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Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis
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The partition function for a two-dimensional binary lattice is evaluated in terms of the eigenvalues of
the 2"-dimensional matrix V characteristic for the lat tice. Use is made of the properties of the 2"-dimensional
"spin"-representation of the group of rotations in 2n-dimensions. In consequence of these properties, it is
shown that the eigenvalues of V are known as soon as one knows the angles of the 2n-dimensional rotation
represented by V.

Together with the eigenvalues of V, the matrix %' which diagonalizes V is obtained as a spin-representation
of a known rotation. The determination of %' is needed for the calculation of the degree of order.

The approximation, in which all the eigenvalues of V but the largest are neglected, is discussed, and it is
shown that the exact partition function does not dier much from the approximate result.

HE partition function for a 2-dimensional binary
alloy has been evaluated exactly by Onsager, '

using the approach introduced by Kramers and Wan-
nier, 2 and Montroll. ' According to this method, a matrix
characteristic of the crystal is set up, and it is shown
that the partition function is approximately equal to
the largest eigenvalue of the characteristic matrix. The
eigenvalue problem has been treated approximately by
various authors. ' Onsager has shown that the character-
istic matrix is decomposable into a direct product of
2-dimensional matrices and so was able to find the
exact eigenvalues through the solution of n-quadratic
equations.

In this paper, a shorter method, though closely re-
lated, is employed to reduce the characteristic matrix,
V. It is shown that V is a 2"-dimensional "spin"-
representative of a 2n-dimensional rotation (i.e., or-
thogonal matrix), and that, as a consequence, its eigen-
values were known as soon as the eigenvalues of the
rotation were given. Further considerations of sym-
metry reduce the 2n-dimensional matrix into a product
of n-plane rotations, so that again the eigenvalues are
found from the solution of e-quadratic equations.

As a by-product of the solution of the eigenvalue
problem, we are also able to find the matrix %' of eigen-
vectors of V. Since every operation in 2"-space is
mirrored in the 2N-dimensional space, the operation of
%' corresponds to the diagonalization of the 2n-dimen-
sional rotation. This latter operation is easy to carry
out, again because of the symmetry of the 2n-dimen-
sional rotation.

As has been shown, ' the knowledge of %' makes it
possible to state the average probabilities of crystal
configurations. In particular, it is possible to evaluate
average correlations between pairs of atoms within the
crystal. This will be done in III.

l. SETTING UP THE MATMX PROBLEM

Our physical model is a rectangular lattice with m

rows and n sites per row. These sites are to be occupied
by two kinds of constituent atoms. We assume that
interactions exist only between nearest neighbors, and
that the energy of interaction is +J between unlike
neighbors in a row, and +J' between unlike neighbors
in a column; but that it is —J, —J' between like neigh-
bors in a row, or column, respectively. The total energy
of a configuration of the lattice is found simply by
counting the number of like neighbors in the lattice,
and subtracting from it the number of unlike neighbors.
(Since we distinguish between row and column inter-
actions, this count has to be made separately for the J
and the J' (see Fig. 1).)

The probability of finding the lattice in a given con-
figuration, at the temperature T, is proportional to
expI E./kT }, wher—e E, is the total energy of the
configuration. Clearly, the exponent which appears in

the expression for the probability will always be of'

the form
(n. J+I,' J')/kT

Here n. , e,' are integers which depend on the configura-
tion of the lattice. It is convenient to introduce the
variables H= J/kT, H'= J'/kT instead of J, J—'. And
then the probability of a configuration is

(1/Z) exp In,H+n, 'H'}.* Now at the Institute for Advanced Study, Princeton, New
Jersey.
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found from a knowledge of Z, and, as can be seen from
its de6nition, it is a simple matter to calculate Z for
small crystals. However, since the number of terms in
Z is 2 ", it is not feasible to carry out such a calculation
except when m and e are of the order of unity. Nor is it
necessary to proceed. in such a tedious manner. It has
been shown" that the terms in Z are members of the
neth power of a matrix V which is characteristic for the
lattice. Z is then seen to be the trace of V".

To show this, it is convenient to introduce the fiction
of spin attributed to each atom. All atoms of one kind
will be given the spin +1, and the other kind —1.
When this is done, the interaction between two neigh-

boring atoms with spins p, 21' is: —@21'H (or pp'H'—)
for row (or column) neighbors.

The configurations of the crystal can now be specified

by stating the value of p at each site of the crystal.
However, it is more convenient to specify row-configura-
tions. Since there are e atoms in a row, there are 2"
possible configurations, 1~&v&&2". And then the con-
figuration of the crystal is given by the set {vi, vsr

~ ~ t p

The energy due to interactions within a row may be
denoted by E(v;); the energy due to interaction between
two adjacent rows —by E(v;, v~1). As a result, the

energy of a configuration of the crystal is

E,=g E(v;)+Q E(v;, v;+1).
i 1 &=1

(Here it is assumed, for purposes of symmetry, that the
mth row of the crystal interacts with the first row. )
If we now make the abbreviations

(V,).,„„=exp{—E(v;, v;+,)/ZT },

(V2).;.,=—ezp { E(v;)/i2T }, — (2)

We therefore get for the partition function

we see that the probability of a configuration is pro-
portional to

(V2)"1"1(V1)"1"2(V2)"2"2

X (Vl)~2"2' ' ' (V2)"m"m(V1)&m&1

~i Oq

&0 —1)
'

(0 iq
I

1 Qy
1= . (6)

(1 0) LO i)
II* is defined by

e '0—= tanhH*.

We may rede6ne V& so as to remove from it the scalar
coeKcient:

n

Vi=exp{H*Q C„}—=exp{H~ B}.
1

Then

Z= (2 sinh2H)"" trace (V2V1)"

=(2 sinh2H)"" Q li;, (9)

where ), are the eigenvalues of V=—V2 Vi.
We now propose to show that matrices of the type

exp(a s„s,+1), exp{b C„}, and their products, form a
2"-dimensional representation of the group of rotations
in 2n-dimensions. Thus, the matrix V itself will be the
representative of some such rotation.

