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Hence the term value is given as
Wi=W(Q)—urE/2.
(b) M=F—1=J+I-1.
In this case there are two eigenfunctions corresponding to the
two ways M can be formed, i.e.,
M=m;=J+m=1-1,
=my=J—14mi=I,
‘l’1=a1f1(1, myg=J)bI, mi=1— 1)+azfz<], my=J—1)®(I, my),
Vo= —asfi(J, my=J)®(I, m;=I—1)+a\fo(J, my=T —1)®(I, my).

The coefficients a; and @ are obtained from Condon and Shortley
and are
a1=(2J/2J+3)},

The determinant to be solved is

W(Q)+ (¥ | He| ¥)—W
(V| Hg| 1)

a;=(3/2J+43)%.

(¥, |Hg| W) -0
W(Q2)+ (¥ | Hg| ¥)—W |~ =

where

3
=2 = — 7|2
(Wi |Hg| W) 2]+3I(J,m1 J|He|J, my=T)|
2J

= =J— =J=12
+<2]+3)(J,m1 J—1|Hg|J,m;=T—1)|
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similarly

»

3(J—-1)+2J2 ]
J(J+1)(27+3)

6J)}
R FToms el

(‘I’z!HE[‘I’z>=—y.EK[

The solution of the determinant is given by

W~ WQI+W(Q)+atd)
= 2

+{L(W(Q)+W(Q2)+ae+d)*
—4(W Q)W (Q2)+ab+aW (Q2)+bW (Q1) —c* 4.

In the specific case of AsF3(—egQ=—235 Mc) introducing num-
bers we obtain

Av=Wa—W,=[—0.4+ uE/4) 1£[((25.3+uE) /4)?
—2.8uE— (uE/18)2+176.070.

Figure 1 shows Av as a function of pE in megacycles/sec.
For M =F—2 the equation is a cubic and can be solved in a
similar fashion.
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The problem is considered from the point of view of a Hamiltonian which is relativistic to order */¢c%. The
discussion results in a clearer separation of the non-relativistic correction factor 1—3m/M from relativistic
effects than in previous treatments. The Hamiltonian applies through the interior as well as the exterior of
the proton. By means of it the potential energy can be rounded off at small distances without contradiction to
relativity, within the order #2/c%. A transformation involving a new effective charge allows the calculation of
part of the effect without approximation and it becomes clear that higher order effects are not separable from
the so far arbitrary assumptions concerning the proton’s radius. Relativistic corrections to the fine structure
are reconsidered by means of this transformation and the effect of the acceleration of the proton on the

hyperfine structure is discussed.

I. INTRODUCTION

HE effect under discussion has been treated by

Breit and Meyerott! with the conclusion that the
important correction factor is 1—3m/M where the
mathematical notation is explained at the end of the
present section. Some of the reservations which have to
be made in connection with higher order terms have
been brought out by the same authors.? The present
note has two main objects: (a) To simplify the considera-
tions so as to make the conclusion less dependent on the
manipulative details of the previous work, (b) to im-
prove the logical consistency of the reasoning by
employing a Hamiltonian which is relativistically in-
variant to order /¢ not only outside the proton

* Assisted by the Joint Program of the ONR and AEC.
1 G. Breit and R. E. Meyerott, Phys. Rev. 72, 1023 (1947).
2 G. Breit and R. E. Meyerott, Phys. Rev. 75, 1447 (1948).

radius but through the whole range of values of the
relative distance » between the particles.

The main step in the simplification consists in a trans-
formation which appears under Egs. (7.6), (7.6") below.
The equations which are being transformed are those
listed in Eq. (7.3) with neglect of the terms in (%/2Mc)
which are present in Eq. (7.5). The latter can be taken
account of by a perturbation calculation. The trans-
formation brings the equations back to the form of
radial equations for a Dirac electron in a Coulomb field.
It involves changes in the linear scale, the charge and
the ratio of the radial functions. The effect of the trans-
formation is to change the hyperfine structure in the
ratio given by Eq. (9.6) and contains all the terms of
interest for comparison with experiment.

