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An analysis is presented of the variation of the intensity of
alphas from Li (d,a}a with angle and energy. This variation has
been observed to have the form 1+2(E)cos'0+B(E)cos'8, just
as in the case of Li'(p, a)a for which an analysis has already been
given. For Li (d,a)a it is again the Bose statistics and consequent
even parity of the alphas that makes analysis possible. It is as-
sumed that Li' has even parity so that only s,d, ~ ~ deuterons are
relevant here, in contrast to Li~(p,a)a in which pJ; ~ protons
are involved. The two analyses differ also in the spin combina-
tions, but are similar in the assumption of only two contributing
states of the compound nucleus, with angular momentum quan-
tum numbers 0 and 2. An expression for the energy variation of
the angular distribution in I is(d,a)a is derived from the dispersion

formula and the treatment with two sharp levels is compared
with that for one sharp and one broad level. The latter is found
simpler and adequate for obtaining agreement with the experi-
mental A(E) and B(E), After recognizing limitations on the
parameters consistent with order-of-magnitude estimates of the
matrix elements involved, it is found that the theoretical formulas
rather naturally give the general form of the experimental results,
including the feature that both A(E) and B(E) rise more slowly
in the Li6(d,a)a reaction than in the Li~(p,a}a reaction as the
bombarding energy is increased from zero, a consequence of the
spherical symmetry of the entering s waves which participate in
the Lie reaction only.

L INTRODUCTION
' 'HE angular distribution of the Li'(d, a)a reaction

has been investigated by Heydenburg, Hudson,
Inglis, and Whitehead. The intensity of the reaction
was observed to vary with angle as 1+A(E)cos'8
+8(E)cos48, as expected from the Bose statistics of
the product alphas. A (E) rises gradually beginning just
below 1 Mev to a broad maximum a little below unity
at a bombarding energy E in the neighborhood of 2

Mev, and falls rapidly to zero at 3.5 Mev. The coeKi.-
cient 8(E) remains zero up to almost 1.5 Mev and rises

to a positive value of about 0.35 at higher energies. The
yield curve observed at right angles to the beam dis-

plays a sharp maximum at 0.75 Mev and there is evi-
dence to the approach to another peak just beyond the
highest bombarding energy employed, 3.75 Mev.

The reaction Li'(d, a)n involves the formation of the
same compound nucleus Be' as is formed in Li'(p, a)a
but the binding energy of a deuteron to Lie is 4.96 Mev
higher than the binding energy of a proton to Li', so
the compound-nucleus is in a more highly excited state
in the Li' reaction than in the Li~ reaction, for com-
parable bombarding energies. The Li' reaction thus
makes it possible to explore a diBerent part of the Be'
spectrum than that explored as yet by the Li' reaction.

It is assumed throughout this work that the parity
of the ground state of Li' is even, since it may be de-
scribed as an alpha plus two p-nucleons. The results
show that the data are compatible with this assumption.

This theoretical interpretation of the Li reaction in-
cludes the effects of entering s and d deuterons. The s
deuterons by themselves give spherical symmetry, and
the penetration of d deuterons is necessary for the
appearance of the asymmetry. The prod@.ct of an s
wave and a d wave introduces a term cos'8 into the
angular. distribution, whereas the square of the d wave
is responsible for the cos'8 term.

~(E,8)-&' 2 (P/&/r) (r/&/Q)/(E —Es

In the paper' on Li'(p, n)a (hereafter referred to as I)
it is shown that the cross section for 6nding an alpha in
a small element of solid angle at 8 is

0(E,8) =P op(E, 8) (2)

for an incident unpolarized beam and unpolarized
target, where

II. CALCULATION OF ANGULAR DISTRIBUTION OF
THE LI'+ DEUTERON REACTION

The calculation is based on the Briet-Wigner dis-
persion formula' extended to several compound states,
which for a system prepared in a well-de6ned initial
state P may be written

I(tSom/ISj „m)/lSj „/X~,]&~(E)ro„P~„(cos8)I '
op(E, 8)=4sX' Q

lr (E—E,+(i/2) I',)

Here, (lSom/lSj, m) is a transformation coeKcient trans-
forming from a representation in which L and 5 are

diagonal to that in which the total angular momentum
is diagonal; DSj„/X&,] transforms from lSj, to the in-

*Now at the University of Pittsburgh, Pittsburgh, Penn-
sylvania. ~ G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936).

