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On the Use of Subtraction Fields and the Lifetimes of Some Types of Meson Decay
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The method of subtraction 6elds in current meson perturbation theory is described, and it is shown that
it leads to 6nite results in all processes. The method is, however, not without ambiguities, and these are
stated. It is then applied to the following problems in meson decay: Decay of a neutral meson into two and
three p-rays, into a positron-electron pair, and into another neutral meson and photon; decay of a charged
meson into another charged meson and a photon, and into an electron (or p,-meson) and neutrino. The
lifetimes are tabulated in Tables I, II and III. The results are quite di8erent from those of previous calcu-

lations, in all those cases in which divergent and conditionally convergent integrals occur before subtraction,
but identical whenever divergences are absent. The results are discussed in the light of recent experimental
evidence.

I. INTRODUCTION

ECENTI.Y Pauli and Villars' have shown that it
is possible in electrodynamics to make the self

energy of the light-quantum zero, by the use of some
formal subtraction methods. One of these may most
easily be understood as consisting in the introduction
of several fictitious subtraction helds in addition to the
electron-positron field. The idea, which is due to Rivier
and Stucklberg, ' is the following: The matrix element
contains an infinite integral over the momenta of the
intermediate virtual electron-positron pairs which are
responsible for the self energy. To this matrix element
are added and from it subtracted several others for the
same process, in which however the virtual pairs have
different masses. Since the infinities have the same
structure, it is possible to choose the number and
masses of the additional helds so as to make the ex-

pression converge. In the case of the photon self-energy,
the conditions which are necessary to bring convergence
are also sufricient to make it vanish. One may regard
this procedure as a subtraction method; no real

processes involving these additional fictitious fields,
such as their self energy, or scattering are considered,
and one requires the masses of the extra fields to be
very large. It is also possible to treat the other infinite
quantities' in electrodynamics, the electron self-energy,
and the charge renormalizations in the same way.
However, this is academic, since one may disregard
them, finite or infinite. In meson theories this is not so.
Divergencies of a sort that cannot be removed by
name-calling occur, 4 especially the decay of rgesons into
other particles via an intermediate Fermi-Dirac (nu-
cleon) field. We discuss these processes in this paper.

Present address: University of California, Berkeley, California.
~%. Pauli and F. Villars, Rev. Mod. Phys. 21, 433 (1949).' D. Rivier and E. C. G. Stiicklberg, Phys. Rev. 74, 218, 986

(1948).
3 It has been shown by F. J. Dyson, Phys. Rev. 75, 486 (1949),

that all the in6nite quantities in the perturbation theory of
quantum electrodynamics are either of the form of a correction
to the mass of the electron or to its charge.

4 Divergences of this sort have been exhibited by K. M. Case,
Phys. Rev. 75, 1440 (1949}, in the calculation of the magnetic
moment of nucleons due to their tensor coupling to a vector meson
field.

II. SUBTRACTION FIELDS

Since it is very convenient in these and other held
theoretical problems to use the Feynman diagrams, ' the
reader is assumed to be familiar with this mode of
computation. It is equivalent to the older methods. For
purposes of illustration, consider the disintegration of
a scalar meson into two lighter scalar mesons, via an
intermediate neutron field, and the scalar interaction.
The Feynman diagrams are as follows:

The initial meson, of four-momentum k makes a
neutron-anti-neutron pair; then either the neutron or
the anti-neutron can radiate the meson ki, before the
particles annihilate with the production of the other
meson k.. The two matrix elements are

gg p dP

(SExEiiEi2) & & (2n.)4

L(pi+ki )vi+im)LP r +im]L(p k~ )r +™]
X—

(p'+m') [(p+ki)'+m'jL(p —k2)'+m']

+same term with ki, k2 interchanged

gg" I. d'P .
(im)

(2Ei Ei,iEi, 2) & ~ (2n)'