We will further show that there is a very simple
relationship between the eigenvalues of the rotation and
the eigenvalues of its 2"-dimensional representative. As
a result, all our work will be reduced to finding eigen-
values in a 2n-dimensional space.

2. ELEMENTS OF SPINOR ANALYSIS

The relation between the 2n- and 2"-spaces is best
brought out by the study of sets of anticommuting
matrices. The Pauli and Dirac matrices are examples of
such sets. The general case was treated by Brauer and
Weyl. ' We will now derive those of their results which
will be needed in what follows. '

Here s„and t „are 2"-dimensional quaternion matrices,

s.—= IX&X XsX j.X . .XI
C,=—&xlx "xcxlx" xl;

there are n factors in each direct-product, with 8 or C
appearing in the rth position. s and C are generators
of the Pauli matrices:

(V2) 11(Vl)"1"2' ' '(Vl)" 1

—= trace (V2V1) . (3)

Since for each i: 1 ~&&;~&2", we see that Vi and V~ are
2"-dimensional matrices, and V2 is diagonal. Vi and V2

have been given explicitly. in I:
n

V2 ——exp{H' Q s,s,+1}=—exp{H' A},
~1

V 1
——(2 sinh2H) "'2 exp {H ~.Q C„}.

1

J J
FIG. 1. Energy and probability of a given lattice configuration.

The two kinds of atoms are denoted by 0 and y.
~ R. Brauer and H. Acyl, Am. J. Math. 57, 425 (1935). See

also F. D. Murnaghan, The Theory of Grolp Representa4ions (The
Johns Hopkins Press, Baltimore, Maryland), Chapter 10.' The discussion which follows is rather similar to that given by
Pauli in treating the relativistic invariance of the Dirac wave-
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n factors appear in each product; s or isC appear in the
rth place. The I I, are thus 2"-dimensional matrices.

If we take all possible products of the I J„we form a
set of 2'" matrices:

And now, any 2"-dimensional matrix can be written as
a linear combination of these "base matrices, " just as
any point in a vector space can be specified in terms of
the "base vectors" which span that space. For this
reason, the base matrices are said to span the complete
algebra of 2"-dimensional matrices. '

In particular, Vl and V2 are easily expressed in terms
of the base matrices. %e have:

C,='P,Q, = IXIX XCX IX
s =C C C P =lxlx Xsxlx

Therefore
B

Vc ——g exp I iH*P,Q„}.
r=l

(12)

On the other hand, since

s,+~s,= —iP„+&Q„ for 1 & r & n 1, —

slstl ——+~P,Q„Cg. C„—=gP, Q„' U,

we have'

V =g e pI —H' P, Q,}.exp{iH'P Q.U}. (14)

The end factor dif'fers from the others. This is a some-
what annoying feature of the boundary, which will be
treated in detail below. The new notation for Vl, V2

equation fIIendbuch der I'hysik {Verlag. Julius Springer, Berlin},
Vol. 24/1, second edition, pp. 219—224j.

8 The proof of the completeness of the algebra is given by Brauer
and Acyl (footnote 6). See also I, p. 122.

g The operator U was denoted by C in I. See Eq. (32) in I.

Ke start out with a set of 2n-quantities I I„- which
obey the commutation rules

Fg=l, FpFi ———FiFI„(1~&k,t, &&2n). (10)

These quantities may be realized by matrices. For ex-
ample, for the case n = t, a possible realization is: 1"1

——s,
I 2

——isC. I 1 and 1 2 are the generators of the set of
Pauli spin matrices. That is to say, the complete set is
formed by taking all products of the generators: 1, s,
~sC) C=il"iran.

SimHarly, for the case n=2, a possible realization is
given by the generators of the set of Dirac matrices:

F~——sX1, I"2——isCXI, I 3 ——CXs, I'4 ——CXisC.

In the general case we may choose for the I I, .'

I 2r —1=CXCX ' ' ' XSX&Xj-X
F,=—CXCX "XisCXIXIX" =—Q„

reveals a striking similarity between these two matrices.
V2 is obtained (except for its end factor) from V& by
replacing P„by P„+1in all its factors. Such a transforma-
tion (in 2n-space) is the basic operation in spinor
analysis, and it will be seen to have same effect as a
similarity transformation in 2"-space.

An Alternative Realization

In (11) we have given a particular matrix realization
of the set of quantities I &. which obey the commuta-
tion rules

&1~1;+I"I;&1=2~a. (10)

Clearly, the commutation rules remain invariant if all
the I"& undergo a similarity transformation in 2"-space.
Let F~*——SI qS ' (1&k &n) The. n

Thus we see that the set j. I,
* provides another matrix

realization obeying (10). For example, the set

r & *=sxsX"-XCX1XIX" =—P&*,
(1&k&n), (15)

F,.'=sXsX XicsXIXIX "=—Q,",

is equally as good a realization as (11). It is obtained
from (11) by a transformation which interchanges C
and s in all operators. This realization is often easier to
handle than (11), and we will use it upon occasion.

The transformation from F~ to the I ~* given in (15)
is e6ected bv

g= 2"~"-(C+s)X (C+s) X X (C+s) = g-'

1)
C+s=

} }.—1)
(16)

(To see this, note that -', (C+s)'=1 and —,'(C+s) s
. (C+s)=C.) In this realization we have, of course,
iP„*Q„*=s„, and thus

n

g V g=g expIiH*P„*Q„"}

is diagonal in this coordinate system. On the other hand,
—iP„+~*Q, =C,+~C, and therefore Vg~gV. g, which is
no longer diagonal.

