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Perturbation Methods for Dirac Radial Equations*
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Two methods of calculating perturbation effects for the Dirac electron equation are discussed. The two
radial functions enter symmetrically in the main contributions to the effects calculated. The 6rst method is
related to the method of the Riccati equation for ordinary second-order differential equations but differs from
it through the use of the ratio of the two radial functions rather than that of the logarithmic derivative of one
of them. The second method has some similarity to Milne's phase amplitude method. The methods described
have been helpful in the two preceding papers.

L INTRODUCTION' ~

'HE Schrodinger single particle wave equation can
often be conveniently treated by introducing the

logarithmic derivative of the radial wave function. Per-
turbation calculations can at times be made very
conveniently by this method. Useful results for nuclear
scattering theory'' and for the JWKB method have
been obtained in this manner. The general plan is as
follows. The linear second-order equation is transformed
into a non-linear first-order equation of the Riccati type,
the dependent variable being the logarithmic derivative.
Perturbation calculations can then be made con-
veniently. A special advantage of this method is that an
estimate of the efI'ect of an inaccuracy can be made by
a simple quadrature. For the Dirac equation in a
central field one deals with two simultaneous radial
equations which connect the two radial functions. One of
these functions can be eliminated and there results an
ordinary second-order difFerential equation which can be
dealt with in the same general way as in the Schrodinger
case. Such a procedure has been used' and is feasible. It
has certain disadvantages, however. In the first place
the second-order differential equation for a Dirac radial
function has to be reduced to a standard form by a
transformation. Secondly the physically important ra-
dial functions are lost track of in the manipulations. It is
clear on the other hand that the Rayleigh-Schrodinger
perturbation calculus can be applied to this problem,
that in general the perturbation Hamiltonian can then
be represented by two-row square matrices with
operators for elements and that the two radial functions
enter explicitly in the calculations. It is a disadvantage
of the method of elimination of one of the radial func-
tions that expressions obtainable from it are not simply
related to those of the Rayleigh-Schrodinger pertur-
bation calculus. It will be shown below that equations of

~ Assisted by the Joint Program of the ONR and the AEC.
'The methods described in this paper have been helpful in

Breit, Brown, and Arfken, Phys. Rev. 76, 1299 (1949).
~The methods described in this paper have been helpful in

G. E. Brown and G. B. Arfken, Phys. Rev. 76, 1305 (1949).
s Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939).
4The possibilities of step by step numerical constructions of

perturbation effects by means of' the Riccati equation have been
successfully tried out by M. H. Hull at the suggestion of one of the
writers in connection with the calculation of Coulomb functions.

~ G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 (1947).

a simpler and more practical form can be obtained by a
diII'erent choice of the dependent variable. Two methods
will be described. In the first the variable y =f/g will be
used. Here f, g are the two radial functions in a rather
usual choice of the Dirac matrices which will become
directly obvious through the formulas below. The em-
ployment of the variable y yields convenient results
whenever the change in y caused by the perturbation,
which is here called 6y, does not become too large in the
region of distances r for which the calculation is made.
Experience with a similar equation for the Schrodinger
case' has shown that analytic approximations can be
improved by employing step by step numerical con-
structions for taking into account non-linear terms in
by. The method requires special consideration close to a
node of g, a case which arises often and leads to an
inlnite by. In order to have available a treatment in
which infinities do not occur a second perturbation
method has been worked out and is reported on also.
This is suggested by Milne's phase amplitude method
for the Schrodinger equation. ' The amplitude A is here
r(f'+g') & and the phase y is introduced by tang =f/g
The direct application of Milne's method would bring in
variables diGerent from those used here. The equations
reported on have been found useful in the two preceding
papers. "

The feature which is especially convenient in both
phase amplitude methods is the replacement of oscil-
latory functions by the monotonic p and the smoothly
varying A.

II. THE LOGARITHMIC DERIVATIVE METHOD

The radial equations can be written in the form

ill~'~ll(d/i«)+ll~'~lllx=o, (i=s, 2; J=i, 2) (i)
where x is a column matrix with two rows. The two
matrix elements of p are denoted by

xi=F=rf, x2=G=rg

and the normalization integral is

( '+x ')d =&.
0

' W. E. Milne, Phys. Rev. 35, 863 (1930).
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while
P2L(&~)+ 1j,

2=lie; ll=t 1(«)/»-

The matrices po and e/2 are taken in the representation

)1, 0 y )0, -iy
(0, —1j k1, 0 j

Employing the abbreviation po
——(E+eAo)/c the matrix

elements of IIP;;II are

P11 (po+ 222c)/f2 P12 P21 ~/r
P„=(Po—mc)/i2. (1.6)

