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under the conditions A and B. The simplest conclusion
that might be drawn would be that these cases are not
fundamentally different and that the limiting film
transfer velocity in all cases depends, for a given
surface,

{1) on the temperature
(2) on the minimum periphery in the connecting surface above

the higher level.

The suggestion of Bowers and Mendelssohn that ad-
sorbed air on the surface is responsible for anomalously
high transfer rates would not appear inconsistent with
this picture.

Finally, we are grateful to Dr. C. A. Reynolds and
Mr. E. A. Lynton for their assistance with the experi-
ment.

1Vote added iN proof P—rofessor F. Simon, at the
recent Conference on Low Temperatures at M.I.T., has
kindly drawn our attention to the fact that an estimate
of the Type A 61m transfer rate may be computed from
data given in reference (2). These measurements extend
down to about 1.6'K and give a transfer rate of ap-
proximately 8X10 ' cm'/cm sec. a,t this temperature,
which is somewhat less than the value observed by
us above.
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It is shown that in the calculation of absorption in the Lorentz collision theory, it is essential to include
the work done impulsively by the electric field during the sudden changes of position at collision. This
work was implicitly included in the theory of Van Vleck and Weisskopf, but these authors did not give the
breakdown into work done between and at collision. It is verified that the shapes of spectral lines for a
classical harmonic oscillator and also a Debye slow rotator are the same in absorption and spontaneous
emission, provided the energy density obeys the Rayleigh-Jeans law. The usual proofs of equilibrium simply
establish equality of the integrated absorption and emission, without examining the detailed balancing
at individual frequencies, not necessarily near resonance.

A COLLISION or impact theory of the width of
spectral lines is one which conceives of the

frequency distribution within a line as resulting from
interruptions of the radiative process by collisions with
molecules. The exact form of the resulting line width
depends in a rather critical way on the detailed assump-
tions that are made about the nature of these inter-
ruptions, and there seems to be some confusion both
as to concepts and terminology concerning the subject
of impact broadening. The present paper attempts to
clarify this situation.

A. LORENTZ THEORY OP SPONTANEOUS RADIATION

As it is usually understood, the Lorentz' formula for
line breadths results from simple Fourier analysis of a
6nite wave train radiated by a harmonically moving
charge. Let the radiative frequency be co, and suppose
that the radiation goes on for a time 8. Then, if the
amplitude is xp, the Fourier analysis of the displacement

~ Assisted by the ONR.' H. A. Lorene, Proc. Amst. Akad. Sci. 8, 591 (1906).

Is

x(t)= (x~')e ~d ',
(2s) &~

x(co') = xo cos((uk+@)e ~'"dX
(2ir) &~ 0

When
~

x(id') ~' is averaged over a random distribution
in the arbitrary phase constant p, the result is

xo' 1—cos(co' —~)8 1—cos(co'+~) el
X GO +

4n' ((a—a)' )s (~+~')'

This expression must be integrated over all collision
times 8 with a weighting function ae ~, where a is the
mean collision frequency. One thus obtains

xp' 1
X M +

4' a'+((u —co')2 a2+(c0+co')2

According to classical mechanics, the power radiated
by a charge e oscillating in one dimension is
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i
x(ca') i'da'.

zss2c-'(d'x/dP)'. Our Fourier components are normalized t,+& f;—is replaced by 8; one obtains
in such a way that

W = (e' E'/ m) P, cos((a't+y;)
Jo

Hence the power emitted in the spectral interval co',

a+dao is

Ps(a)')da'= (2e'/3c') 2co"~x((o') ~'-a Ao'.

Here the factor a owes its origin to the fact that we
have made the Fourier analysis of the displacement
existing only in a single interval between two collisions,
and in a very long time T there are aT such intervals.
When we utilize our explicit formula for the mean
square Fourier components, the expression for I' s(co')
becomes

e'-xo'

Ps(a)') = co"
, +, (1)

3wc3 a2+ (co—a)')2 a2+ (a&+u)')2

B. LINE SHAPE IN ABSORPTION

The shape of the spectral line can also be studied by
examining absorption rather than spontaneous radia-
tion. We calculate the power absorbed by an oscillating
charge of natural frequency co from a light wave whose
electric vector is E cos(co't+@). The oscillator is subject
to collisions at times t~, t2, , and each collision is
supposed by I.orentz to have the eGect of making x
and i zero abruptly at the instant of collision. The
equation to be solved is then

x+aPx= (eE/m) cos(co't+@),

and the solution wanted here is

xg for tg ~&t ~&t.

x= x2 for t. &&t &~t;l,

Xdt cos[co'(t X)—+@,]coscohdX, (3)
0

with p, =co't;+Q.
As to the distribution of collision times, we assume

again that the number of intervals having duration
between 8 and 8+d8 is ce "d8, so that the total time
of observation is

T= I ce—'8d8=c/a-".