The Spin-Representation of the
Orthogonal Group

%e have seen that if the set 1 ~ is a matrix realization
of the commutation rules (10), then all the sets SFI,S '

are also realizations of (10).
The converse of this statement is a very important

theorem for our purpose: If two sets of matrices, F» and
FI„-*, both obey the commutatiort rules (N), then a trans

formation S can be found such that Fq*=SFqS '. If we

agree to consider two sets of matrices which are related
set-wise by a similarity transformation as being the
same set, we can say simply: For a given e there is only
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one realization of the commutation rules. This theorem
is not trivial. Its proofs" rests upon the fact that the
only possible automorphism of a complete matrix
algebra is given by a similarity transformation.

In what follows, we will assume that we have already
found one realization I's (e.g. , as in (11)).We will then
show that certain linear combinations of the I ~ will also
obey the commutation rules. Therefore, according to the
theorem above, these linear combinations (I's*) must
be related to the I ~ by a similarity transformation. This
gives us two relations between the l k and the I I,*.One
of these relations will be seen to be a "rotation" in
2n-space, and the other will be referred to as the "spin-
representation" in 2"-space of the rotation in 2n-space.
Let the linear combinations be written as

2n

I s*——Q o;s I', , 1 & k ~&2n,

where Ojl, are as yet arbitrary numbers, in general
complex. Then:

However, by the theorem, I ~* is also related to I I,

through a similarity transformation:"

I s*——S(o) I s S(o) ', 1&k&2n (20)

(21)

To show this, let
2n

o: I s~Q o,s r, =S(o) I', .S(o)—',

2n

O'. I s~P 0,„' I,=S(o') I,. S(o')—'.

We write S(o), to indicate that the similarity trans-
formation depends on the orthogonal matrix o, and
proceed to discuss the nature of this dependence.

Consider the full group of orthogonal matrices 0 in
2n;space W.e show that the collection of matrices S(o)
forms a 2"-dimensional representation of the orthogonal
group. That is to say: the correspondence between the
o and S(o) matrices is such that S(o") which corre-
sponds to the product 0"=0' 0 is the product of the
matrices corresponding to 0 and 0':

S(o")=S(o' o) = S(o') S(o).

In this sum, terms will cancel in pairs. For i',
0;,0,,1;I,+O,,o,,r;r, =0 because of (10). Only the
terms i=j have no partners and do not cancel. But by
(10), I';I', = 1. Therefore:

(I's )'=Q o,k'

If we now demand of the constants ojj, that they satisfy

P o,s' ——1, (1 &k & 2n),
2=l

we find that (I'&*)'=1.Similarly, if we demand that

Q o, to, ) 0, kit,——(1&k, t~&2n),

we 6nd 1 I,*I ~*=—I ~*Ff,*.Thus the set I"I,* wi11 form
a realization of (10) if the o,& fulfill:

2n

P o,,o, ,= 6„(, (1 & k, l & 2n). (18)

2n

0:I'i~I" t.*——P o,sl, , (1 & k & 2n).

' An elegant group-theoretical proof was also given by Jordan
and signer, Zeits. f. Physik 47, 631 (1928}.

We may view the oj~ as members of a 2n-dimensional
matrix. From the restrictions on its members, this
matrix is seen to be orthogonal. (If its members a.re real,
it describes a rotation in 2n-dimensional Euclidean
space. ) We then say that the rotation o operates on the
2n quantities I & and sends them into 1 I,*.

Combining the two operations we have

2n 2n

0 = 0 '0: I s~P P 0&soo' I z
/=1 j=l

2n

=Q o)s"I'(——S(o") I's S(o")—'.

Hut on the other hand

o' o: I's~S(o') S(o) I s S(o) 'S(o) '.

As a result
S(o' o)=S(o")=S(o') S(o)

(It is important to notice that the I's transform accord-
ing to the transpose —or, what is the same here, the
reciprocal —of o, and not according to o itself. )

Every rotation in 2n-space thus has a counterpart
transformation, S(o), in 2"-dimensional "spin" space,
For example, the rotation referred to above, which sends
P,~P„~t, (}„~Q,and therefore sends Vi—+Vs, has a
representative in spin space, and as a result we have
Vs ——SViS ' (if we disregard the difficulty with the end
factor in Vs).

Eigenvalues of the Spin-Representatives

While in principle it is possible to find S(o) explicitly
for any rotation 0, this is quite a complicated job in
general. Fortunately we shall need to know S(o) only
for the very simple case where 0 is the product of com-
muting plane rotations. Consider first one plane rota-
tion. It operates on a pair of F's, say I"I, and I ~, and

"In the case of the Dirac wave equation, the matrix o is the
Lorentz-transformation in 2n=4 dimensional coordinate-space.
The Lorentz-transformation induces a transformation in 2"=4-
dimensional "spin space, " so that Q~Q'=S(o) Q, where S(o) is
the spin-representative oi o, and Q is the 4-component Dirac
wave function. See Pauli, reference 7.
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leaves the others unchanged. Thus

K: Fl,~cos8 F~—stn8 1 t=—I ~*, I,—+F,,
I'g +sin8 I'~+cos8 j. ~=—I ~*, i&i, l.

We will verify that

S(K)=exp}8/2 I kF~}, (23)

or, using the series expansion of the right-hand term:

S(K)= cos(8/2)+sin(8/2) I qFt, (24)

(I ~, I ~ are known 2"-dimensional matrices; cos(8/2)
stands for the 2"-dimensional unit matrix multiplied by
the scalar cos(8/2). Thus S(K) is given explicitly by
(24)); and indeed,

S(K) ~ Fg, S(K) '

8 8 p p 8 8
=} cos—+sin —F~F~ !I&} cos—sin —F~F~ !) & 2 2 )

8 8~ ~ 8 8~=
}

cos'——sin' —
!Fl,—! 2 cos—sin —

! F~
2 2) ( 2 2&

=cos8 I I,
—sin8 I =I"I,*

Similarly S(K)1 ~S(K) '=sin8 F~+cos8. F1,=1 ~*. This
proves the assertion about the explicit form of S(K).