~ Heydenburg„Hudson, Inglis, and Whitehead, Phys. Rev. 74, ' D. R. Inglis, Phys. Rev. 74, 21 (1948). (See also C. L. Critch-
405 (1948). Geld and E. Teller, Phys. Rev. 60, 10 (1941}.)
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coming wave function X~„, having angular properties
most nearly matching those of the resonant state r of
the compound nucleus, having j=j,. The product
(X~,/II/r) (r/II/Q) is factored thus: q ~(E)ee~,p~,"(cos8).
Here, Q is the anal state. a~„ is a complex number; qr~(E)
is real and arises from penetration of the nuclear bar-
rier; and I'~„ is the associated Legendre polynomial
introducing the angle factor.

In the reaction I.ie(d, n)a the deuteron spin is s=1,
the target nucleus has angular momentum I=1, and
these combine to give spin states S=O, 1, 2. The ground
state of Li' is assumed to be even, so s, d, g ~ ~ waves
may give the even states of the compound nucleus re-
quired for the reaction. The successively higher values
of l find penetration more and more diQicult, so it will
suKce to consider only l=0 and l=2. The Bose sta-
tistics of the product alphas also demands that the com-
pound state have even angular momentum j,. Kith
l=O, the spin state S=O gives j„=O, and S=2 gives
j„=2. With l= 2, S=2 leads to j,=O, 2, 4, S= 1 to j,= 2
and S=O to j„=2.

We are free to assume such disposition of virtual
levels of the compound nucleus having j„=0, 2, or 4
as may be necessary to account for the observations.
It may be assumed in the interests of simplicity, that
the d wave reacts only with states having j„=0 or j,= 2
without invoking j„=4. It is found unnecessary to
introduce more than two such states to explain the
details of the reaction so far as they have been observed.

Our 6rst set of assumptions about the compound
nucleus is that it has just two states which contribute
appreciably to the reaction in the energy range in-
vestigated, a state numbered r=O having j0——0 and a
half-width F0 much greater than the range of energies
covered by the experiments, so that the energy varia-
tion of its resonance denominator may be neglected,
and a state numbered r=2 having j2——2, and I'2 small
enough to account for the rapid energy variation of the
angular distribution of the product alphas.

With these states, the cross section given by (1), (2),
and (3) is

16m'A2

o(E,8) = (I',/il'o)(e+i) P (lSom/
r22(ee+ l ) S,~ l=0, 2

lSom) [iS0/lo]n(„p(+ Q (lSom/1S2m)
l=Q, 2

X [152/12]niyipe" . (4)

Here we have put

(E—Ee)/(I'e/2) = e,

which then measures the energy deviation from reso-
nance with the state r=2 in units of its half-width.
The summation indices S and m are implicit in the
initial state P. More explicitly we have,

0 = [16m.lt'/I'e'(e-'+1)] Q Q (l20m/l22m)
mg0 l=0, 2

X [122/12]n&4& (P,")-"

+ (r,/ir, )(e+i)(2200/2200)[220/20]~„y,

+ Q (l200/l220) [l22/12]n(, (f (P,'
0, 2

+Q (210m/212m)[212/22]nerve (P. )'

+ (I'%T'p) (e+i) (0000/0000) o!pp@p

+(2000/2020) [202/22]nerve(PP) . (6)

The factor (I'e/il'e) appears here twice since j,=0
arises from both l=0, S=O and l=2, S=2. The sums
over m appearing here are easily evaluated by use of
the values' for (1Som/iSj„m) given in Table I. In order
to simplify the terms in the brackets, we divide through
by a= [202/22]eeee and we put

1,[000/00] „/ir, a= R,yiI,
I,[ 220/20]~„ /ir, a= R,+ iI,

[022/02]ace/a =Re+iIe
[222/22]/[202/22] =Re+ iIe
[212/22]/[202/22] =Re+ iIe.