Improvement in logical consistency is obtained by
employing one of the relativistically invariant forms of
the Hamiltonian outside the proton radius. This form
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agrees with the equation which follows from quantum
electrodynamics for two charged particles.® Inside the
proton radius the Coulomb potential is replaced by the
function J. In order to avoid a logical failure of this
scheme care must be taken to have J reasonably small
inside the proton radius so as to keep the electron from
moving too fast. This feature of the present note is
admittedly arbitrary in its quantitative aspects for the
numerical value of the proton radius and regarding the
way in which the function J is rounded off. Qualitatively,
however, there would appear to be little doubt con-
cerning the inapplicability of the Coulomb potential
¢*/r inside the proton radius. The Hamiltonian used here
is believed therefore to approximate reality better than
a Coulomb potential and the logical consistency is im-
proved by the inclusion of correction terms for the
relative velocity which appear in terms of the function J
and its derivatives.

The conclusion reached is in agreement with previous
work :! the correction to the hyperfine structure caused
by the finiteness of the proton’s mass is represented by
the factor 1—3m/M within terms which do not involve
the products o?m/M. The effect of the part of the
proton’s magnetic moment which is not a consequence
of Dirac’s equation is not explicitly treated in this note.
The considerations mentioned toward the end of refer-
ence 1 apply to this contribution and the changes in
the radial functions which are discussed here bring about
uncertainties of relative order o?m/M.

The transformation with changed charge is also made
use of to present the effects of order o’m/M on the fine
structure in a way different from that of Breit and
Brown.* Effects on the hyperfine structure which arise
from the effect of the acceleration of the proton are dis-
cussed by means of Egs. (6.2)-(6.4). These are analogous
to the Thomas terms for ordinary spectroscopic fine
structure. They disappear for s terms. For p terms they
are so small as to make their experimental detection
very improbable.

The following notation is used except where stated :

a=fine structure constant.
v=relative velocity.
r=distance between proton and electron.
m=electronic mass.
M =mass of proton.
e=charge of proton.
c=velocity of light.
h="Planck’s % divided by 2.
Pe= (ﬁ/t) (a/axey 3/aye, 6/62&)-
par= (%/1)(9/ dxar, 3/ dym, 3/ 3za1).
po=—1d/icdt+e*/cr.
., B=the four matrices, a1, @, a3, as, of Dirac. These
matrices operate on the spin coordinates of the
electron; 8= ps.

3 G. Breit, Phys. Rev. 51, 248 (1937).
* G. Breit and G. E. Brown, Phys. Rev. 74, 1278 (1948).
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@y, Bar=the four matrices of Dirac which operate on the
proton spin coordinates; conventions followed
for @y are similar to those for ..

ag=Hh?/me*= Bohr radius.
Ry=absolute value of energy of ground state of
hydrogen for M = » ; Ry=¢*/2ax.
<A > =expectation value of operator 4.

II. GENERAL REDUCTIONS
The Hamiltonian will be taken to be®
= —c(aepe) — c(arypsr) — Bmc— BuMc:—J+Q (1)
where Q is given by
Q=3 (eosr)J — 5 () (arer)dJ /rdr. (2)

Subscripts e, M refer to the electron and proton re-
spectively. Elimination of “small”’ components for the
proton leads to

{&—[(enp)+Q'/c](&+2Mc)!
X[(oup)+Q'/c]}¥=0 (3)

where
Q' =3(aw0s)J —3(a.r)(onr)d] /rdr, 3.1)
P=Pe= —Px, 3.2)
£= pot(apo)+Bmc; 3.3)
po=(E+J)/c. (3-4)

The spin operator o for the proton is a two-row square
matrix. Introduction of ¥® by®

YO = {14 (P>+i[PXP]-0u)/8M?2} ¥ (3.5)
with

P=p+[eJ—r(ar)d]/rdr]/2c (3.6)

yields
{4+ L1+ Lot L3+ L FO=0 @

where
L1=—P/2Mc, £.=[P,[L£, P]]/8M2:, (4.1)
L= —ioy[ PXP]/2Mc, (4.2)
Li=ion((PX[L, PT]-[[£, PIXP])/8M%. (4.3)