The definitions made above describe the connection
with standard theory. Changes in A0 are seen to afFect
only the diagonal elements P~~, P22. For the treatment
of problems in which perturbation efFects of the central
potential are needed it sufIices to consider the special
case of a diagonal perturbation matrix

with c numbers as the perturbing elements.
In the problem of nuclear mass motion' "and in

other questions' there occur more general changes of the
bP;;. The calculations below will be made in part with-
out any restriction on the bP;; and in part with the
specialization of all the bP;, being c numbers. In the
latter case the restrictions bPj.2=bP2~, P;;=P;; will
be used. The functions I', G will be supposed real
throughout.

Extensions of the general formulas to complex P;; are
obvious. The simplicity of reductions in the special case,
just mentioned, seems to be lost, however, when ex-
tensions to complex x; are made. It may be noted that if
the equations are not reducible to real x;, y=F/G con-
tains two functions rather than one and the application
of the methods under discussion is necessarily more in-
volved. It will be recalled that if the P;; are c numbers
then the Hermitian requirement for IIP;;II is

J ZP;; x; x;dr= ZP;,g, ~,dr
0 0

and this can be satisfied for arbitrary x;, x; only if
P;,*=P;;.This copdition reduces to P;;=P;; if all the
quantities are reaL Only symmetric matrices IIP;;II are,

~ P. A. M. Dirac, Proc. Roy. Soc. A117, 6k i (1928}.
8 The method outlined proved useful in unpublished calculations

made by one of the authors (G.B.) on the distortion of the elec-
tronic wave functions produced by the nuclear magnetic moment.

The relation of the other symbols in Eq. (1) to the
scalar potential A0, the electronic charge and mass -e,
8$1S

IIP'»ll = (E+e~o+~c21 2)/&+27 ol 2/r» (1 3)

in the notation of Dirac. v The quantum number k is the
characteristic value of

therefore, considered below. For difFerential operators
P» the requirement of symmetry cannot be used. An
example is the Hermitian operator (2/2)(d/dr).

It will now be supposed that there is available a solu-
tion of Eq. (1) for some set of values of the P;;given by
Eqs. (1.3), (1.6) with a suitable choice of the scalar
potential. The quantities corresponding to this solution
will be referred to as unperturbed quantities. The
unperturbed matrix will be denoted by

IIP"II
=—

lf p' ll. (2)

Zx o(»1P;,)x,'dr =0
0

(3.2)

which gives the Rayleigh-Schrodinger first-order per-
turbation formula for the energy. Account has to be
taken of the fact that, in general, Eq. (3.2) cannot be
satisfied unless E is changed from its unperturbed value.

By integration of Eq. (3.1) one obtains hy to the first
order within an interval r&&r&r2 provided by is known
either at r~ or r2 and provided the nodes of G and G0 do
not interfere with the calculation. Having by to the first
order one also has first-order corrections to F and G
because Eq. (1) gives

d(bG)/dr =$5(P1»y+P, 2)jG+(p11yo+ p12) f'»G (3.3)

so that 8G= G—Go is determined for known 8(P11y+P12)
and G as the solution of an ordinary linear inhomogene-
ous di8erential equation. Similarly bF is determined by
Eq. (1). An iteration procedure for the solution of Eq.

The pert, urbed function satisles Eq. (1) with a
difFerent set of matrix elements. The relation between
the two sets of elements will be taken as in Eq. (1.7).
Introducing

y=F/G, yo=Fo/Go, by= y —
yo (2.1)

with the convention of denoting unperturbed quantities
by subscripts or superscripts 0, one obtains

d Qy)/«=——G '&x'(~P' )x»
+~p,»(Go x x G-'x'x») (22)

Here and below it will be understood that the summa-
tions are performed over both i and j. By straightfor-
ward calculation one can remove first-order efFects from
the right side of the above formula with the result

d(Go'~y)!«= (Go'/G')~x—'QP' )x —Go'p (&y)' (3)

The last term on the right side is of the second order in
the small quantity by. The main effects are contained in
the first term. To the first order of small quantities one
has the approximation

d(Go'&y)/d~ —&x"(~P* )x»' (3 1)