Therefore, in Eq. (3), P; may be replaced by

The presence of many absorbing atoms permits the
assumption that the t;, and hence the p;, are distributed
at random. The expression for lV may then be simplihed
by averaging over p, and it becomes

~8 ~t
g = (e'E-'/2m)aT e ~'d8 ' d[ I cosa&'P, coscoydy. (4)J, J,
At this stage it is well to remember the formula:

On using it one obtains for the average power absorbed
per atom

N' e'E' a a
+

T 4m a~+ ((v' —(o)2 a2+ (cv'+(a)2

, etc.

x, = (eE/nuu) ) cos((o't —co'P+$) sinahdX,

The so-called "structure" factor, which is enclosed by
square brackets, and which determines the dependence
on frequency near resonance, agrees with that in (1).

t—tj

i,= (eE/m) ~~ cos(ra't —&a'X+@) cosrvhdlj, .

These integral forms, chosen to satisfy the conditions
x,(t,)=i,(t,) =0, are most convenient in calculations.

The work done by the field is

C. CORRECTION OF LORENTZ FORMULA FOR WORK
DONE DURING COLLISIONS

The preceding derivation, however, ignored the work
done by the electromagnetic forces during collisions.
As the oscillator displacement drops back from the
value x, (t;+&) to zero at the time t,+&, its velocity is
momentarily in6nite. Because of this, there is added
to the work given by Eq. (2) the increment

tj+1

W=P,
J

eE cos(ca't+@)i,dt (2)
t,+1+8

lim P, I eE cos(u&'t+g)i;dh.
b~

%hen the substitution for i, is made and the difI'erence A partial integration converts each term of this sum-
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mation into

[eE cos(ce'c+@)x]I',.t, ,= eE—cos (ra'1+g) x, (&,+c),

pt.us an integral which vanishes in the limit.
To the right-hand side of (3) one must then add

( —e 2E, 2/ m(u) P, cos(co'8,+@,)
~8)

X costs'(0, —X)+ct,j sincohdX.
"0

If the same assumptions as before are made about
the distribution of the cp, and 8,, Eq. (4) takes on an
additional term

oo ~8
( e2E aT—/2mcd) ~ e '2d8 cosco'X sincehdg,

"o 0

and W/T, previously given by Eq. (5), increases by

rather than absorption; then one is led to regard (1)
rather than (7) as the Lorentz formula.

As the structure factor is different in (1) and (7), it
would at this stage appear that the shapes of emission
and absorption lines are diferent, in violation of the
thermodynamics of radiation. This dilemma, however,
is removed when allowance is made for the fact that
after collision the displacements should be taken as
distributed according to the Boltzmann law rather than
random, as Lorentz supposed. Van Vleck andWeisskopf
show that a further contribution to W/T must be
included if it is assumed that, after collision, an oscil-
lator does not snap back to a zero (or mean zero)
displacement, but to the value

(eE/mc22) co&;,

which is the mean of the displacement of all oscillators,
computed with the Boltzmann weighting factor, in the
field of the light wave at t;. This requires a further
addition to the power given by Eq. (7) of amount

e Ea e —co CO +(d

4m' a2+(cu' —(o)2 a2+(co'+ c)d2

(6) e2Ea ao2 —cow CO +0) M

4mce2 a2+ (cd' cd) 2 —a2+ (co'+cd)2-
(8)

This is the power spent against the forces during
collisions. In the optical range of frequencies, where co

and u' are nearly equal. and both are very large, (6) is
negligible in comparison with (5). It may also be noted
that the power spent during collisions is abstracted
from the light wave on one side of the spectral line,
delivered to it on the other. When (5) and (6) are
combined, the result is

e'E'm'
(W/T) = (7)

4mco a +(op ce) a +(Gg +cd)

Van Vleck and Weisskopf2 have derived Eq. (7)
directly by computing the mean displacement of all
oscillators and then diGerentiating it with respect to
time to obtain the mean velocity. The work done at
collisions is implicitly taken into account because the
discontinuities at collision aGect the time derivative of
the mean displacement at any given instant even
though they do not enter in the mean velocity of a
particle between collisions. The signilcance of the
procedure of Van Vleck and Weisskopf is made more
explicit and clearer by the method of the present paper,
which segregates the contributions of the work done
between and at collisions, and which is therefore
perhaps not entirely without interest. Van Vleck and
Weisskopf call (7) the Lorentz formula. To what
expression one attributes this name is to a large extent
a matter of personal choice and opinion, as the calcu-
lations of Lorentz are many-sided. It is probably more
customary to approach the problem of spectral distri-
bution from the standpoint of spontaneous radiation

I J. H. Van Vleck and V. F. Weisskopf, Rev. Mod. Phys. 17,
227 (1947).

(Van Vleck and Weisskopf do not give the breakdown
of (8) in terms of work done between and at collisions;
a simple calculation by the methods of the present
paper shows that the contribution of the former to (8)
just equals the expression (6) in value, and that the
balance of (8) is accounted for by the impulsive work
at collision. )

Since our calculation is purely classical, we should
expect equilibrium between absorption and spontane-
ous emission if the energy density has the Rayleigh™
Jeans value

p(ce') = AT(a "/2c'd' (10)

Indeed, the expression (9) just equals (1) if we use
(10) and also employ, as we should, in (1) the equi-
partition value x22= 2kT/mc22 for the statistical average
of the square of the amplitude of a harmonic oscillator.