In order to obtain answers for the hyperfine structure
accurate within the order of the small quantity ma?/M
it is necessary to take into account the terms in J? which
are contained in P?/2M. These terms produce effects of
relative order ma?/M on the wave function and conse-
quently also on the hyperfine structure energy. Since
these terms arise from Q and since only the expectation
value <Q> can be considered as certain for any choice
of Q one cannot expect” Eq. (4) to be more than an ap-

5 Here J is a generalization of the Coulomb potential, arranged
to be finite everywhere; Q corrects the non-relativistic features of
J to order #*/c? and is arranged to give the effects of retardation
and of magnetic interaction in the limit of J approaching the
Coulomb interaction. Both J and Q are discussed in Sections 1 and
2 of reference 3 for the case of two nucleons.

¢ This reduction is analogous to Egs. (9), (9’) of the reference in
footnote 3.

7 G. Breit, Phys. Rev. 39, 616 (1932).
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proximation. The result of the reductions is given here
because it makes it possible to exhibit the hyperfine
structure effects contained in £34£4 and to show by
comparison with an alternative calculation that the
effects on hyperfine structure splitting of relative order
mao?/M cannot be definitely predicted and that it is
probably incorrect to calculate them by means of
Eq. (4).

If Q is first omitted from the Hamiltonian and if its
expectation value is calculated afterward then one first
obtains

{&—p%/2Mc+[p, [£, p])/8M*
+hor(dT [rdr)[xXpl/AM33} YO =0. (5)

Here the perturbation energy Q' is given by

Q' = (uon); (5.1)

where
u=aoJ— (eV)(VK)/2=aJ/2— (ar)rd] /2rdr (5.2)
with

K=f rJdr, a=a,. (5.3)

In Eq. (5.2) the operations V do not extend beyond K.
The nuclear spin enters through Q’. The calculation of
the expectation value of the terms containing Q' in Eq.
(3) brings in the nuclear spin operator ey once more
resulting in a quadratic entrance of the nuclear spin
operators.

The addition to the hyperfine structure splitting is
obtained by linearizing

(oxp) (L42M ) (uosr)+ (uoar) (£+2Mc)(omp)

in o3 The difference between ¥ and ¥® may be neg-
lected in taking the expectation value of this operator
for it introduces effects of relative order a2(m/M)? which
are consistently neglected here. The spin dependent part
of Q is then found to be the expectation value of Q”
where Q" is

h
Qu=___ 1—

(5.4)
2M¢

aJ
)-——[rX oo
2Mc?/ rdr

Here there is the factor differing from unity by the
quantity J/2M¢* which contains correction effects of
order (m/M)o?. Aside from this factor Eq. (5.4) is the
ordinary operator for the hyperfine structure interaction.
The literal application of the two-particle wave equation
which is followed in the reductions leading to Eq. (4) is
somewhat analogous to a similar reduction which has
been tried out for two electrons.® Comparison with
experiment as well as theoretical considerations have
indicated for two electrons that it is unjustifiable and
incorrect to make literal use of the terms corresponding

8 G, Breit, Phys. Rev. 34, 553 (1929),
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to Q in the two-electron case.” For this reason the dis-
cussion below is carried out along lines which have
proved to be more adequate in the two-electron case.
These correspond to attaching significance only to first-
order effects of Q. It should be noted that this limitation
makes all effects of order a®m/M somewhat uncertain.
The consideration of effects of this order which follow
from Eq. (1) is not pointless, however, because if the
numerical coefficients with which the questionable
effects appear were to be large one would have serious
doubts concerning the applicability of the non-relativistic
correction factor 1—3m/M.