If the boundary conditions are such that G0'by vanishes
at r=0 and r= ~ this formula implies with neglect of
higher order efFects,
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In the latter form there are only known functions
multiplying the unknown by. The second and third
terms are of second order of small quantities. The term
P11(by)' contains the third-order effect (bP») (by)', since
P»=p11+bP». The error committed by neglecting
them can be readily estimated and either an iteration
procedure or a numerical step by step construction is
relatively simple. In this case the knowledge of y gives
G and F directly from Eq. (1) because

dG/Gdr = Pily+ P12 (3 5)

so that G is obtainable by a quadrature.
If the bI';, are diGerential operators it is also possible

to perform reductions similar to that of Eq. (3.4). The
differentiations on the x; which occur in Eq. (3) bring
in either dG/dr which is expressible as P11yG+P12G,
which in turn contains dG/dr, dy/dr, y, G. The relation
thus obt.a,ined can be solved for dG/dr resulting in an
expression for dG/Gdr in y and dy/dr Since dF/F. dr
= dy/ydr+dG/Gdr one is also able to deal with dF/Fdr.
The iteration via F and G discussed in connection with
Eq. (3.3) is thus not a necessary step and is only one of
several possibilities. '

III. THE PHASE-AMPLITUDE METHOD

In order to avoid special considerations at the poles of

y equations somewhat similar to those of the phase
amplitude method of Milne have been worked out. The
defining relations are

E' = F48, G=AG~ s= sing) c=cosrp.

The quantities y and A will be referred to as phase and
amplitude respectively. The equations on 2 and y can
be put in various forms having their respective ad-
vantages. The forms listed below have been decided on
with the view of classifying effects according to diBerent
orders of smallness. The relations between .4 and p can
be put in the form

with

Ad V1/dr= Zu; P;)u,A, —
dA/dr= Zu&;,u; A, —

sy= 8) N2= c

(4.1)

(4.2)

9 Another possibility for treating higher order eA'ects is the
expansion of By in a power series similar to that discussed by Breit,
Thaxton, and Kisenbud {see reference 3) for the Schrodinger
equation. CoeScients of the terms in this series are given by
relations similar to Eqs. (9.1) of reference 3.

(1) is thus possible, in the general case. It has practical
value only if the convergence is rapid.

In the special case of PI~= P2i and of c numbers for
t,he I'„ the consideration of bF and bG can be avoided.
One finds in this case

d(G—p by)/dr = Gp'(y bP»+ 2ybP12+ bP»)
+Gp pll(by) = EXP(bP1j)xj +2Gp(FpbP11

+GpbP12) by+Gp'P»(by)' (3 4)

(4 3)

C= cos2p, S= sin2y (4.7)

and the superscript ' on the Q' indicates t.hat the
quantities Q in Eq. (4.6) take the values Q'. The Q are as
follows

Ql (P22—P11)/» Q2= (P12+P11)/2. (4.8)

The notation
P= (P11+J'.2)/2 (4.9)

will also be used.
The quantities Q,

' are connected with the Q; by an
orthogonal transformation. The latter has coefficients
which are determined by the known value po of y in the
zeroth approximation. The value of yo does not change
during the improvement of values of by. The orthogonal
transformation can be conveniently remembered as
corresponding to a rotation through an angle 2yo.
Removal of first-order terms on the right side of Eq.
(4.4) gives

Ap 'd(A p'b(p)/dr—-
=A 2ZX, (bP;,)x,—Q1'"b2 —Q."bp (5)

which is analogous to Eq. (3). The quantities b2, bp are
of second and third order respectively. The first term on
the right side of Eq. (5) is seen to be the main one for
small perturbations. It does not become infinite at a
node of G and is more convenient in this respect than
the first term on the right side of Eq. (3). Iteration
procedures for Eq. (5) are similar to those for Eq. (3).
The special case which was considered for Eq. (3.4)
leads to the following form

—A d(A. 'b&)/dr=bP+ bQ,
'

+2(bQ2') b1 —Q1'b2 —Q2'bp. (5.1)

On the right side of this equation the quantities Q' are
completely known and the b, are definitely determined
by bq. For a sufficiently small bp the b, can be approxi-
mated by one or two terms of the power series in bI,
which represent them. Iteration or step by step con-
structions are again practical.

