and A„have the same
direction. If q is the angle between the incident hearn
and the direction of magnetization M (which is parallel
to all m 's) then the magnetic term in (29) can be
written

4n.pm„'s e(C'+cos'y —2C cos'p), (41)

where e is a unit vector without interest for the fol-

lowing. The magnetic interaction vanishes if

C= 1, p=0; C=O, (p= ~/2. (42)

' O. Halpern and M. H. Johnson, Phys. Rev. 55, 898 (1939}.
' O. Halpern and T. Ho)stein, Phys. Rev. 59, 960 (1941).

It should be possible to measure Bloch's constant C
by determining that angle y between magnetization
and incident beam which leads to the smallest trans-
mission eBect. If the common assumption C=1 is
correct, then the single transmission eGect should
vanish when the magnetization is parallel to the incident
beam.

The observations of Hughes, %allace, and Holtzman"
show a large single transmission eKect for the case
where the magnetization is normal to the incident
beam, i.e., y=s j2. This seems to rule out the possi-
bility C=O. It is true that in these experiments the
wave-length band covered a number of reQections, but
the contribution of the largest lattice spacing (110) is so
large that their results would be dificult to explain if
this reQection did not contribute to the magnetic
interaction.

B. Total ReQection

If the effective nuclear potential VA, is positive, as in
most cases, the birefringence expressed in Eq. (33) can
give rise to two angles of total reQection, as pointed out
by Achieser and Pomeranchuk. ' One obtains in the
usual way for the two glancing angles of total reQection

) 2m'&
eg=

( [ I UA„+y ( HA„+4wCMA„( ]&, (43)
(h'ko2)

corresponding to the total reQection of neutrons with
spin either parallel or antiparallel to the vector
HA„+4mCMA, . In particular, with the usual assumption
C=1, we obtain the expression

(44)

in agreement with Achieser and Pomeranchuk, but for
unrestricted neutron wave-length. The angles 0+ are
independent of the direction of the induction BA„. This
conclusion diGers from opinions expressed by Halpern"
and by Hughes and Surgy. "

Hughes and Surgy" reported observation of two
distinct angles of total reQection, in a case where the
mean magnetic field HA, was very small. This is aa
additional evidence against the assumption C=O.

A precise measurement of 8+ with a field HA, =O
provides a method for measuring Bloch's constant by
using Eq. (43).

"Hughes, Wallace, and Holtzman, Phys. Rev. 73, 1277 (1948).
'~ O. Halpern, Phys. Rev. 75, 343 (1949)."D. J. Hughes, and M. T. Surgy, Phys. Rev. 76, 463 {1949).