III. THE THOMAS-TYPE TERMS

The first, second and fourth terms in Eq. (5) contain
effects easily describable in terms of current nomen-
clature. The operator £ corresponds to the Dirac equa-
tion in the approximation of neglecting nuclear mass
motion. The second term brings in the kinetic energy of
the proton. The last term corresponds to effects of the
proton’s acceleration on the hyperfine structure. These
effects were absent in the treatment of Breit and
Meyerott! because the latter was concerned exclusively
with s terms. The effect of these terms can be found by
the consideration of the matrix vector

BYV=— (#/2M?c*)(dJ /rdr)[xXp] (6)

which combines with® B’ to give the hyperfine structure
energy as Eq. (2) of the above reference which corre-
sponds to representing the interval factor as

(B+BY)-1),;/5(7+1)

where J is the inner quantum number operator, j the
inner quantum number, and the symbol ( ); stands for
the common value of the diagonal element of the
submatrix of the operator enclosed in ( ), with both
rows and columns of the submatrix labeled by the
same j.

Straightforward calculation yields

((B'+BY)-J) ;=87 uoun (1—3m/ M) ¥s*(0)
+ poun <r=3> 8, o' {4k(1+k) (1— 3m/ M)
+ (k+1)(2k—1)(m/ M)}

where £ is the Dirac quantum number which takes on
values “—1, +1, —2, +2 fOI‘ S1/2y ﬁ]/g, Pa/z, d3/2 terms,
and L is the azimuthal quantum number. The symbol §’
is 1 minus the Kronecker 8. In Eq. (6.2) there is included
the ordinary mass correction effect in the first term
which contains the square of the Schrodinger function
¥s at =0 and in the first part of the second term. The
last part of the second term in Eq. (6.2) represents the
effect of the Thomas-type terms. This effect vanishes for
s terms to the present order of approximation as has
been found by Breit and Meyerott.! Comparison of the
regular mass effect which is contained in the first term

(6.1)

6.2)

? G. Breit, Phys. Rev. 74, 656 (1948).
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with the special mass effect gives

special mass effect/regular mass effect
=—05,0(2k—1)/12k. (6.3)

For L0 this effect is seen to be of the same order of
magnitude as the regular mass effect. It is nevertheless
of no practical interest at this time because the experi-
mental accuracy does not suffice for its detection in view
of the much larger effect of the natural breadth of the
levels from which this effect would have to be separated.
In the present approximation the effect is

2o’ 2L(L+1)< >
AM*c* L+3 rdr

( )2 Rya?s’
M7 (L+3)n?
-which corresponds to

AE7(2p3/2)=0.0029Mc¢/s= AE7(2py12).

(AE) hom=

(6.5)

IV. RELATION TO FINE STRUCTURE

In the present section a transformation will be con-
sidered which enables one to understand the result of
Breit and Brown* for the fine structure from a different
viewpoint and will also be found useful for the under-
standing of mass effects on hyperfine structure. The first
two terms of Eq. (5) give

[potme— (p—m’c’)/2Mc]f—hO.g
—(k/2M*)(dJ/dr)g=0, (7)

mic*)/2M ¢ Jg+hO_f
+(#/2M*)(d] /dr) f=0,

[po—mec— (po*—

where
Or=d/dr+(14+k)/r; O_=d/dr+(1—k)/r.
Introduction of 2, @_, F, G by means of
Q,=0,—1/r, =0_—1/r, F=rf,
and division by 1—J/2M¢* gives
(W J+mc?) BF—chQ. [ 14T /2M *]G=0,
(WH+T—mc)AG+chQ_[14+T/2M*]JF =0
where
A=1—W+mc®)/2Me,

and W stands for the energy — M2 It will be remem-
bered, however, that in Eq. (4) the operator ? is re-
placed by P2 The operator £; contains only effects of
relative order (m/M)? and will, therefore, be neglected.
The addition of — (P?—$?)/2M to the left side of Egs.
(7.3) gives

(W4 J+mc?) BF—chQ,.G— (h/2Mc)UG=0,
W4T —mc) AG+chQ_F+ (h/2Mc)UF =0,
=rAJ/2+(rdJ/dr)(d/dr)

