
8HV$1 CAL REVIEW VOLUME 76, NUMBER 8 OCTOBER IS, &949

Crystal Statistics. III. Short-Range Ortler in a Binary Ising Lattice

BRURIA KAUPMAN

The Inst&'sde for Advanced Study, Princeton, ¹wJersey

LARs ONsAGER

Yale University, Rem Haven, Connecticgt

(Received May 11, 1949)

The degree of order in a binary lattice is described in terms of a family of "correlation" functions. The
correlation function for two given lattice sites states what is the probability that the spins of the two sites are
the same; this probability is, of course, a function of temperature, as well as of the distance and orientation
of the atoms in the pair. It is shown that each correlation function is given by the trace of a corresponding
2"-dimensional matrix. To evaluate this trace, we make use of the apparatus of spinor analysis, which was

employed in a previous paper to evaluate the partition function for the lattice. The trace is found in terms
of certain functions of temperature, Z, and these are then calculated with the aid of an elliptic substitution.

Correlations for the five shortest distances (without restriction as to the orientation of the pair within the
plane) are plotted as functions of temperature. In addition, the correlation for sites lying within the same
row is given to any distance. For the critical temperature this correlation is plotted as a function of distance.
It is shown that the correlation tends to zero as the distance increases, that is to say: there is no long-range
order at the critical temperature.

1. DEFINITION OF THE DEGREE OF ORDER information about probabilities of configurations could
be presented in a compact way with the help of a
matrix V having 2" rows and columns, such that for
example the partition function for the lattice becomes

HE "degree of order" in a crystal composed of
several kinds of atoms is an observable, as is

shown by x-ray diGraction studies. ' Several attempts'-
have been made to interpret the degree of order quan-
titatively, so that a functional dependence of order
upon temperature could be stated. In this paper we use
a statistical approach to find the average„ taken over
all configurations of the crystal, of the correlation
between a pair of atoms within the crystal. This cor-
relation will be a function of the temperature, and will

depend on the relative position of the atoms in the pair.
Since only relative positions enter here, we may keep
one of the atoms fixed and consider the family of cor-
relation curves for all pairs in which our fixed atom is a
member. This family of curves will describe the degree
of order within the crystal.

In order to define, and evaluate, the correlation
functions in a formal way, we must rely upon the
results of previous papers, I and II we will make use
of the spinor-analysis method introduced in II.

The model we use is, as in the previous papers, a
two-dimensional rectangular lattice, with a spin variable
p, =&i at each lattice site. It is assumed that only
nearest neighbors interact, and that at zero temperature
the perfectly ordered crystal has all its spins aligned in
one direction (either @=+1 for all lattice sites, or
p= —1 for all sites). It has been shown' that all the

Z = P (probability of configuration)
all

configtl rat ions

V.~.2V.2.3 V. .~= traceV . (II. 3)
1 2

Here v; is the configuration of the ith row, that is to
say, the specification of the values of p, for all the e
atoms in this row (1 &~ v; &&2" for all 1 &~i ~&re)

Using the matrix V, we can also write the average
values of various functions of the configurations of the
lattice. Such functions must be weighted in each con-
figuration by the probability of the configuration, and
so we find that the average of the function fvz~. .. is

f=— P fv,v2. ..VvgvpVv2v, Vvmvi

z &lv &2

The Correlation Functions

The spin of the jth site in any given row (say row k)
is clearly a function of the configuration of the lattice.
It depends only on the configuration of its own row,
i.e., on v&. And it is easy to see that as v& goes through
its range of values (1~&vq~&2"), the spin under con-
sideration takes on the values +1 or —j. in a particular
order, which is the order of the diagonal elements in
the (diagonal) matrix s,—=1X1X XsXlX1 (n
factors). (The notation is as in 1:

& G. C. Nix and W. Shockley, Rev. of Mod. Phys. 10, 1 (1938)'
s W. L. Bramt, and E.J.Williams, Proc. Roy. Soc. London 145A'

699 (1934); 151A, 540 (1935); 152A, 231 (1935). H. A. Bethe,
Proc. Roy. Soc. 19lA, 552 (1935).' L. Onsager, Phys. Rev. 65, 117 {1943)will be referred to as I.
B. Kaufman, Phys. Rev. 76, 1232 (1949) (preceding paper) will be
referred to as II.