Here R is the real part and I the imaginary part. In
Table II are listed sums used in the Li' reaction with

j„=O and j„=2. Using Tables I and II with definitions
(7), we 6nd

&r = [16e.lt'@,'/I', -'(e'+ 1)][202/22]ee, ,eRe

X {[(ee+1)+b]+P[e+de+cos'8(ee+ f)]
+$'[(e'+1)g+he+ i+ (j+k'e) cos'8+l cos48] I. (g)
TABLE II. Sums used in Li reaction with j„=0and 2.

2
1
0—1—2

{2000/
2020)

{210m/
212m)

0—(1/2)'
0

(1/2)&
0

{220m/
220m)

0
0

(1/5)~

(220m/
222m)

(2/7) &

—(1/14) &

—(2/7)'—(1/14)~
(2/7)'

(020m/ {0000/
022m) 0000)

TABLE I. Transformation coefIIcients (lSom/lSj, m).
2

Z (l t20m/l 122m)
$$» 'R

lt ls X(lg20m/ls22m) (Psm)s

(l110m/l112m)

)({lg10m/ls12m} {Pgm}s

0 0 5
0 2 (5/14) &(1—3 cos'8)
2 2 5/14(4 —9 cos'8+9 cos48) 15/2(cos~8 —cos48)

4 See E. U. Condon and G. H. Shortley, Theory of Atomic
Spectra (Oxford University Press, New York, 1935), pp. 76-77.
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Tmz.z III. Barrier penetrabilities of the s and d waves.

R/(e~/mc2} 8/m~~ j5 2 3 4 6 8

1.50 yo 0.500 0.820 1.207 1.127 0.887 0.725 0.648
y„0.021 0.046 0.076 0.146 0.225 0.399 0.591
q 0.042 0.056 0.063 0.130 0.254 0.550 0.912

2.25 q o, 0.936
0.076
0.081

1.190 0.904 0.795 0.687 0.626
0.258 0.479 0.734 0.800
0,217 0.530 0.923 1.278

3.00 q0 1.253 1.025 0.851 0.766 0.672
0.187 0.381 0.604 1.126 0.786

0.304 0.589 1.470 1.170

In Eq. (8) we have put

R'= (Ree+Ie')
b= 5 (Ree+ Ie2)/R'
c= (50/7) &(ReRe+IeIe) —(RgIe —I)Re)+ (5)&Ip }/R'
d = —(RgRe+IgIe) —(5)&Re }/R'
e= 3(ARe+IA)+(9/5)'Ro}/R"
f= {{

—30/(14) &](ReRe+IeIe)
+3(R&Ie—I)Re) —3(5)~Io}/R-"

g= (1/5)(RP+Ig')/R'
b= (10/35) &(ReRg+IeIg)/R'
i = {(10/7) (Ree+Iee)+5/4

+ (10/35) &(IeRg —I)Re) }/Re
j= {—(45/14) (Ree+ Iee)+ (15/2) (Ree+ Ie')

—(30/4) —(18/7) &(IeRg —I)Re) }/R2
0'= —(lg/7) &(ReRg+I eIg)/R'

1= {(45/14) (Ree+Iee)
—(15/2) (Re'+Ie')+45/4}/R'. (9)

Also, &=pe/pe is the ratio of the penetration amplitudes
of the incoming d and s waves.

%ith these definitions we can write finally,

a= C(e){1+A (e)cos'8+8(e)cos48] (10)

where

C(e) =s {4Xye{202/22]ace }'D(e)/ree(e'+ 1)
D(e) =a+ (e'+1)+ rp(c+d e)+y'{(e'+ 1)g+he+ i }

A(e) =0L«+/+0(i+ &'e)]/D(e)
8()=W'/D()

Here C(e) represents the yield at 8=90'. It need not
be considered however in a study of the angular dis-
tribution. Its form illustrates our assumption of a
broad state with j„=0 and a sharp state with j„=2,
since e is related to the resonant energy E2 and the
bombarding energy E in center-of-mass coordinates by
Kq. (5).