(7.1)

G=rg (71.2)

(7.3

B=1—-(W—mc®)/2M* (7.4)

(7.5)

BROWN, AND ARFKEN

which is seen to contain correction terms in #/M¢ which
do not depend on the quantum number k. It would be
surprising if the correction for P?—p? which has just
been made did not have some good quantitative mean-
ing because, as may be seen from Eq. (3.6), it contains in
it the usual effects of the vector potential caused by the
electron on the momentum operator of the proton with
an additional correction for retardation. There is thus a
reason for believing Eq. (7.5) in preference to Eq. (7.3).

It will now be shown how Eq. (7.5) gives results for
the fine structure of hydrogen. The terms in %/Mc¢ will
be treated as a perturbation and will be used only to the
first order. Omitting these terms one has two simultane-
ous equations which agree exactly with corresponding
Dirac’s equations for a Coulomb field without nuclear
motion provided one approximates 4 and B by unity.
Since 4, B do not contain it is possible to transform
the equations by means of

=(AB)¥, F'=(B/A)F, G=
which gives

[(W+mce-e2/r JF — chQ/G' =0,

(W —mc2+e2/r ]G+ chQ_'F' =0

a set of two equations identical in form with the radial
equations for an electron in a central field. The energy
which corresponds to Egs. (7.6") differs from that for the
problem with infinite nuclear mass. For the latter

(A+W/me?)/(1=W/me)— (1—W/me*)Y/
(A+W/me)r=2(p+s)/e (71.7)

(7.8)

e*=(4B)¥ (7.6)

(7.6")

where
p= (= at)i—1
and
— 1+ | k| +s=principal quantum number.

By means of the above relation between W and « one
finds the first-order effect of m/M on W to be

W?_mZC-l
we-()
2M¢?
On the other hand the terms which have been omitted in
Eq. (7.5) contribute a first-order effect to the energy

which also contains the first power of 7/M and amounts
to

AW = (he?/2M¢) f (1/9[GdF /dr—FdG/drldr. (1.9')

w? o’
[1+—————]. (7.9)
m*c'L  (p+1)(p+s)

Evaluating the integral on the right side of this ex-
pression and adding the two energy changes one obtains

WHAW = — (W2—m*c*)/2M . (8)

This is identical with the quantity called E, by Breit
and Brown* as is seen by comparing with their Eq. (6)
and agrees with a previous result of Bechert and
Meixner.!® The meaning of the result in the present

10 K. Bechert and J. Meixner, Ann. d. Physik 22, 525 (1935).
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paper and in that of Breit and Brown is slightly
different from that of Bechert and Meixner. In both of
the later papers the energy correction is worked out as
an addition to the exact energy of Dirac’s equation while
Bechert and Meixner’s calculation does not consider the
higher powers of a.

It has thus been verified that Egs. (7.5) give the
correction to the fine structure within terms of degree
m/M in an expansion in powers of m/M within the
limitations of the Hamiltonian. No approximation re-
garding the entrance of a has been made. For the ground
term of hydrogen the integrand in Eq. (7.9’) vanishes
and the distortion of the wave function caused by the
perturbing terms involving 1/M in the Egs. (7.5) is
accordingly small. It is therefore convenient to make
use of Eq. (7.6") as a starting point for the calculation
of the hyperfine structure effect.

V. THE MASS CORRECTION TO HYPERFINE STRUC-
TURE OF GROUND TERM NEGLECTING
NUCLEAR VOLUME

In the present discussion quantities obtained by
setting M = will be denoted by the subscript 0; the
radial functions corresponding to F’, G’ by f’, ¢’ in the
same sense as in Eq. (7.2) for f, g. One is concerned with
the value of

1= f Juir [ f C(Prewdr O

which is the most important factor in the usual formula
for hyperfine splitting which depends on m/M. In terms
of the primed quantities one has