E3P'+2p(k, k2) m—' ki—k2)—
X

(p'+m') $(p+ ki) '+m' jDp k,)'+m—'j
The integral is logarithmically divergent. However, if
it is now regarded as a function of m, the virtual
nucleon mass, and we subtract and add other nucleon
fields of much larger mass, m; (mo is the mass of the
neutron), the sum will be finite provided P;m,C,=O.
C,=+1 and indicates whether the ith held is to
be added or subtracted. However, there will be a term
left of the form P; C,m; lnm;, which becomes infinite as
the m, (i/0) are made large, unless it is required that

P C,m, lnm;=const. This constant seems to be arbi-

trary, and as long as it is so, the subtraction is not

~ F. J. Dyson, Phys. Rev. 75) 486 (1949).
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unique. In the following, it has been taken to be zero.
This has the intuitively correct result that the final
convergent matrix element will be small, if the inter-
mediate mass ns is large.

All infinities in 6eld theory are similar to that of this
example. Somewhere in the Feynman diagram there is
a closed loop which gives rise to the in6nite integral.
Furthermore this loop contains a world line which begins
and ends in the loop. In the above example this was the
neutron line, in the case of the neutron self energy this
is the meson line. The infinite integrals are either
logarithmically, linearly, or quadradically divergent.
They are always made 6nite by requiring a sufficient
number of the following conditions for the masses of the
additional fields of the type whose line begins and ends
in the loop.

1. Q C, =O,
2. P C,m, =O,
3. Q C,m,2=O,

Condition 1 has been used by Feynman. Pauli has
required conditions 1 and 3 in the treatment of the
photon self energy, and conditions 1 and 4 in the cal-
culation of the electron self energy. DiGerent problems
require diferent conditions, but conditions 1—6 may be
simultaneously ful60ed and always suflice.

As already pointed out in the example, the constant
(zero in 4, 5, and 6) in the logarithmic condition is
arbitrary although the choice which is made here is the
simplest and leads to intuitively correct results.

If one applies this procedure to all virtual fields, then
all Feynman diagrams give independently finite results.
This is illustrated on a more complicated diagram:

It represents the scattering of a nucleon by another,
through the intervention of two types of mesons, of
mass ~ and p, . There are two loops Ij and I2, giving rise
to a divergent double integral. The only lines which

begin and end in the same loop are those of the meson p.
The subtraction method described here requires that
this matrix element be supplemented by (n+1)' —1

others, in which the masses of the two intermediate
p,-mesons range independently from 0 to e. One really
should increase the number of diagrams still more, by
also allowing the mass of the ~-meson to range over
its values. However in the limit of large mass ~ all such
diagrams give the result zero, and one is left just with
those diagrams in which the mass of the ~-meson is Kp.

Now all those diagrams are considered separately in
which one of the p,-mesons, say the bottom one, has

fixed mass p, ; and the top p-meson mass runs from 0 to n.
The integral Ij is then finite, and if now p, ; is allowed to
assume all its values, the double integral becomes 6nite.
One then permits the extra masses p, ;, i/0 to become
very large and the matrix element becomes independent
of them.

It does not seem possible, however, to put the method
into Hamiltonian form, and this is so because some of
the extra fields must be subtracted rather than added.
It is rather an algorithm, defined only in terms of per-
turbation theory. There are no equations of motion, and
therefore no rigorous solution with which the per-
turbation approximation can be compared. This has as
its consequence that some results which follow imme-

diately in the Hamiltonian formalism have to be re-
examined. One of these, the unitarity of the "S"
matrix, still holds true, and so do gauge and Lorentz
invariance. Furthermore, because the formalism is con-
vergent throughout, these properties cannot be lost
during the calculation. How they may otherwise be
lost in processes in which infinities occur is shown by
Wentzel' in a calculation of the photon self-energy.