If there were no entering d wave, q would become
zero and A(e) and 8(e) would vanish, the d wave being
necessary for the appearance of the asymmetry. Also
since qr is more important than y at low energies,
8(e) should rise from zero at a higher energy than A (e).

The explicit form of the parameters is given here so
that a comparison of their values in terms of the in-
tegrals appearing in the theory with the values required
to Gt the data can be made.

III. PENETRABILITY OF THE NUCLEAR
POTENTIAL BARRIER

In both of the lithium two-alpha-reactions the "out-
going" matrix element (r/II/Q) can be assumed to be
independent of the energy in the ranges considered,
since these reactions are highly exoergic. The energy
dependence of 4&(E) arises almost entirely from the
penetration of the incoming wave.

Tabulated values of the amplitudes of the regular
and irregular solutions of the wave equation with
Coulomb field at the edge of the nucleus are not avail-
able as yet for the required values of the parameters
and the %KB approximation method is used for the
calculation of penetrability. In the case Li'+deuteron
we deal with l=0 and l=2. For a given / the barrier
for the Li' case is lower than that for Li' due to the
greater reduced mass of the system Li'+H' and the
larger radius, R, of the top of the barrier one must
assume to allow for the extension of the deuteron. This
brings the barrier height into the region of experimental
energies for I= 0, and also for /= 2 if we take R & 2.8
e'/mc'. y& is put equal to ~8& E~ &e c~ wi—th 8& the
barrier height and C~ defined as L(2M)&/)t] Js"~(U~

E)&dr, the u—sual integral across the barrier. ' The use
of (i+~~)'he/23fr' as the l-barrier in V~(r) keeps the
%KB approximation a good one for energies closer to
the barrier height than the use of /(1+1)il'/2Mr' would
permit. '

Calculations were made for three values of R, the
effective nuclear radius. For R=1.50e'/ cm', Be——2.38
mce and Be 11.51mc Fo——r R=2.25e'/mc Be 1.50mce-—
and 8& 5 56mc'——F.or R=3 00e/m. c', Be 110mc' and-—
B2——3.38nzc'. Values of y~ and y are tabulated in Table
III for the three radii assumed and for some of the
values of E used.

Values for p~(E) are ca,lculated on both sides of the
barrier height and a smooth curve is drawn through
this region. ' The arbitrariness of the curve near the
peak does not greatly aGect our final results because
the nuclear radius chosen avoids the use of this region.

fn Fig. 1, rp= qe/ye is plotted against the energy for

Fro. 1. Ratio of penetrabilities of L=2 wave to 1=0,~vave as func-
tion of incoming energy for several assumed radii in d+Li'.

' H. A. Bethe, Rev. Mod. Phys. 9, 178 (1937).
6 Breit, Wheeler, and Yost, Phys. Rev. 49, 174 (1936).'¹H. Frank and L. A. Young, Phys. Rev. 38, 80 (1931).
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FIG. 2. Theoretical (dashes) and experimental {straight line)
curves for A(E) and B(E) in Li8(d, n}a with 4 =kE. Fro. 3. Theoretical {dashes) and experimental (straight line)

curves for A {E)and B(E) in Li'{d,n)a with 4 = kE', rough choice
of coefIIcients.

e e e c e pes be n temsof the
constants in (9) and E2, P2 and k.

The quickest and best 6t of these expressions to the
experimental curves is obtained by solving simul-
taneously for the seven coeflicients in A(E). A choice
of L in B(E) then normalizes this curve. This has been
done and with the following values for the coeScients
the curves have been plotted in Fig. 2 with the experi-
mental curves.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

%e test the assumption that a broad state with
j„=0 and a sharp state with j„=2 wiH account for the
experimental results, the 6rst peak in the observed
excitation curve at 0.75 Mev being the j„=2 resonance
where ~=0, and the subsequent approach to a second
peak being due to increasing penetrability of the l=2
wave.