I=—qp—2f f’g’dr’/f (g"*4q*f'Hr'"dr'  (9.1)
0 0
where
g=(4/B)}, p=1/(4B)} (9.2)
are the factors brought in by the transformations of f

and 7 respectively. Taking into account that for the
ground term

o/ g’ =a?/4 9.3)

and that ¢*("? is the same as f’* within terms of order
m/M one has to a sufficient approximation

I=—gp~[1—(1—¢*)(a?/4) ]

X f fgdr / f (f24g2)rdr.  (9.4)
0 0

In the last formula there are three correction factors
which multiply the ratio of two integrals. The latter
ratio is identical in form with that for the value of 7
without nuclear mass motion. It differs from it, however,
on account of the replacement of the unprimed quanti-
ties by primed ones. Without nuclear mass motion the
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value of 7 is!

Iy=a(2p>—p)lan?; p=(1—oa2)} (9.5)

where ag is the Bohr radius. Within relative order o? it

follows that
Iy= a(1+3a2/2)a}1_—2. (95')

Taking into account the occurrence of ¢ in a and ag
there results from Eqs. (9.4), (9.5") together with the
transformation formulas (7.6), (9.2) that

I/Iy=1=3m/M+0-a2m/M+---.  (9.6)

At this stage of the calculation the corrections of order
a?m/M have disappeared and the mass correction to the
hyperfine structure for the Dirac part of the proton’s
moment is expressed by the factor 1—3m/M.

The contribution to hyperfine structure arising from
the difference between 1—(J/2M¢?) and unity in Eq.
(5.4) has been neglected so far. The term in —J/2M¢?
gives rise to an integral in the first-order perturbation
energy which diverges as Sfexp[(—1—a?) InrJdr and
this term cannot be treated in the usual manner. The
function J should be considered, however, as being finite
everywhere for otherwise the justification for Eq. (1)
breaks down. It is probable, furthermore, that at dis-
tances smaller than ~e?/mc® the field of the proton
deviates from the inverse square law and that the whole
method of treatment loses meaning on account of the
presence of mesons. It would be unreasonable to attach
much meaning to the divergence just mentioned since it
disappears if one makes J finite by rounding off the 1/7-
type potential. The exact way in which it should be
rounded off is subject to question. Speculatively it will
be supposed that J has the constant value ¢2/b from r=0
to r=> and that for r>b the value ¢?/r applies. The
ratio of the extra effect to the regular effect is

extra effect/regular effect=~— (¢?/2Mc%an)

Xfw rt exp(—Zr)dr/fw exp(—2r)dr (10)
b 0

where 7 is expressed in units en and the relativistic
radial functions are replaced by their non-relativistic
values with sufficient accuracy. The above ratio is ex-
pressible in terms of the Ei integral and can be ap-
proximated by

—(m/M)o?[In(1/26"a%)—0.577---]  (10.1)

where 8" is the value of b in units e2/mc? and where
terms containing additional factors « have been
neglected.

Since dJ/dr vanishes in the cut off region the hyperfine
structure splitting is smaller than it would be without
cutting off J even if m/M is not considered. The correc-
tion factor introduced by this effect is approximately

f e‘”dr/f e rdr=1—2b=1—-2b"a?
b 0

11 G, Breit, Phys. Rev. 35, 1447 (1930).
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where b is in Bohr radii. Since the mass correction corre-
sponds approximately to multiplication by 1—3m/M
one can expect an additional effect of approximate value
6b" o*m/M which has its origin in the combined action
of changes of relative order o? produced by a finite
nuclear radius and of the mass effect. Such changes
cannot be treated with certainty because the nuclear
radius is not understood in a precise sense. Effects of
order (m/M)a? as well as that described by Egs. (10),
(10.1) are much too small to be detected with the
accuracy reported in the experiments.