The half-angle which appears in the explicit form of
S(K) is a characteristic feature of the spin-representa-
tion. It shows that the group of matrices S(o) provides
a double-valued representation for the orthogonal
group. Clearly, if we add 2s to the angle 8 in (22), the
rotation K is unchanged, but S(K) is multiplied by —1
(see (24)).

Thus we 6nd that K is represented by two inequiva-
lent matrices, S(K) and —S(K). On the other hand, to
any S(K) there corresponds only one rotation K.

The angles of rotation in K (and in a general rotation
o) are not restricted to be real. They may be pure imagi-
nary, or even complex numbers. In the next section it
will be seen that the matrix V represents a rotation with
pure imaginary angles. %e may then write 8=i' and
obtain cosh', —i sinhy instead of cos8, sin8.

S(K) has a particularly simple form in the case that
F&——P„*,FE= Q„* (with the notation of (15)).We have
then:

S(K)=exp{8/2 P,*Q, }

8 8= exp I i8/2 s,} = c—os——i sin —s,
2 2

8 8
=1X1X X} cos-—i sin —s !

x jxlx xI

From this we see that the eigenvalues of S(K) are
e"~', e "~' with a 2" ' fold degeneracy for each value.
The rotation K itself has the eigenvalues: e", e ", and
+1, the latter being 2(e—1)-fold degenerate.

Consider now a product of n commuting plane rota-
tions. The 2n F's are grouped into pairs, and each pair
(F~i, I'.2) is rotated by an angle 8„, as in (22). We have

K=+ K„, (26)

and the eigenvalues of K are

(27)

Since we know the representative of each factor in K,
we also know the representative of the product

(exp[—(i/2) 8,]
!

0

exp[(i/2) 8,])

~ expL —('/2) 82]
x}

0 !x"
exp[(i/2) 8,])

f' exp[ —(i/2) 8„]
X

0

0

exp[(i/2) 8g] 3

with the eigenvalues

X=exp[i/2(&8~&8~& &8„)7. (30)

All sign combinations are to be taken, giving the ex-
pected 2" eigenvalues for S(K). Even for a more general
choice of F~z, Frm we 6nd the same eigenvalues for S(o).
This is so because we can pass from any matrix base~, F.~, F.2, to the base, P,*, Q,*, via a
transformation in 2"-space, according to the theorem
on p. 1234. But this transformation does not change
the eigenvalues of S(o).

To summarize, if the rotation 0 has the eigenvalues

) 7 )

then its spin-representative S(o) has the eigenvalues

X=e p[xi/2(+ &8a8a8„)],
for any choice of axes in 2" spin space.

Other Representations of the Orthogonal Group

S(K)=n S(K.) =rr -pI8, /2 F"F"}.
r=1 r= I

In the special case where F.~= Pr*, Fr~ ——Q.*, we have
n

S(K)=II exp(k8. P.*Q.')
l

( e—r',8/2 0
!=lxlx x

}
0 e el2)

mix" xl.

Besides the spin-representation, the orthogonal group
also has representations of dimension ('I") 1~&f&~2n.
These are easily found by considering the transforma-

(25) tion of a product of f F's under the rotation o. For
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example (for k/l)
Qa 2s 2%

o:r,r~&0;,r,)(po, ,r;)= p 0,,0,,r,r;

o:r„r,~g r,r, = S(o).r, r, S(o)-'. (31)
&&i 0;) 0~)

In general, the product F.i j. .2. 1'.f will be trans-
formed into a linear combination of all products of the
same rank. The coefFicients in this linear combination
will be the corresponding minors in the determinant of o.

Particularly important is the product

U= ri. r2. r3 r2 (32)

There is only one product of this rank. When the rota-
tion o is applied to the 1 's, U is merely multiplied by
the determinant of o. Now, o is orthogonal, so that its
determinant is either +1 (a proper rotation) or —1

(an improper rotation). Thus

o: U~aU=S(o) U S(o)-'. (33)

However, transformation by a matrix which is not a
spin representative of any rotation will, in general, not
leave U invariant. For example

g U gwaU.

3. THE EIGENVALUES AND EIGENVECTORS OF V

Dual Transformation

As was mentioned above, V2 is a transform of Vi
through the rotation which sends P,~P„+~, Q„—&Q„.
This similarity between Vi and V~ was recognized by
Onsager, who made use of a somewhat difFerent trans-
formation, ' 9:P„~Q„Q„—&P„+~. As a result,

9: iP,Q, +iQ„P„~,—= iP„+,Q„,——»,~iQ,~—~Q,+8',+i=»,+iQ,pi)

or, in the notation of I:
~r~srsr+1 y Srsr+ l~~r+l.

Thus transformation by 9 interchanges V& and V2. This
provides the algebraic reason for the "dual transforma-
tion" found by Kramers and Wannier if V& ——V&(H*)
and V2 ——V2(H'), one has

D: Vg(H*) Vg(H')~V2(H") V&(H').

To each lattice there corresponds a "dual" lattice,
in which the roles of H* and H' are interchanged,
and the partition function for the lattice described
by V(H, H') is the same as the partition function of
the dual lattice, with V(H'*, H~)—except for a factor
(sinh2H. sinh2H')-~"~'.

This fact enabled Kramers and Wannier to locate the

2%

(o;I,o, ~
o—,so;~) I',I',+ p o,j,o,&

1 & ~ &«j «& 2e 1

But the second sum vanishes, by (18), and so

critical temperature. In their model O'=—H, and the
critical point occurs at the temperature where the
equality IJ=B* is satisfied. In our model the critical
point is at H=H'*, or, in other words, at the tempera-
ture where

sinh2H sinh2H'= 1.

Procedure for Diagonalizing V

The similarity between V& and V2 may be utilized in
order to decompose V into a direct product of simple
components. It is possible to show that the transforma-
tion (P„—+P,+~, Q,—+Q,), which sends V~ into V~, can
be written, in 2"-space, as a direct product of two-
dimensional matrices. And since V& is also such a direct
product (although V2 is not), the eigenvalue problem is
reduced to the solution of n quadratic equations.