4 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263
(1941); E. ¹ Lassettre and J. P. Howe, J. Chem. Phys. 9, 74
(1941)~

7
are the Pauli matrices; &( stands for direct product of
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b;= 1/Z
v2 ~ ~ ~

(s,) kkV12V22

XV.. ..,.V.&.I,+& V.

=1/Z P V 1, 2V22. .
&bv2i ''

matrices). As an example, consider the simple case
n=2. vk has 2'=4 possibilities: + +, + —,—+,
——.Correspondingly, the spin of the left-hand site
is: +1, +1, —1, —1. But these are the diagonal
elements (in that order) of sX1. The spin of the right-
hand site is: +1, —1, +1, —1, which can be read o6
the diagonal of the matrix 1Xs. In general the spin of
the jth site in the kth row, when the crystal is in con-
figuration {vl, v2, , v„},is (s,).k.k.

Ke can now And the average value of this spin:

evaluation of these averages is algebraic: it is necessary
to find the trace of the appropriate matrices, as given
in (4). This will be simple for a—j=0, 1. For larger
distances between rows the procedure, while still
straightforward, is quite tedious. The algebraic work
will give the correlation in terms of sums of the form

n
—P cos(a($2r/n)+8, ') =Z, (a=0, 1, 2, ).
n 8-i

These sums are then evaluated (with the help of an
elliptic substitution) for the case of a quadratic crystal:
H=H'. A particularly simple result obtains at the
critical temperature, where Z, L

—2/2r(2a —1)7. The
value of (sl, lsl, k)Av—= (slsk)A„can then be computed to any
desired distance. It is found that

XVvv' lvl(Sj)vk—"kV"k"k+1' ' ' Vvmvl

=1/Z. trace{VA 's Vm k+'}. (2)
lim (sls1 )A„=0,

XV. 1.(sa) ~.V ..+1

= (]/Z) trace j Vl 'skVa jsbVm a+

= (1/z) trace {skV 's.V" +'
} (4)

This average value will not vanish. At zero temperature,
all sPins are aligned, so that (sk).jvj= (sb). .o=+1 and
therefore (sk).j'j(sb).o.,=+1.As a result

(sjksab)A, =1/Z Z=+1
for all pairs of sites. This is the state of perfect order.
At higher tempera, tures (s,ks,b)A„decreases, and tends to
zero for very high T.

We will refer to (s,ks,b)A as the correlation between
the two sites (j, k) and (a, b), and will take the set of
all these functions to be a measure of the degree of
order within the crystal. Short-range order is described
by the correlations for finite (small) distances between
the sites. Long-range order is the limit for great dis-
tances, and will be discussed in Part IV.

In what follows, we will. show how to evaluate the
correlations as functions of temperature for successive
distances between pairs of sites. Part of the work in the

Since the trace is invariant with respect to cyclic
changes in the order of factors we have

8;= (1/Z) trace(sjV ).
This result is independent of k, as it should be. It will

be seen later that s, vanishes identically for every j,
and this is not surprising because cb priori every site
has the same probability of being occupied by a positive
spin as by a negative one, at all temperatures.

The situation is different for the correlation between
two sites. Consider the product of the spins of site k
in rom j and site b in rom u. The average of this product
will be:

(SjkSab)Av (1/Z) P Vvlvb' ' 'Vvj lvj(Sk)vjvjVvjvj+1

but this limit is approached very slowly.

($1, 1$1+a, b)Av

2"

2n

. tP) --'(es,v.sam-l) (5)

It was shown (see I.101) that for T) T, the largest
eigenvalue, lk, =exp{-2,(pl+. +y2„1)} is non-de-
generate. On the other hand, for T&T, there is a
twofold degeneracy:

msx—)1 mss eXP {2 (r0+ + Y2s—2) } ~

If we write, for both cases, X+,„=—P, we have above the
critical temperature

($1, 1$1+a, b)Av—~ {~+slV'sa~+ }11)

and below the critical temperature

($1, 1$1+a, b)Av—2X { {%+slV sb% + }11

+ {%' slV sb%' '}117. (7)

%'+ and %' differ only in that %'+ involves the even-
indexed angles 002„= (2r2r/n) and 82,', while %' contains
the odd-indexed ones. For simplicity of notation, we will
no longer differentiate between odd- and even-indexed
angles, but will use the neutral index t, which is to take
on the values 2r or 2r —1 as needed for the evaluation