It is clear from Eq. (4.1) that in a calculation of bA

the matrix t~R;, ~~ plays a part similar to that of P in the
calculation of bp. Replacement of the P;; by the R;;

Adhering to the previously introduced meaning of
superscript and subscript 0 as well as the symbol b for
difference between perturbed and unperturbed quanti-
ties one finds

—d(bp)/«=A '&x'(bP* )x1
+2Q."b1—Q1'pb2 —Q2"bp, (4.4)

where

b1= b v1, b2= 1 cos—2b1, bp= 2b1 —sin2b1, (4.5)

Q
'=

Q c.+Q s., Q
'= -Q s.~Q.c.,
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changes f' into (P~p —Pp~)/2, Q~ into Qp, Qp into —
Q~,

Q~' into Qp', Qp' into —Q~'. These relations will be
helpful to those who wish to verify the calculations. It is
found that

d(b lnA)/dr=A 'Zy, (bE;,)y,—2Qi"bi —Qp 'bp+Qi 'bp (6)

and for the special case of c numbers for the I';, the
corresponding formula is

d(b lnA)/dr= bQp' —2Q)'bg —Qp'bp+Qg'bp. (6.1)

The calculation of changes in the amplitude A is thus
reducible to the evaluation of simple expressions.
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Theoretical predictions for the effects of nuclear size on hyper-
fine structure are compared with experimental data. New data
show that isotope shifts of ns levels in Tl III are proportional to
P(0} as predicted. The fractional change in nuclear radius for
the addition of two neutrons, determined from s electron shifts
in. Hg II, Tl III, Pb IV, is the same for the three elements.
Kohler's results for Tl II are consistent with those for Tl III when
allowance is made for the mutual screening of the valence electrons.

Corrections for the approximation of the perturbation method
and for screening of inner electrons by the valence electron are
considered and found to be appreciable. Even after applying the
corrections, the fractional change in nuclear radius is smaller than

expected if the charge is uniformly distributed throughout the
nucleus and the volume is proportional to the mass.

Values of nuclear magnetic moments of thallium deduced from
hyperfine structure measurements are compared with those
measured by radiofrequency induction and found to be 15 percent
lower. This discrepancy is removed by the correction for finite
nuclear size assuming either a uniform charge distribution or a
concentration of charge toward the surface of the nucleus. Thus
both the isotope shift and the magnetic effect indicate that the
electron-nuclear potential is consistent with a charge distribution
of this form and that the non-electrical forces between electrons
and nuclei are relatively small.

j,. INTRODUCTION

A RELATIVISTIC theory of the effects of 6nite
nuclear size, with a consequent departure from a

Coulomb field, on the atomic energy levels has been
formulated by Rosenthal and Breit" and Racah. ' The
first two authors have also considered the eGect of a
6nite nucleus on the interaction between electrons and
the nuclear magnetic moment. The 6rst eGect leads to
an isotope shift, and the second to a correction for the
nuclear magnetic moment deduced from hyper6ne
structure splittings. Previous comparisons'&' of the
theory with experimental data on isotope shifts agreed
only as to order of magnitude; in general, the theoretical
and observed values di8ered by a factor of the order of
three. In many of these cases the comparison was
complicated by the mutual screening of several electrons
outside closed shells and by inter-con6guration per-
turbations. It is therefore desirable to consider unper-
turbed levels arising from one-electron con6gurations,
preferably those of penetrating s electrons. Such con-
6gurations occur in the Hg II, Tl III, Pb IV sequence
and their isotope shifts are analyzed here.

The analysis shows that signi6cant information
about electron-nuclear potential 6elds can be obtained

' J. E. Rosenthal and G. Breit, Phys. Rev. 41, 459 (1932}.
~ G. Breit, Phys. Rev. 42, 348 (1932}.' G. Racah, Nature 129, 723 (1932}.' P. Kohler, Zeits. f. Physik 113, 306 (1939}.
~ S. Mrozowski, Phys. Rev. 61, 605 (1942}.

from the absolute magnitude of the shifts. The cor-
rections for the approximations in the perturbation
method and for the screening of electrons in completed
shells are found to be important.

Hitherto the eGect of nuclear radius on the magnetic
interaction between electrons and the nuclear spin has
not been con6rmed experimentally. Evidence confirming
this eGect is presented. Both the isotope shifts and the
magnetic eGect are more consistent with a uniform
charge distribution in the nucleus than with a well-type
potential for the electron-nuclear interaction.

4prRaH'P(0)
688'=

j+p gyp
yp" ' 8 (1)

[1'(2~+1)]' yp

where E. is the Rydberg constant,

an = h'/4pr me' is the radius of the 6rst Bohr orbit for
hydrogen,

Z is the nuclear charge,
f (0) is the square of the non-relativistic atomic wave

function at the center of the nucleus,
p= (1—Z'cP)&,

a = 2m.e /hc is the 6ne structure constant
yp= 2Zrp/an where rp is the radius of the nucleus,

2. ISOTOPE SHIFT

The isotope shift for a single s electron as derived by
Rosenthal and Breit' using the perturbation method is