However, a much more direct approach is based on
the fact that V~ and V2 are themselves spin representa-
tives of certain rotations in 2n-space, say R& and R2. V
is then a representative of Ri R2, and its eigenvalues
are known as soon as we know the eigenvalues of the
2n-dimensional matrix R& R2. Now, the similarity be-
tween V& and V2 implies that there is a similarity be-
tween R~ and R2., and, indeed, we will see that R2 is
obtained from Ri by a permutation of rows and columns.
As a result, it is quite an easy matter to find the eigen-
values of Ri R2.

One preparatory step has to be taken: From (28) it
follows that

V~ ——g exp(iH* P„Q„)
r= 1

is the representative of a rotation with —,'8„=iH*,
1 ~&r ~&n. Similarly in V2, all factors except the last are
representatives of plane rotations: exp( —iH' P, &Q+„).

In order to bring this last "boundary" factor into line
with the others, we note that

(1+U) iU P~Q„=(1+U) iPgQ. , (34)
(1—U) iU PgQ„= —(1—U) iP)Q„.

Ke can therefore write"

V=-,'(1+U) V+-,'(1—U) V

fi

=-,'(1+U) Ig exp(iH'P, Q,)
r

g exp( —iH'P, +~Q„) exp(iH'PgQ. ) I

a
+ l(1—U) III exp(iH'P. Q.)

r 1

ss

.g exp( —iH'P, „,Q,) I
r 1

=—-', (1+U) V++-,'(1—U) V—.

"As noted in footnote 9, U is identical with the operator C in
I, and ful6lls the same function of splitting the space into two
disjoint subspaces. Kramers and Wannier operate only in the sub-
space of the projection $(i+U}.
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It is seen that not V itself, but V+ and V are representa- projection; that is:
tives of rotations in 2n-space.

—,'(1+~U)+-', (1—tU) = I, —,'(1+ U) —,'(1—U) =0.
Selection of the Eigenvalues in the

Two Subsyaces
Also:

L-:(1+tU) j'= l(E+ tU);

n n

B~P s,= tS, A~+ C,C,+)——'A,
I I

U sXsX" Xs=tU
(36)

tU is a diagonal matrix in which only +1 and —1 appear
along the diagonal. Imagine that we rearrange the order .
of the base vectors of our new coordinate system in such
a way that erst come all the +1 members of tU and
then all the —1's. Then ~U is merely a unit matrix in
a subspace (a half) of the 2"-dimensional space, and it
is the negative of a unit matrix in the other half. tU

commutes with tA:

(sX.X X.).(g C,C, )

=(Q C,C,+,) (sxsX Xs).
1

And, of course, it commutes with ~$; it therefore com-
mutes with tV. (In general, tU commutes with any
operator which is a product of an even number of I'I„.
it anticommutes with products of an odd number of I'~.)
However, if any matrix X commutes with tU, it must
be of the form

X=y p~

Thus tV is of this form too. On the other hand, if 7
anticommutes with ~U, it has the form

v Eok.
ggX~ o j.

To indicate that V+ and V are spin-representatives,
we write V+= S(R+) and V = S(R ). We will proceed
to 6nd the eigenvalues of each of these separately, and
will take into account the effect of the factors —',(1+U),
—',(1—U) by selecting half of the eigenvalues of V+ and
half of those of V . The two half-sets together will then
constitute the full set of eigenvalues of V. The justi6ca-
tion for this procedure may perhaps be best seen in a
diGerent coordinate system from the one in which we
have been working. Suppose that we change from our
original coordinate system by transforming with the
matrix

g = 2 "&' (C+ s) X (C+ s) X X (C+ s). (16)

This interchanges s and C in all operators. Then (in the
notation of (4))

/ o
'

o'OOgg

&'S ~i JK '4~'

Now, we may diagonalize the upper and lower squares
of tV independently of each other. That is to say, we

apply a transformation to —',(1+tU) tV+ which brings
it into diagonal form, and another transformation —to
diagonalize ~~(1—tU) ~ tV .

It will be seen below, when the actual transformations
are constructed, that both of these will be representa-
tives of orthogonal rotations. But while the rotation T+
involved in diagonalizing V+ is a proper rotation, the
other one, T—,is improper. As we have seen (Eq. (33)),
this means that

Therefore
y+: ~p~+~p,

S(T+) 4(E+'U)'V+I S(T+) '

=l(E+'U) S(T+) ('V+) S(T+) '
=-:(1+'U) SL(T+).(R+) (T+)-'j

but

S(T ).I l(E —'U) 'V I S(T ) '
=l(E+'U) S(T ) VV ) S(T ) '

=-', (1+tU).SL(T ) (R ) (T—)-'j. (37)

Suppose that we had already found the 2n-eigenvalues
of R, and we denoted them by exp(~y2, ), 1 & r & n. By
(29) this means that

S(T-) (tV-) S(T—3-'= S(K)

n=II-
l

— .P.*Q.* ~-=A-.
&2

This is a diagonal matrix with components (eigen-
values):

expLk(+ v2+ v4+ .+v2.)]
The particular combination of plus and minus signs
appearing in each eigenvalue depends on the value of
the components of (P„*Q„*).Now, the factor -', (1+tU)
eliminates half of these eigenvalues, keeping only those
which fall into the upper square. In that square

similarly for -', (1—tU). As a result,

-,'(1+~U) ~V=-', (E+ ~U) tV —,'(1+tU)
=-,'(1+&U) &V+ -', (E+&U)

is the upper square of ~V (also of ~V+), whereas
—',(1—tU) ~V is the lower square of tV (or tV ):

—,(1+tU) is a projection of the unit matrix on one of the
halves of our total space. —', (1—tU) is the complementary

~U, ;= + 1 =g (P,*Q,*);;.
r 1
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On the other hand (F,*Q„*),, may be either +1 or —1
for any 1&~r&pn I.n order to maintain tU;; equal to+1,
only an eveN number of factors (P,*Q,*);;may equal —1.
That is to say, only those eigenvalues remain in which
an even number of angles appear with a minus sign.