2. PROCEDURE FOR EVALUATING AVERAGES

In our basic Eq. (4) we will employ an approximation:
we will neglect all eigenvalues of V as compared with
the largest one, when the power of the eigenvalues is
high enough. (This approximation was justified in II, in
the discussion of the partition function. ) In order to
make use of the approximation we transform (4) by %',
which brings V to its diagonal form:



B. KAUF MAN AN D L. ONSAGE R

(t is 2r or 2r —1, as explained above). Finally

I
I iq ~1 iq

g=g '=2 "
{ {X{ {X (n factors),
(1—1) E1—1)

(II. 16)

FIG. i. Correlation of nearest neighbors in adjacent rows.

(II. 62, 69)

where

H: P„—bcoshH* P„—i sinhH~ Q,
(1&r &n),

Q bi sinhH~ P +coshH~ Q„(II 6q)

(1 & a & rb), (II. 57)

Q.~P &r,.'P,+P r,.'Q,

with
1 )ta~

a'„=—cos {
—+ g b~

—1 (Ia,x
r„,= sin{ +—-,'b&' {,

n& En ]
1 (tarr

a„,'=—sin{ ,'b&' {, ———
n& kn

(II. 58)

—1 (tax
r„,'= cos{ ——~b,

'—{.j

of the averages (6) and (7). Later on it will be seen
that for large tb, m both terms in (7) are equal, so that
(6) may be used at all temperatures.

The quantity%'is completely known in terms of the
rotation which it induces in the spinor base P~, Q~, P2,

, P, (},. Wehad

%'=g S(TH)

and g has the property that gs4= C„, gC4= sr.
Since S(T) is a complicated matrix we do not give

its components, and so we cannot write %' explicitly.
Nevertheless, it will be seen that the { {» member of
matrices transformed by %' can be found without much
difhculty if we study the effect of the successive opera-
ations: S(H), S(T) and g on (sbV sb).

3. AVERAGES FOR 2-SPINOR MATMCES

Consider 6rst @=0,b=2. Ke have then S]V'S~= ses]
= —iP2(}b. The average of this quantity will give us
the correlation between two neighbors in a row. How-
ever, it is useful for the following problems to treat the
more general 2-spinor quantities X=PbP&, PbQ&, or
QbQ~. We will therefore investigate {g S(TH) X
S(TH) 'gI», where X is a 2nd rank spinor. Clearly,

transformation by S(TH) will send X into a linear com-
bination of 2-spinor quantities. These are still to be
transformed by g, and the { {qb member has to be ts,ken.
However, we know that the only matrices which have
diagonal elements are the matrices s, (or their products,
which, as we shall see, do not enter here). Therefore,
{ }»=0unless the bracketed quantity is a product of
s, matrices. But this means that before transformation
by g the bracketed quantity was a product of C,
matrices. Now C„=iP,Q„ is already a 2-spinor quantity
so that no products of C„matrices appear. We thus
have the following result: In the transform of X by
S(TH) only the terms of the form P,Q, will contribute
to the average.

Up to now we have not yet made use of the special
properties of the rotation T. These will lead to further
simplifications. Choose for example X=PbQ~. By
(II. 65), cited above,

H: PbQt —bcosh'H~PbQb+i coshH*
X sinhH*(PbPg —QbQ~) —sinh'H*PbQb

=S(H) PbQb S(H)-' (8)

This linear combination must now be transformed by
S(T). Consider the term PbP~.

T: PbPg +Q P,Q„+other terms. (9)
] Orf &r)

The "other terms" are of the form P,P, or (}„Q,or
P,Q„and we have seen above that they will not con-
tribute to the average. Now we put in the values of 0,I,

etc., from (II. 58), and we get:

FIG. 2. Correlation of next-nearest neighbors.

1~ tm

T: PbP, : p sin(k —t)—P,Q„+other terms.
n



Therefore

g S(T) P«P1 S(T)-'g

1« Ar=—P sin(k —l)—(s„)+other terms.

Finally, we have to take the { }» member of this
matrix. But {s, }11=1for all r, so that

I Ar

{g S(T) P«P1 S(T)—'g}»———Q sin(k —f)—=0. (10)
n

In exactly the same way we And that

Fra. 3. Correlation between the sites (1, 1) and (2, 3).