Under this assumption we 6rst choose E for Li'+H'
such that l=2 has its maximum penetrability "at the
second peak, " or more speci6cally, at E=4 Mev. This
corresponds to R=1.83e'/mc'. This radius would put
the maximum penetrability for l=0 between the peak
at 0.75 Mev and i Mev and would account for the
broadness of the peak on the high energy side and the
more gradual descent to a higher minimum there. This
value of E. is larger than the corresponding value for
Li"+H' (R=1.5e'/mc') as taken in I, and by Christy
and Latter, ' and is easily accounted for as the distance
out to the center-of-mass of the deuteron when the two
nuclei begin to interact strongly.

Under these assumptions we obtained (10) and (11).
Since the maximum for y occurs in the observed energy
range, we cannot neglect y' in our determination of
A(e) and B(e). This, of course, introduces a large num-
ber of undetermined constants. In order to cut these
parameters to a minimum we set y= kE for the range
considered and we choose k so that this will be a fair
approximation in the region from 1.5 to 3.5 Mev (e.g.,
k=0.3 (Mev) ').

Putting in E= (F2/2) e+E2 ' and y= kE we obtain

8 R. F. Christy and R. Latter, Rev. Mod. Phys. 20, 185 (1948).
9Dehned in laboratory system, which introduces factor (q)'

in C(~). See footnote 12 of I.

H= —0.4577 (Mev)
J= 1.6020 (Mev)-'
K=0 (Mev)'
B=—8.6540 (Mev)

C= 26.584 (Mev)'
D= —33.483 (Mev)'
F= 16.879 (Mev)'
L=0.1375 (Mev)'.

From Fig. 2 it is evident that A(E) is an excellent fit
to experiment, lying everywhere within the experi-
mental uncertainty. B(E), however, is a very poor fit
indeed, and attempts to improve the fit to B(E) with
Eqs. (12) resulted in a much poorer fit for A (E). A more
exact expression for q appears to be necessary in order
to provide an A(E) and B(E) with suff'icient parameters
to obtain a good 6t with experiment everywhere. This
indicates that the results are sensitive to the exact.
assumptions made, thus making our assumptions more
signi6cant.

It is clear from Fig. 1 that y= kE' will represent the
curve for R= 1.83e'/mc' better than @=kE. In fact, if
we take k=0.114 (Mev) —', p=kE' is almost an exact
6t over the whole range 0&E&3.75 Mev. Putting in
kE for y and E= (P2/2) e+E2 in (11) we obtain

A (E)= (A E'+BE'+CE'+ DE')/(E'+ FE'
+GE4+HE'+ JE'+KE+M) (13)

and

B(E)= LE4/(E'+ FE'+GE'+ HE'+ JE'+KE+M)

each assumed radius. The ratio for R=1.83e'/mc' in-
terpolated from the calculated values is shown also in -4(E)=(HE'+ JE'+KE)/(E"+BE'
Fig. 1.The choice of this radius will be discussed below. +CE'+ DE+F) (12)
It is worth noting here that for R=1.83e2/mc', B4 and
=22.36mc' and q4 is negligible compared to yo and q2
in the energy range considered, so that l=4 can be B(E)=LE'/(E'+ BE"+CE'+ DE+F)
omitted in the analysis. wh re th co fFi ients ar ex r si 1 i r
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where
A = (I'2/2) k'

B= (I'P/4) j-E,l',k'/2
C= I'2e/2k
D= (I'22f/4k E—2I'2e/2k)
F= kI'2/2 —2gE2
G= iI'22/4 —hE, I'2/2+g(1'22/4+E22)
H = I'2d /2k
J= 1/k'+ I'22c/4k I'2'—2/2k
E=—2E2/k'
3f=I"2'2(a+1)/4k'+E2'/k'
L= I'Pl/4 (14)

I'zo. 4. Theoretical {dashes) and experimental (straight Hne)
curves for A(E) and B(E) in I.io{d,a)a vrith 4 =4&.

defined in termsof the constants in(9) and E2 I 2 and k.
Before 6xing our coefficients to give the best 6t to

experiment, we inquire whether or not the values of
the coefficients determined from their de6nition in
terms of the matrix elements, etc., in the theoretical
treatment can give us the general form of the experi-
mental curves. The exact values of the matrix elements
cannot be calculated but one may conclude that the
coefficients a, b, c, ~ are probably of the order of mag-
nitude 1, varying perhaps from —,