The same considerations apply to ~V+. Let the eigen-
values of R+ be denoted by exp(&y1„1) (1&&r&~n).
Then the eigenvalues of V+ are exp[-', (&y1&y1+.
+y1„1)].But from (37), only those eigenvalues occur
which fall into the subspace —',(1+tU). So that again we
must take only such sign combinations in the eigen-
values in which an even number of angles appear with
minus signs.

To summarize: Half of the 2" eigenvalues of V are of
the form exp[-', (&y1&y4& &y1 )]; the other half
are of the form exp[-', (&y1&y1& &y2 1)j. In each
eigenvalue an even number of minus signs appears in the
exponent. The y2„are the angles of rotation in R, the
p2„&—those of R+, and they are found by diagonalizing
the respective 2n-dimensional matrices.

Inasmuch as diagonalization of R and R+ does
not uniquely determine the order of their eigenvalues,
the question might arise whether or not the selec-
tion of eigenvalues in the subspaces -', (1+~U) and
—,(1—&U) is unambiguous. And indeed, in the equation
(T+) (R+) (T+) '=K, one may replace T+ by the
transformation P T+, where P is any permutation,
which interchanges the order of eigenvalues in K, pro-
vided it leaves K in canonical form (i.e., P may inter-
change the pair p„, —p„with the pair p„—p„or it may
interchange y„with —y,).

However, if P is an odd permutation (i.e., f
P

f

= —1),
we have PT: ~U~ —~U, since T+ was a proper rota-
tion. Then:

S(PT+) fl(1+'U) "~'I S(PT') '
=-;(1—~U) S[(PT+) (R+) (PT+)-1],

so that we must take those eigenvalues which fall into
the subspace ~(1—tU). There is nevertheless no differ-
ence between the set of eigenvalues selected by —,'(1+&U)

out of S[(T+) (R+) (T+) 'j and the set selected by
—,'(1—&U) out of S[(PT+).(R+) (PT+)-'].

This is so, because the odd P, which is an improper
rotation, will interchange an odd number of y„with
—p„; but this interchange is counteracted by the selec-
tion operator -', (1—&U), which keeps only those sign
combinations which have an odd number of minus signs,

2.0 ~

l.O-

-I.O-

-2.0-

.4 e .5

FIG. 3. Dependence of the angles p, on temperature. For
8(H, (high temperatures) y1 —yo. For II&II, (low tempera-
tures) y1~+yo.

so that finally we get again our old angles with an eve&z

number of minus signs. If P were a proper rotation, it
would interchange an even number of y„with —y„, and
would remain in the subspace —',(1+tU), so that once
more we have our old angles with an even number of
minus signs.

Thus we see that any choice of transformation, PT+,
will give the same selection of eigenvalues, provided we
take the appropriate subspace to go with PT+. Similar
considerations apply of course to V =S(R ).

The Complete Partition Function

The complete partition function for the lattice can
now be formally written down:

Z= (2 sinh2+)»~" P ), »= (2 sinh2If )»~"
i= I

fP exp[m/2(+y. +y4+ )]
+&exp[m/2(+~ +~ ~ )jI (~g)

The summations are performed over the permitted sign
combinations. A more compact form is:

Z= —,'(2 sinh2H)

n ( m ) n

g f
2 «»h—7 ~ f+g f

»inh —y, f

@=1 4 2 ) ~1 ( 2

( m ) ~ ( m
+g f

2«»h —7.— f+g f
»inh —y, f

. (39)1( =2 j ~1 4 2 )

FIG. 2. Hyperbolic triangle. Stereographic projection, conformal.
(Circles are represented by circles, geodetics by circles invariant
toward inversion in the limiting circle C of the projection. )

The Rotation Represented by V—,its Eigenvalues
and Eigenvectors

Ke now proceed to determine explicitly the eigen-
values and eigenvectors of V+ and V . V is the easier
one to handle from the point of view of notation, and
we will treat it first. It is convenient to deal with the
symmetrical operator

V()=—V)&.V) Vil=V)-l. V Vil,
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coshH* i sinhH*
—i sinhH* coshH~ (42)

~ig expl -EPP„Q„ I—=S(RO ). (41)
k2 ) The middle product represents the rotation:

We wiB 6nd the eigenvectors of Vo and obtain the eigen- The erst (and last) product represents the rotation:
vectors of V from these by a further transformation
with Vi&=exp(~sH'P). The eigenvslues of V and V, are coshH* i sinhH*

of course the same. —i sinhH~ coshB*
%'e have

a (i ) n

V.--=II p( -H' P.O.
~ II -p(-'H P„,O,)

&2 )

cosh 2H'
cosh2H' i sinh2H'

—i sinh2H' cosh2H'
cosh2H' i sinh2H'

—i sinh2H' cosh2H'

—i sinh2H' '

(43)

, i sinh2H' cosh 2H'

abed
hub c

e= g hub

* ~ ~ g
~ ~

g
(44)

where u, b, c, h are any n scalar numbers. The
normalized eigenvectors of this matrix are

&/(~)' where e—=e'&~'"'

1~&r &n.
(45)

Each of these 2n-dimensional matrices is "cyclic" in
two-row strips. Their product, Ro, is therefore also
cyclic. Cyclic matrices have very convenient properties
which permit the determination of eigenvalues and
eigenvectors without much difhculty. More complicated
matrices than R (corresponding to different physical
models) can also be handled in the same way.

We start with the simple e-dimensional cyclic matrix

sional. Its eigenvectors will be of the form

~4" %2„

~2nr, +
where Wm„ is an eigenvector of the f-dimensional matrix

c2 —a+ e2r .'h+ 64 .c+. . .+ 62(e—1)~ .h (4g)

If X2„ is an eigenvalue of n2„ then it is also an eigenvalue
of e. Thus the eigenvalue problem for the matrix e is
only f-dimensional, instead of being e f-dimensional.