(17) may also be written in the following useful form:

{g S(T) Q«Q1 S(T) 'g}»=o. 1 tbr
(11) ($1$2)A„———cosh2H~ —Q cos

{
+6—

221 t22 i
On the other hand, for P«Q1 we have

tx
T: P«Q« —.- p cos (k —f)—+6,' . P„Q,+other

n r~l n terms.

As a result

{g S(T) AP«Q1 S(T) 'g}ii
1 tx

=—Q cos (k 1) +b, ' =——Z«—1. (12)

Thus we see that we could disregard, in (8), all the
terms in the transform of X which did not have the
form P«Q1, and then we read off the average of X
directly from (8):

2X= (2P«Q1)A, {g S(TH——) 2P«Q1 S(TH)-'g}11

=cosh'H* Z«1 —sinh'H Zl «. (13)

In particular

1 f' Ar

+sinh2H~ —P cos
{

——+h,
'

}
n 1 E 22 i

t~
= ——Q { cos—cosh&' —sin—sinai'

n t E n n

1
cosh2H~

}
—=—P cosh, *. (18)

n

(We recognize, from its definition, that 6* is the third
angle in the hyperbolic triangle of Fig. 4 in I.)
Neighboring atoms in adjacent rows are shown in Fig. 1.
We need

($1,1$2, 1)Av X {&s«VS1% }11.

Now

slVsl= sl exp(H*B).exp(H'A) sl
= sl exp(H*ZC, ) exp(H'Zs„s, +1) sl

=exp( —2H*C1) V.

This is a result of the fact that all factors in V commute
with si, except for exp(H*C1). Therefore

C« ——(iP«Q«)Av= Zv

Similarly, one 6nds

(14) ($1,1$2, 1)«v —cosh2H —sinh2H* Z2.

Next-nearest neighbors are shown in Fig. 2.

(19)

(P«P1)A, ———,
' sinh2H'(Z«1 —r 1 «),

(Q«Q1)A, ———-,'sinh2H* (r«, —Z, «).

(15) ($«1$2, 2)Av PL {%slVs2~ }11.

(16)
Hei'e

The Z can be evaluated exactly for large n, when the
sum may be replaced by an integral. See below for the
calculation of the Z., and the derived results.

We are now in position to 6nd the three simplest cor-
relation functions.

Neighboring atoms in a row:

($1$2)Av = (sls2)Av = ( 2P2Q1)Av
= —cosh'H* Z«+sinh2H* Z 1. (17)

s«Vs2= sl» exp( —2H*C2) V
= (cosh2H* sls2 —sinh2H~ sls2C2)V,

»»C2= QAQi,
so that

($1,«$2, 2)Av=cosl12H '($1$2)Av —
vi siilll 2H*(Z« —Z 1). (20)

Several remarks may be made here:
(a) ($1,1$2, 1)«v must, of course, equal ($1$2)A„ in the case

of a crystal with H=H'. Comparing (17) and (19), we
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l.o

.5-

respectively.

BZ 8
—trace(V )

BH 88

I O Tg l.s

trace {(exp(H*B) exp(H'A) ) }
gH'

= trace {AV"+VAV™'+V'AV~ '+
=m trace{AV" }=ni trace{%'A%' 'A.

=mP x;"{mAe-'};,=nin P x;"{m's,s,m'-'}

Fro. 4. Dependence of the functions Z upon temperature. At
low temperatures all Z, are negligible, except for ZI which is +1.
At high temperatures only Zo is significant.

see that this cannot be a term-by-term equality. But it
it is to be expected that the complete expressions will

equal one another. And indeed„ this will be shown to be
the case when the Z are evaluated. See Section 5.

(b) mn(sis2)~„ is, by its meaning, the average energy
of a quadratic crystal (if J be normalized to unity). It
should therefore equal the logarithmic derivative of
the partition function, Z, with respect to H. Now

dZ/dH= d/dH Q'X;"=mQ(dX;/dH)}~; ' (2l)

but

dX; d
--- =—exp[-'( +y, +y,+2+ )j
dH dH

d
=2}i* ( +vd=v~+2+. )=2& Z(+)—(22)

dH dH

(The sign-combination is determined by i; for i=1 we
know that all signs are +.)