The literature is full of proofs that the total integrated

D. BALANCE BETWEEN EMISSION
AND ABSORPTION

Formulas (7) and (8) relate to power absorbed from
a monochromatic wave of amplitude E and frequency
~'. To study the spectral distribution of the absorption
in a non-monochromatic radiation 6eld, we must replace
E' by 82rp(cd')dc0'/3 and make some assumption con-
cerning how the energy density p(co') of radiation
varies with frequency. When we make this replacement
and add (8) to (7), we find that the energy absorbed
in the interval ce', c0'+dcu' is Pg(ce')dc'' with

2x'ego 2

f'~(~') = + , p(~') (9)3~2 a2+ (~& ~)2 a2+ (~c+~)2
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absorption and emission of a harmonic oscillator balance
in a Rayleigh-Jeans radiation field. However, so far as
we know, no explicit veri6cation has previously been
published that the shapes of the absorption and
emission lines are the same.

It should be noted that our proof of the equilibrium
required utilization of the correction (8) introduced by
Van Vleck and Weisskopf to allow for the fact that
after collisions the phases are distributed in accordance
with the Boltzman law. Without this correction,
balance between absorption and emission is not secured.
It is true because of Eq. (5) that if one neglects the
impulsive work done at collisions and assumes random
phasing after collision, the absorbed energy will dier
from the emitted only by a factor co'/ra", adis—tinction
unimportant in the immediate vicinity of resonance,
the case usually considered. Exact compensation at all
frequencies is required, however, if detailed balancing
is to hold. Accurate fulfillment of this requirement can
be regarded as additional con6rmation of the correct-
ness of the Van Vleck-Weisskopf shape factor for
absorption.

It should also be mentioned that in the calculation of
spontaneous emission at the beginning of this paper,
we implicitly took into account the sudden changes of
position at collision, with attendant singularities in

velocity and acceleration. For we made a Fourier
analysis of the displacement, and multiplied by —or'-'

to obtain the Fourier components of the acceleration.
If instead we made directly the Fourier analysis of an
acceleration which is —xga' cos(~t+g) over a time
interval 8, and zero elsewhere, thus neglecting the
in6nite accelerations at collision, the Fourier compo-
nents of the acceleration would dier by a factor co'-//co"

from those we use. Then a factor co'/s&" would be
introduced in (1), and the balance between emission
and absorption spoiled.

E. THE SLOW ROTATOR

The need of considering the spontaneous radiation
arising from the impulsive changes in position at
collision becomes particularly clear if one utilizes the
model employed by Debye' in studying absorption and
dispersion at radiofreque'ncies in liquids. He takes the

3 P. Debye, Polar Molecgles (The Chemical Catalog Company,
Inc. , New York, 1929), Chapter V. For the calculation of the
absorption with the Lorentz model of strong collisions, see es-
pecially Van Vleck and Keisskopf, reference 2.

molecular system to be a rigid dumb-bell whose proper
frequency of rotation is small compared with the
collision parameter a. Except for vibrations forced by
the applied 6eld, the molecule thus is regarded as
standing still between collisions. Hence no spontaneous
radiation at all would be obtained if one tried to apply
the Fourier analysis only to the acceleration for the
interval between collisions. On the other hand, emission
of the proper amount is obtained if (1) is used. In this
connection, the proper frequency co is to be taken as
zero and the quantity e'x02 in (1) is to be replaced by
2p,' inasmuch as the circular rotation of a dipole of
moment p, can be resolved into two simple harmonic
motions of amplitude p, in two orthogonal directions.
Various authors have shown that the absorption by
the slow rotator is given by

4+@2')" a
&~(~')=, ~(~')

3kT co"+u'

There is exact agreement between (11) and (1) (with
a&=0, e'xo'=2p') when the energy density has the
Rayleigh-Jeans form (10).

In closing we should like to emphasize that the
calculations of the present paper are based entirely on
the Lorentz model of in6nitely short collisions with no
persistence in phase. For actual atomic systems, cor-
rections for the 6nite length of collision may alter the
line shape. Also, in quantum mechanics, where the
Planck radiation law replaces that of Rayleigh-Jeans,
the problem of the calculation of the shape of the
absorption curve and veri6cation of detailed balancing
is far more dificult than in classical theory; we have
not succeeded in solving it accurately even for collisions
of the Lorentz type. In the microwave region, however,
there is no difhculty, as co' is small compared with
kT/h, and the Planck formula reduces to that of
Rayleigh-Jeans. In this region, the shape factor is
therefore appropriately given by (1) or (9) for the
Lorentz model of collisions even if quantum mechanics
is used. In particular, a quantum-mechanical derivation
of the Van Vleck-Weisskopf absorption formula has
been given by Karplus and Schwinger. 4

We wish to thank Professor D. M. Dennison for
calling our attention to the desirability of studying
line shapes simultaneously in absorption and emission.

' R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).