In applying the above to our matrix Ro, we see that
f= 2. Upon multiplying the three factors of the rotation
Ro (see (42), (43)), we find that RD can be written
schematically as

'aboo oob*
b~aboo ooo

R;=ob*ab o.
o 0 ~ I ~ 0 o b+g

2(n—Or,

j.

The corresponding eigenvalues are

o+ &2r .$+ &4r .~+. . .+P(w—1)r .$ (46)

where

/ cosh2H' cosh2H~ i cosh2H—' sinh2H~&

~gi cosh2H' sinh2H* cosh 2H'. cosh2H~ j '

& —$ sinh2H' sinh2H* i sinh2H'. sinh'H* )
i sinh2H—' cosh'H~ —$ sinh2H' sinh2H*) '

This can be verified by construction.
In the general case, the members of e may themselves

be matrices, say of dimension f. e is now n f-dimen-

(—-,'sinh2H' sinh2H* i sinh2H' cosh'H* 1
i sinh2H' —sinh'H* —

2 sinh2H' sinh2H*)
'

The 2n-eigenvalues of Rf) are the eigenvalues of the
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n, 2-dimensional matrices

a+ ~2m .b+ o2& a—1) r .b4 (50)

The determinant of this matrix is +1. Its eigenvalues
may therefore be written as exp(+&2„), and y» is
determined by"

—,
' trace (e.„)=-', (e»+e-»)

= cosh+2„= cosh2H cosh2H
—sinh2H~ sinh2H' cos(2rs/n). (51)

Geometrically, +2„ ls the third side of a hyperbolic
triangle whose other two sides, 2H' and 2H*, include
the angle &o2,= (2rvr/e). Introducing the angle 52,

' (be-
tween 2H* and &2„), we can simplify the matrix a2, .
(See Fig. 2.)

We have from the geometry:

sinh2H* cosh2H' —cosh2H* sinh2H' cosa'
= sinhy cosh', (52)

sinh2H' since= sinhy sin8'.
Thus

where X is the diagonal form of R0 . Neither X nor t
are orthogonal, and so they cannot be represented in
spin space. We therefore apply a transformation I to
both sides of (55):

(It) R- (t-'I-')—=T R- T-'=I g-'I-'=K. (56)

I is so chosen that it brings X into its canonical form,
and at the same time makes T=I t orthogonal. The
spin-representative of the canonical form K is given by
(28). We shaH not need to know the spin-representative
of T explicitly, but we must make sure that T is or-
thogonal, so that it possesses a spin-representative.

When this is carried through, we find that the trans-
formation T is given by

(57)

Q.—+Q o,.'P„+ Q r,.'Q„,
a= 1 I

(1 0)e.„=cosh'~, )g0 1

+sinhp„~
0 sin82„' —i cosh~„'&~

Esln~2r +1 cos52r 0

0 o«'2 '&
= coshy2, —i sinhy2„~

l —e"" 0

The normalized eigenvectors of el„are
(o&'&»»~' ) t' jo&'&»»~

1/(2) I, ' —&'/»$ „yl, 1/(2) I &,&2&„,.&I

with

1 p2ra7r
a, =—cos~ +-', b2„' ~,n&Em)

—1 f'2raz
srn~ +-,'h»'

~,

1 f'2rax
o„,'= —sin(

(58)

corresponding to the eigenvalues exp(y2, ), exp( —y, „).
By (47), the 2n-normalized eigenvectors of Ro are

gs(&a2r+$6gr')

Zg&(~acr $6sr')

~&(eo4r+56sr')
&

jgs(eo4r —$62r')

u~, —= 1/(2')1

—1 (2rarr
cosl 2&1» I.

leads to
T (R-) T-'=K (56)

T is now orthogonal, '4 and possesses a spin-representa-
tive, so that the equation

and

vg„= 1 (/n2)&—

je '( s $62 ')

' &et(to2r+$6ar')

e i(&acr (6zr')

~ &
f (&a 4r+k6xr')

~s(~ger —k6sr')

(54)

S(T) (V -) S(T)-'= S(K)=g exp[(~/2)r„P„Q„j. (59)
1

Diagonalization of V—

S(K) is still not diagonal, because in our coordinate
system iP„Q,= C,. However, this is as close as we can
come to the diagonal form of Vo as long as we make
transformations in 2n, -space. In order to diagonalize
S(K) we have to use the transformation

g=2"" (C+s)X(C+s)X X(C+s)=g '
gC4=8„,

I et the matrix of these eigenvectors be denoted by t,
so that

(55)t R-.t-&=x-

'3 These are the y, given in I, Eq. (89). Figure 2 is the same
as Fig. 4 of I.

which is not the spin-representative of any rotation.
Then we find

g S(T) (~o ) S(T) 'g=g S(K) C=~ (60)
"The determinant of T is —j, so that it is an improper rotation.
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Since Vo ——VI & V VI&—=S(H) (V
—

) S(H)—', we have

g S(TH) (V-) S(TH)-'g=m' (V-) e:I=a- (61)

with
e =g S(TH). (62)

Although the rotations involved in %' are completely
known, it is nevertheless not feasible to write down
explicitly the components of %' because of the com-
plexity of S(T).

On the other hand, we can, without much difhculty,
evaluate quantities of the form {%' X %' I}» which
will be seen in Section III to have important physical
signihcance.

Analogous Results fox V+

Here H stands for the rotation represented by VI & (the
reciprocal of the rotation in (42)):

H: P„~coshH* P„—i sinhH* (}„
Q„~i sinhH* P,+coshH (},.

Again, if we introduce the angles 6'2„~, with the help
of which the eigenvectors are expressed, we 6nd just as
in the case of V

e'+ ——g S(TH), (69)

where I now involves the odd-indexed angles 6'2„~ and
cd» I ——[(2r—1)s./nj.

we find for very large m

Z~f 7I „„™,
where f is the degree of degeneracy of X„,.