Furthermore, we have, from the definition of
(see I. 89 and I. 112)

(dy, /dH) = 2 cosh, *. (23)

Combining the last three expressions, we get:

dZ/dH=m P X;" {Pacosbg*};. (24)
4 t

Using only the largest eigenvalue, we have

1/Z ' dZ/dH~tn P cos5g ~fÃn(si$2)». (25)

These two entirely different methods of obtaining the
average energy in the crystal have thus been shown to
check with each other.

(c) An even closer analysis can be made, which will
at the same time check the result for

C.=20 ——(1/n) P cosh, '.
t

Taking the general case, H/H', we will express
BZ/BH' and BZ/BH» in terms of the angles 8* and 8',

This can now be compared by term with (24), giving

{%'s s %' ' };;=(1/n) {P&cosh *},. (26)

but we also have, as in the case of (sis2)A„

BZ/BH*= 8/BH* Q; }I,m (28)

and (see I. 112)

Therefore
By&/BH*= 2 cosh&'. (29)

BZ/BH*=m P )i;"{++cosh,'};.
t

(30)

Comparing the two expressions for BZ/BH* we ffnd

{eC.e-i };,= 1/n{g~cosS, '};;. (31)
t

For i = 1, then, all signs are +, and C =Zo, as should
be.

4. EXTENSION TO GREATER DISTANCES

The next farthest correlation introduces a new type
of problem. In (s&s3)A we find that we need the transform
of P3Q2P2Qi. There is no difficulty in applying H,
especially since P2Q2 remains invariant under H.
However, we must investigate the effect of the other
operations on a 4-spinor matrix, say P,QqP, Qq.

It will be helpful here to introduce a notation for an
intermediate step in the averaging procedure. Let X
be the quantity to be averaged, i.e., we want to evaluate

X= {gS(T) S(H)XS(H)—' S(T)—'g }„.Denote by Y t}le
the result of transforming Xby S(H): Y= S(H)XS(H)—'.
Then X= {gS(T).YS(T) 'g}ii=({Y})A~. This nota-
tion is useful because the transformation by S(T) is the
main step, whereas S(H) can be performed by inspection
for the quantities X with which we will be dealing.

In this new notation we can rewrite (10), (11) and
(12):

({PP })"=({QQ })"=0,
( {iPaQi })A.=&a-~.

(32)

(33)

For the special case i= 1 we rederive (18).
Consider how the derivative of Z with respect to H*.

BZ/OH*= m trace {SV"}= mn Q„X,"{%'C,%' '};,; (27)
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We will now show that

({P.QB'.Q~})A.=( f P.Qs })a, ({P.Qd })A.

+( f P.P, })gv ({QiQg})A+({P.Qg})g, ({QiP. }).
+a negligible correction term. (34)

Reasoning as in Section 3, we know that I sends

Po QbP. Q~ into a linear combination of 4-spinor matrices,
but that only those which are of the form

P,Q,P.Q.= —s„s„

can contribute to ({P,QiP Qd})A.
Now

l.O

6-

4-

T$ I/2H
lO ~c

T: P. Qg~1 /nQ cos[(a—b)ts/n+l, ']P„Q, Fxo. 5. Correlations for small distances, as functions of tem-
perature. (a) {SIS2)Ay, (b) {Sl,1S2, 2); (C) {SIS3)A„., (d) {SIvIS2,3)Ay,

+other terms, (35) (el (svsvlA, .

P,Q~1/n P cos[(c d)i—s/n+b„']P Q,

+other terms. (36)

henceforth be neglected. We have thus proved (34).
Making use of (32) and (33), we get finally:

( {PaQivPvQd })Av 2Ia —b'av —d a I: 6— —If we multiply the P„Q„ terms in (35) by the P„Q„
terms in (36) we get a set of matrices all having the
desired form P„Q,P„Q„. The products in which r=u
(and, therefore, P„Q,P„Q„=—1) must be excluded,
since the transform of P,Q~P, Q~ must contain only
4-spinor matrices.

We wiB therefore have, as a set of contributing
matrices:

(39)
~c—6 ~c—d

From (32) there results the further useful simplihcation
that ({X})A„——0 for X=P,PiP,Pq, P,PiP, Qd, etc., i.e.,
whenever it is impossible to group all factors in X into
P—Q pairs. Therefore X must contain equal numbers
of P's and Q's.