' to 5, and that some

(a, g) are required to be positive. It is possible that
some of these coeKcients may be zero since they in-
volve di8erences of matrix elements', but the probability
of such an occurrence seems small. Furthermore k—».
I'2—(-,') Mev, and E~—(~) Mev. The "expected" range
of the coefficients in (14) is not suSciently narrow to
yield a curve of any de6nite shape, but with a small
amount of trial adjustment of the coefFicients within
this range a rough fit was easily obtained (Fig. 3). Here

A = —0.008 Mev 31=48.0 (Mev)'
B=0.80 (Mev)' E= —91.0 (Mev)'
C= —2.92 (Mev)' 7=55.0 (Mev)4
D=4.64 (Mev)4 H= —5.98 (Mev)'
1,=0.11 (Mev)' G=2.00 (Mev)'

F= —4.02 Mev. (15)

The appearance of the late and sharp rise of the B(E)
curve is a feature of these equations obtained even
with only rough values of the coeScients which the
previous Eqs. (12) couM not yield while still retaining

(17)

a good fit to A (E).Hence the improved fit of equations
(13) with coefficients (14), obtained by use of the more
nearly correct expression for the penetration ratio
q =kE', rather than p= kE, seems quite signi6cant even
though the improvement involved an increase in the
number of arbitrary parameters. By more careful
curve-6tting still better coefFicients could be obtained,
but as Fig. 3 implies, these would compare favorably
with the ranges of values allowed by order-of-magnitude
estimates in the theory.

It would be gratifying if it were evident from com-
parison of the theoretical expressions for A(E) and
B(E) in the Li'(p, a)n reaction with those of the
Li'(d, n)a reaction, that the A(E) and B(E) curves rise
from zero at a higher energy in the Li' case. This would
correspond to the physical situation that the easy
entrance of s-waves makes the Li'(d, n)n reaction sym-
metric at very low energies and that the p-waves re-
sponsible for the Li reaction at low energies may in-
troduce asymmetry in that reaction. For Li'(p, a)a the
result' comparable to (13) is

A(E) = (CpE +CyE+C2)/(E +CgE+C4)
B(E)= (CsE'+C6E)/(E'+CSE+C4). (16)

For both A(E) and B(E) the form of the numerator
in Li'(d, a)a requires a later rise with energy than the
numerators in Li'(p, cx)n. In (13) the lowest power of E
is 2 in A(E) and 4 in B(E), whereas in (M) the lowest
power of E is 0 in A(E) and 1 in B(E).The qualitative
di6'erences being considered in these reactions appear
in the energy region 0&E&1 Mev, and in this region
one can claim that in effect, the denominators in (13)
and (16) have the same form. Not only are high powers
of E less important here, but (14) and (15) show also
that the coefficients of the high powers of E in the
denominators of (13) are relatively very small. Hence,
the nature of the numerator predominates and the re-
sults give rise somewhat naturally to the later rise in
the angular distribution curves of Li'(d, a)o: observed
experimentally. The observed vanishing of A(E) near
E=O for Li'(p, a)0. is caused' by a pure coincidence in
the placing of the resonant state of the compound
nucleus, and there is no consideration of barrier pene-
tration to oppose a rapid rise.

In order to demonstrate that an improved 6t can be
obtained with (14) by more exact curve-fitting, we
choose values for our parameters by solving simul-
taneously fixing four coefficients by the B(E) experi-
mental curve and the remaining seven by the A(E)
experimental curve. The resulting curves are plotted
in Fig. 4 with the experimental curves for comparison.
The coefFicients are assigned the following values

.4 = —0.2648 (Mev) G= 63.248 (Mev)'
B=1.8966 (Mev)2 II= —164.215 (Mev)'
C= —4.3292 (Mev)' J=232.222 (Mev)4
D=3.2706 (Mev)' E= —171.094 (Mev)'
&= —12.531 (Mev) 1.=0.0110 (Mev)'

M =52.379 (Mev) '.
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The localized hump in the B(E) curve and the dips
in the A(E) curve both derive from the curve fitting
condition [dB(E)/dE]g o., 0. ——Had another condition
been imposed in its place the 6t could be better than
shown. However, the already good 6t obtained and the
uncertainty in the experimental values make further
6t ting seem superfluous.