The Hamiltonian employed here is only approxi-
mately relativistic. The function J cannot be made too
large and the introduction of a proton radius is, there-
fore, unavoidable in the present approach. The un-
certainties in the answer which are a consequence of the
arbitrariness in the value of the radius b and the shape of
J(r) are thus an inherent limitation of the method.
Similar uncertainties arise from the fact that for a finite
nuclear radius the transformation to Egs. (7.6") can be
made only in the region »> 5. These effects can be dis-
cussed properly only if one takes into account the
change in the wave function brought about by the finite
rather than zero value of . The expectation value of the
hyperfine structure energy Q" when calculated with
such an improved wave function contains additional
corrections of relative order ma?/M. These corrections
are worked out in the adjoining paper® by G. E. Brown
and G. B. Arfken.

There is an additional effect of the terms in (5/2Mc)
X (rdJ/dr)(d/dr) in Eq. (7.5) which also brings in b
explicitly. This effect is similar to that in Eq. (10.1). It
also depends on b logarithmically and becomes infinite
for zero nuclear radius. The terms in AJ contained in
Eq. (7.5) produce in general effects of relative order
ma?/M. For the special case of J being constant in the
interval 0<7<b their effect is of a higher order in a as is
shown in the adjoining paper.!? Their evaluation does
not depend on the effect of the cut-off of the Coulomb
potential on the wave function but it proved easier to
present the matter in this order. The evaluation of the
effect of terms involving dJ/dr in Eq. (7.5) will now be
described. The functions F, G are represented as
(14-u)Fo, (14v)Go where Fy, G, are solutions of Eq.
(7.5) in the absence of the terms under consideration.
Substitution into Eq. (7.5) then shows that regularity of
F and G at r= « requires

u=v=K+(o’8/2)(—p/r—Inr) (11)

where f=m/M, p=(1—a2)} and where the unit of
length is %%/me®. The constant of integration remains
undetermined at this stage. Since the effect of ¥—K
=9—K on F and G can be represented by the correction

2G. E. Brown and G. B. Arfken, Phys. Rev. 76, 1305 (1949).
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factor exp(u— K) to within the relative order 2?8, the
effect of K amounts to employing (14+K)Fo, (1+K)G,
in place of Fy, Go. This effect cannot be distinguished,
therefore, from the determination of the normalization
factor. The correction factor to the hyperfine structure
is thus found to be

1456 (11.1)
where
6=0140- (11.2)
and
01=—a?B[Inb—3Ei(—2b)], (11.3)
8o=a?B[Inb+ (5/2)— Ei(—2b)]. (11.4)

The contributions §,, §; arise from the inclusion of the
factors exp(#—K) in the integrals of FG/r? and F?>4G?
respectively. The first of these integrals arises from Q"’,
the second on account of normalization. Combining the
two contributions

6=a?B[(5/2)+2Ei(—2b)]
~a28[(5/2)—2 In(1/2by)] (11.5)

where Iny=0.577- ... Combining with Eq. (10.1) the
correction factor for both effects is

1+e (12)

e=a28[(5/2)— 3 In(1/2b" a2y) . (12.1)

The correctness of the argument for the elimination of
K has been verified by the extension of the phase
amplitude perturbation method to Dirac’s equation.’®
For 0" =1 the value of ¢ is 7X10~7 which is negligible in
comparison with experimental errors and is of the same
order as the effects in §°=(m/M)? which have been
neglected here.

It appears from the considerations presented that the
“approximately relativistic” equation considered here
gives a result which for practical purposes is the same as
that of Breit and Meyerott.! It is desirable to emphasize
again that neither treatment is free from ambiguities.
There is a difference between the method of Egs. (4),
(4.1), (4.2), (4.3) and the method of Egs. (5), (5.4)
which has been adopted here. A complete treatment of
the problem requires a more consistent application of
electrodynamics than that attempted here.

It should also be mentioned that the transformation
of Egs. (7.6), (7.6") is not closely related to the stretch-
ing of the wave function which corresponds to the
introduction of the reduced mass in the non-relativistic
problem. The charge is not transformed in the latter. It
is possible to employ the ordinary reduced mass
transformation but the classification of effects does not
appear as clearly as by means of Eq. (7.6').

where

13 G, Breit and G. E. Brown, Phys. Rev. 76, 1307 (1949).