Equation (39) can be generalized to any number of
factors:

{1/n P cos[(a —b)ts/n+bv'] P„Q„}
C

f 1/n P cos[(c—d) ver/n+ 8.']P Q „}
—1/n' Q cos[(a b) hr/n—+b, '] IfX=P.,Q P. Q P Q ( „,b, =1, 2, ),

then ({X})A,is equal to an f rowed determina-nt whose

(h, l) member is -Za~ ai— (40)
and its contribution will be

(f PaQi })Av(fPvQd })Av+1/n2 P cos[(a b)ts/n+—l, ']

cos[(c d) ts/n+ b, ']. —(38)

However, this set does not exhaust all contributing
matrices in the transform of P,QbP. Qq. (For example,
a PiQ& matrix in (35) when multiplied by PiQi in (36),
is also of the desired form. ) The reason for this is that
we had restricted the pair P„Q, to be taken from the
transf'orm of P,Qq, and P Q„ to be taken from the
transform of P.Qq. Two other possibilities are:

P„Q„from the transform of P,P, and P„Q from the
transform of Pi,Q~,

P„Q„from the transform of P,Qd and P„Q„from the
transform of Qi,P..

There are no other possibilities, and the three given
ones contain no common terms, except for the matrices
P,Q,P,Q„, which are everywhere to be excluded, as in
(37). When n is very large, the sum of the excluded
terms is negligible compared to all the rest, and will

Further Correlations

Returning to the correlation functions, we have:

(sis3)Av —({S(H)PsQ2P2QiS(H) '})gv.
H: —P,Q2P, Qi~cosh'H* PsQsP2Qi

—sinh'H*Pi QsPs Qs+ other terms.

The "other terms" here do not contain equal numbers
of P's and Q's, and will therefore not contribute to

4.

.2-

20

FIG. 6. The quantity ~hz) is proportional to the correlation
{sfs1+~)A& at the critical temperature. hg tends to zero as k~~.
There is no long-range order at T,.
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(sls3) A„. Hence:
coshy = (cosh'2H/sinh2H) —cos12. (49)

(sls3)A„——cosh'H* +slnh'H*
~0 ~1,

—=cosh'B'*. 62+sinh'H* 6 ~.

For the correlation indicated in Fig. 3, we have:

($1, 1$2, 3)Av X {&SIVSH }11
=Cosh2H ($1$3)»v+2 SIIlh2H' {e'QIP2(}2(}3%'-'}ll,'

An elliptic substitution~ is now made separately for
values of H below and above the critical point. (The
critical point itself occurs at sinh2H, = 1.) The variable
u& is introduced, and both co and 8' are expressed in
terms of this variable.

Belmv the crittcal temPerature (T(T„H)H,). First
choose for the elliptic modulus

but k=sinh '2II(1 (50)

(51)cosh'= cn(u—, k), sinb'=sn(u, k).

As a result (see I. 2.4),Hence:

($1, 1$2, 2)»v=Cosl12H ($1$3)Av+S Slllll 2H (62 +—2) ~ (42) (1+k) sn'u dnu—cnu
corn= k& (52)

It is not necessary to evaluate (sl, ls3, 2)»„ for this is
equal to (sl, ls2 3)A„, also (sl, ls3, 1)A, equals (s1,3)»,.

It is easy to generalize (41) and (42) to any distance.
One Ands:

(—1)"(SISI+A)»v =COSh2H*I4+ Sinh2H*A 2, (43)

1+k sn'u

The limits of integration in (46) become: 0 to 2K(k),
where E is the complete elliptic integral of the hrst
kind. Now make one further substitution, ' which serves
to eliminate the denominator in (52):

and
QIPAQ2QA~/2 S»h2H'( —PIQAP2Q3+PAQAPAQI)

+other terms.

ul —=u(1+k), k1=2kj/1+k.($1,1$2, 1+A)Av cosh2H* ($1$1~2)Av—(—1)"/2 sinh'2H* (14—5 2), (44) Then we have

(53)

&2 &3

Zo Z1 Z2

&o

~ ~ ~

~ ~ ~

~ ~ ~

cn(u, k) dn(u, k)
cn(u„k, ) =

1+ksn'(u k)

1 —k sn'(u, k)
dn(ul, k1) =

1+k sn, '(u, k)

Z 2

Z 1

&0

Za Z~
Z2 Z3
Z1 Z2

KI —=K(kl) =K(k) (1+k).