In this case, with w=kE', both A(E) and B(E) can
be considered good fits. The B(E) curve shows the late
and rapid rise characteristic of this reaction. The ex-
perimental uncertainty in the points is also shown in

Fig. 4, and B(E) is seen to be a good fit, in spite of the
localized hump which is not considered signi6cant.
A(E) again lies everywhere within the experimental
uncertainty in the curve. The values of this set of co-
eflicients are also fairly reasonable from the point of
view discussed in connection with (14) and (15). For
example, C in (17) makes ~e~ =0.9 after I'o from the
observed resonance and k from penetration calculations
have been used, and similarly D makes f= 1. The value
of

~
H (

in (17) is unreasonably large, requi~i~g ( d
~

=30,
but seems to be associated with the unexpected localized
hump in B(E), and this somewhat unlikely value would

probably disappear with more re6ned curve 6tting.

V. ALTERNATIVE SET OF COMPOUND STATES

The assumption investigated above that the angular
distribution is to be attributed to a broad state of the
compound nucleus with j„=0 and a sharp state with
j„=2, seems to be the simplest basis for interpretation
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FIG. 5. Relative cross section for Li'(d, o!)0!at 90'.

of the experimental results. The sharp state j„=2gives
rise to the observed resonance, and the great breadth
of the state with j„=0is naturally associated with the
ease with which such a state is expected to break up
into two alphas.

The 6tting of the data with the above assumptions
does not guarantee their validity, however, and, in
fact, a simple modi6cation of them suggests itself when
one investigates the o(E, 90') curve, Fig. 5. The rise
to a second peak near 3.5 Mev can also be attributed to
a sharp s-state, rather than due only to increasing pene-
trability of d-wave deuterons. Under the assumption of
two sharp states, with j„=0 and j„=2, one can carry
out the calculations, closely paralleling those already
carried out, and one 6nds

Q(p+goo+roo+Soooo+foo )+@(I+ooo +woo+yo2+zooo2)
A (oo, oo) =

(aoo'+boo'+c)+p(d+eoo+foo+goooo+hoo')+P'(i+j oo'+koo'+loo+moo+hoooo)
(18)

B(oo oo) has the same denominator as A(oo oo) but its
numerator is I'oo'(I+ oo').

Here,

oo = (E—Eo)/(I'o/2) and oo ——(E—E&)/(I'o/2) (19)

and the coeKcients a, b, s are de6ned in terms of
matrix elements as in (9) but they are more involved
and more numerous, and interpretation of their roles
becomes quite complex.

Substitution of (19) in (18) and taking q =kE' gives

A (E)= (C)Eo+CoEo+ CoE4+ C4E'+ C'E')/
(E'+ v C'E+CoE4+CoE'+ Co 'E+CiiE+Cn)

B(E) hs, s the same denominator as A(E), but its nu-
merator is CSE'+Cj&'+C~4E,'.

Hence, we arrive at expressions giving one additional
curve-fitting parameter in A(E) and two additional
parameters in B(E).Of course, the number of implicit

parameters has increased and the relation of the ex-
plicit ones to the matrix elements has become more
complex. Also, both numerator and denominator are
now the same order in E.

Since the simpler assumptions 6t the experimental
results, it is clear that these assumptions give more
parameters than are necessary. A 6t in this case would
be less signi6cant than with fewer parameters and its
interpretation would be more involved. These assump-
tions may have to be invoked only if experiments ob-
taining A (E) and B(E) and o (E, 90') are performed for
E&3.75 Mev and the added complexity requires the
greater freedom allowed by (18). If extension of the
experiments demonstrates that a resonance does in fact
exist near 4 Mev, then these assumptions will be the
simplest valid ones. However, we may than have to
consider the small effect of the 5=4 wave, and the
effect of the fact that q may not behave as E' beyond
the peak.