We have two sets of eigenvalues,

(70)

4. DISCUSSION OF THE PARTITION FUNCTION

Comparison of the relative magnitudes of the eigen-
values of V yields important qualitative results about
the behavior of the partition function. Since we have

2"

Z Pl.m

We still have to find the eigenvalues and eigen-
vectors of

n—1

and
logl1 =—-', (&yI&y4& ay2„), (71)

log&+—=—,'(ayI~ yaw ~y, „ I), (72)

V+=+ exp(iH'P, Q„) g exp( iH'P, +—,Q„)

exp(iH' PIQ„)= S(R+).

with the permissible sign combinations. The largest
eigenvalue in each set is the one in which all signs are

(64) positive. The two maximal eigenvalues are, then,

R+ is identical with R except for a few sign changes.
Schematically R&+ is of the form

, ~ 100. 0 —b+'

1*& b00 0
ob*abo 0

0

The eigenvectors are:

(65)

dr —j.

(66)

n{2r—1) .+'2r—1

where %.„~ is an eigenvector of the 2-dimensional
matrix

71msx exp[2(rI+ r3+ '+ Y2n I)j&—
ax =exp[2(VD+y2+ +y~. 2)],

(73)

(74)

(we write yo instead of y2„).
Since, from its de6nition, 72r y2r i for large n, these

two eigenvalues are almost equal for low temperatures,
up to the critical point. However, yf} falls off very
rapidly in comparison with &I, and, as a result, (X, )"
becomes negligible compared to (X, +), for tempera-
tures higher than the critical point. This can be readily
seen in the case of the quadratic crystal, where J'=J
or H'=H. There we have:

cosh'„= cosh2H* cosh2H
—sinh2H* sinh2H' cos(rs./n)

= coth2H cosh2H —cos(rx/n), (75)

since from the definition of H*, sinh2H~ sinh2H = 1.All
the p„have a minimum at the point H =H, given by

~+ ~Br—l.b ~{n,—i) {2r—1) .b+

a+ 62r—I .h+ &
—(2r—II .b4 (67)

The eigenvalues of e2„ I (and of R+) may be denoted or
by exp(~y» I) and

cosh2H,
coth2JI, .sinh2II, — =0,

sinh'2H,

sinh'2H, = i.

(76)

coshy2„~ = cosh2H* cosh2H' —sinh2H*
~ sinh2H' cos((2r —1)s/n). (68)

Thus, p2„and p2„& are covered by the same formula
(as can also be seen from the similarity between e2„
and c»—I) ~

H must be positive, and therefore H, =0.4407
However, po behaves differently from the other p„.

From

coshyf} = cosh2H* ~ cosh2H
—sinh2H* sinh2H = cosh2(H* —H), (78)
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we see that yo changes sign" at the critical point H =H, .
Figure 3 shows the behavior of y„as a function of
H=(J/kT). All the y, are more or less symmetrical
about the critical point, except for yo, which changes
sign there. This causes X, to fall off very rapidly in

comparison with ) + for temperatures above the
critical point.

~maw

+ 82(H -H*)
max

for H&H„T& T,
(79)

for H &H„T&T,.

m
=2 exp (7&+'Y3+ ' ' '+72 —i)

2

The existence of a degenerate eigenvalue implies long-
range order this occurs for the low temperature range
(twofold degeneracy) up to the critical point T. For.
the partition function we have approximately

(2 sinh2H) —~"" Z 2X m

critical point, we may take y2„=y2„& (1~&ran —1) for
large enough n, and

p1 for TQ T,.

for T& T,.

Therefore the two products containing cosh(my/2) as
factors may be taken as equal; while the two products
with sinh(my/2) are equal below the critical tempera-
ture, but cancel each other above T= T,. Ke have then:

(2 sinh2H)-""" Z~II (2 cosh(m/2)y~, ~),

for T)T„
(2sinh2H) ~~" Z (81)

n n

=II (2 cosh(m/2)y2„~)+II (2 sinh(m/2) y2„q)

n n

=II (2 cosh(m/2)yg, g) [1+II (tanh(m/2)y, „,) I
r=1 r=1

(2 sinh2H) ""'-.Z
when II)H„

(80)
Furthermore, since m is very large,

for T& T„,.

tn
= exp ( ri+ra+ ' '. '+'Yz~ —a)

2

when H &H, .

The exact partition function, which takes into ac-
count all eigenvalues, does not differ much from the
approximate result. In the exact solution we have

2cosh(m/2) y2, ~ exp[(m/2) y~„~$,

except for temperatures very near T, (coshx e*/2 as
soon as x 5). Therefore, above the critical temperature
(2sinh2H) ""/2 Z

exp( (m/2)(y~+y3+ . +y2e r)]=—X, , (82)

Below the critical temperature we find

Z=-'(2 sinh2H)"""

/ m q ~ t' m
II (' 2c»h—v, (+II (

2sinh —y,
2 j -i& 2 )

where
(2 sinh2H) ' "/2 Z g 'A

g= 1+II (tanh(m/2)y. , ~).

(83)

m ~
~ t' m+II(2-.h—., (+II (2 .h—., (

(39)
v=1 L. 2 J ~~ L 2

Everywhere, except in the immediate vicinity of the

"(75) and (78) do not determine the sign of y,. To do this one
must actually apply the chosen transformation T to R. With our
choice, and the suitable selection operators (see p. 1239), we 6nd
easily that all y, &0, (r & j.), and 2p& —=K—K*.

The product of the factors tanh(my/2) is never larger
than 1, so that 1&g(2; and with large m, g 2 rather
close to T,. The appearance of p here is equivalent to
the twofold degeneracy of X, for T&T, in the approxi-
mate solution of Z.

The writer is grateful to Professor Lars Onsager for
his constant interest and advice in the course of this
work.