As a result, we get

(55)

5. EVALUATION OF THE X,
cos =—L1—dn(u„k, )j—cn(ul, kl),

k1
(56)

1 - - 2'
ZA= —

vl COS a +blv'
Q r™1 g,

2%I

J
COS 1e 'du1. (57)

For large e, the sum in Z, may be replaced by an and the limits of integration become: 0 to 2E&. Since

integral; the integrals of powers of deu and emu are all known,
it is now possible to evaluate any integral of the form

cos[aco+ b'(cd) jd42. (46)

(It obviously makes no difference now if one replaces
the even-indexed angles in Z, by odd-indexed ones.
This justifies the statements made on p. 1245-6.)

b' is a function of H and ce through the relations (for
the case H= H', see (I.89)):

itv»v/i3u = slnh "r/k j.

This we insert into cosh' des..

(58)

cosb'. dce=cosb' Bcv/Bu du
= —(cosh' sinhy/k&)du. (59)

In order to express 6' in terms of u1, we make use of
the relationship (see I. 2.4 and I. 2.5)

' See I, especially Section 2 of the Appendix.
(471

g See, for example, E. Jahnke and F. Emde, Tables of Iiscmtfons
slnh Y cosb = (cosh2H/slnh2H) cosh2H'cosvvvv (48) (B. G, Teubrver, Lejpzjjr zvrvj Berjjvr, 1933).
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Ke now use (48) and (50), and get

cosh' dpp= (1+k)&(k&—cospp) du.

Finally we replace e by I&'.

(52) and (56) hold at all temperatures. Applying to Zp

( )
we find:

Zp= (1+k)t/ [ /2+(1 k)E} (T) T ). (68)

1
cos8 dc0 = (k&—cospp) du, .

(1+k)&

(61)
Zp is continuous and bounded at the critical point. The
reason for this is that, although K~~ as k~1,
(1—k)E—4. At the critical point then,

Similarly we get for sin5': Zp=1/ v2. (69)

sin5'der = sinu du =
since du&

(1+k)
(62)

And now, we can apply these results to the integrand
ofZ, :
cos(ace+ b')dpp= cosapp cosh'dip —sinapp sinb'dcp

1 o

Q a, cso'. (pkp& cos—pp)du&
(1+k)& a-i

1 a—~

g t3, cos*cp sin'&p. dui,
1+k ~-i

where we have expanded cosac0 and sina~ into poly-
nomials in coscu. The integral of cos(sip+5') now
involves only integrals of the form (57). Thus the
procedure for evaluating any Z is completed.

As an example we will now give the details of the
computation for Zp.

In the same way we find:

pr&~i= '(1+k)&/k[(pr/2) —k(1 —k) E—(1+k)Ei}
W(1+k/k) [(pr/2) —Ei } for T(T,

(1+0/k)t [k(pr/2)+(1 —k) E (1+k—)Ei }
%(1+k) [(pr/2) —Ei} for T) T,.

Here Ei is an abbreviation for E(2k&/(1+k)). Graphs
of Zp, Zyy, Zy2, Zya are shown in Fig. 4. It is seen that,
for

~
a

~
)2, all Z, are very small except in the immediate

neighborhood of the critical point.
At the critical temperature. A fairly good approxima-

tion' gives b' pr/2 —cp/2 at the critical point, so that

1/pr cos(app+ pr/2 —cp/2) = —2/[m. (2a —1)$. (71)
p

Exact values at the critical point are

Zp = 1/v2= 0.7070,

~2Ki
(kP —cospp)duip= — cos8 des=

p pr(1+k)& ~ p

t 1 2q ( 2q

k2 pr) ( pr)

—0.5566

0.1702,

1 t k q& (1+0)»
}

21~i-
ir (1+kj

t 5 8~ ( 12' —0.2461,

E 2 pr) L pr ) 0.1145

And from (56):
(25 118) ( 178)

~~[ 19
E 2 3pr) E 3pr i

—0.1421

0.0853
~2K1 ~2Ki -

1
cospp dug =

~
(1 dsui) cÃui dui =

p kg

2K)—m

k= s1nh22H+1

cosh'= dnN, sinb'= k sou.

And find, as above:

1
cosb'dpp= (1—k1 cospp)dui,

(1+k) 1

(64)

(65)

(66)

sing des= sin. dQq.

Altogether

Zp= 1/pr(1+k/k)1[pc/2 (1 k)lt } (T(T ). (63)

(This result is the same as that already obtained in
(j. 5.1).)

Above the critical teptiperature (T& T„H(H,). Choose

The Correlation Curves

A few qualitative statements can be made immedi-
ately about the behavior of the correlation curves at the
ends of their range, i.e., for very low and very high
temperatures. As T—4, 5' x —co, therefore

cos(asap+ b') = —cos(u- 1)pp;

as a result Z =0 for all a, except that Z+~= —1. On
the other hand, as T~~, b' 0, therefore cos(acp+b')
= cosaco. This gives Z =0 for all a, except that
Zp ——+1.Thus (sisp)p„=i at low temperatures, and =0
at high ones, for all k. This results from the fact that
we chose a model in which the energy of like neighbors,
—J, is lower than that of unlike neighbors, +J. In
other words, the completely ordered state, at absolute
zero temperature, is a configuration with all spins alike;
it is left unstated whether these spins are all + or all

~ It can be shown that 8'=x/2 —ou/2 at the critical temperature
for correlations along a 45' diagonal of the lattice.
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—.The model vvith the opposite assignment of inter-
action energies would give ($1$2)A,

——0 in the completely
ordered state (O'K).

Figure 5 shows exact curves for ($1$2)A ($1, 1$2, 2)A

($1$2)Ay ($1, 1$2, 2)Ay ($1$4)«which correspond to the geo-
metric distances 1, 2&, 2, 5&, 3, respectively. It is seen
that the curve for ($1, 1$2 2)A, lies between ($1$2)A and ($1$2)A. '.

similarly ($1,1$2, 2)« lies between ($1$2)A, and ($1$4)Ayy At the
critical point the values have been computed exactly for
the first few correlations of the type ($1$2)Ay, and, for the
ones farther out, the approximation Z, —2/Lyr(242 —1)]
was used. With these values for Z, one has'

2 2 I'(s+1)I'(s+1)
I
~'I =—II.= I (,+-,)r($+-, )

'(1+k)'
I

yr

jv~
l2

(1+k)l

l
g

X ——k(1—k)E—(1+k)E1 for T(T,
l2

(S1S2)Ay

(I+k)& yr

+1
xk& 2

(1+k)&

xk&

From (17) we have:

(s1$2)Ay = —
2 (cos112H +1)Z1+2 (cosl12H —1)Z

=-', cosh2H*(Z1 —Z 1)——2'(Z, +Z,).
Also

(1+k)' for T(T„cosh2H*= coth2H=
( k/k) h f 7 (

Therefore, by (70),

2 1 I'($+1)I'(s+1)
I
~-'I =- II

..= I'(s+-', )I'(s+ (5/2))
(7-')

X k—+(1—k)K—(1+k)E1 for T) T,.
2

Both AI, and 6 ~ tend to zero as k~ ~, although 61,
approaches this limit very slowly. ' The quantities

I
141A

I

and IA AI are plotted as functions of k in Fig. 6.
Since 5 & is negligible compared to 6&, certainly for
k &~4, we have from (43) and (44) at the critical point:

(—1) ($1$1+A)Ay= (1+&~'2)AAy
(—1)'($1,1sy, 1+2)Ay

—(1+Y2/2) 51= (—1)"($1$1+4)All y

which is to be expected, since the geometrical distances
are almost equal. Finally, it is of interest to verify
the statement made on p. 1247 that ($1$.)A ($1,1$2, 1)A

On the other hand, from Eqs. (19), (63), and (68) we
have:

($1 1S2 1)A cosh2H* —sinh2H*yye

(1+k)'* yr

(1+k)y— ——(1—k)E for T(T,
2

1+k) '
1 (1+k) '

yr (74)—+(1—k)Z
k 3 sr' k ) 2

for T& T,..
' T. Muir, & Treatise on the Theory of Deternyinants, revised ayyd Equat1ons (73) and (74) are 1dent1cal except for the1enlarged by %. H. Meltzer (private publication, Albany, New

York, 1930), p. 437. algebraic form.