Although gauge invariance, Lorentz invariance and
probability conservation are maintained in this sub-
traction procedure, at least one theorem, that of the
equivalence of pseudoscalar and pseudovector coupling
of the pseudoscalar meson to the nucleon, is not. It is
lost for those processes which are convergent with pseu-
doscalar coupling, but divergent with pseudovector
coupling before subtraction. For these cases the ordinary
proof of equivalence is not rigorous, since divergent
expressions occur. It is perhaps a serious difficulty, and
does not seem to be connected with the lack of unique-
ness of the logarithmic conditions. Of course, the
equivalence is maintained for -all those processes in
which both couplings give convergent results before
subtraction.

In this paper the word divergent is applied indis-
criminately to all integrals which do not have a unique
value regardless of whether or not it is possible to
obtain finite values by choosing special integration

g g UTQoll

Gregor Wentzel, Phys. Rev. 74, 1010 (1948).
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procedures. In this connection it should be pointed out
that ural infinities or ambiguities of this sort which are
present in the old perturbation theory find their
counterparts in the new perturbation theory of "" J "g y Jn o
Tomonaga, Feynman' and Schwinger. '

I [m'+ p' —«'y(1 *)]6~ 4p«p I

[P'+m' —"y(1—x)]o

—«'m f' 2k»k&„1
dx dy tdp

2 & «" J "o o

1—4y(1 —x)
X

[p'+ m' —«'y(l —x)]'

C
0

J

FIG. 3.

0
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The quantities k» and k2 are the photons which appear
as decay products; k=k~+k2 is the momentum of the
decaying meson. J„„is convergent but I„„converges
only conditionally. Ke therefore use the subtraction
6eld technique. Regard M as a function of m and add
and subtract auxiliary matrix elements such that con-
dition (2) P C,m;=0 is fulfilled. This suffices to deter-
mine M uniquely. J„„is unchanged in the limit of large
masses. The formerly divergent part of I„„which is now
finite, is

(p'4 4p.p.)—
dx d'p Q m,C', =0

~ o [(p'+m, )—«'y(1 —x)]'

the remaining part of I
III. SOME MESON DECAYS NOT INVOLVING
THE FERMI COUPLING OF THE NUCLEONS

The notation and the equations of motion are given
in an appendix. Here it may sufBce to point out that
natural units are used, and that heavyside units are
used throughout except for the electromagnetic 6eld.
There e'=1/(137)&. The nucleon-meson coupling con-
stants have been left explicitly in the results; their
values are not known because of the well-known failure
of meson theory in the quantitative analysis of the
nuclear force problem. However, they are believed to
be of order of magnitude 1.

(A) Decay of a Neutral Scalar Meson
into 2 Photons"

(1) Scalar meson with scalar coupling.

ge'
M= A, (kz)A„(ko)[I„„+J„„],

(2«)4'
~ S. Tomonaga, Prog. Theor. Phys. 1, 27 {1946).Koba, Tati,

and Tomonaga, Prog. Theor. Phys. 2, 101 (1947};2, 198 (1947).
S. Kanesawa and S. Tomonaga, Prog. Theor. Phys. 3, 1 {1948).

R. P. Fey man, Phys. Re . 76, 748 (1949}.
9 J. Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949)."J.R. Oppenheimer was the first to point out that present

theory requires the g-instability of neutral mesons coupled to
nucleons. The calculations were 6rst made by R. Finkelstein,
Phys. Rev. ?2, 415 (1949).

[m,' «'y(1—x)]-
QCm, dx dy ~d'p

[p'+m' —«'y(1 —x)]'
~2 pi pZ gr2

=—Q mC; ~ dx dy= —Q mC;=0.
4

So that I„„=O.
As was pointed out by Fukuda and Miyamoto, " the

same result may be obtained by an application of the
principle of gauge invariance as a help in evaluating the
integral. H A„(k~) and A„(ko) are permitted to undergo
gauge transformations:

A „(kg)~A „'(kg)+kg„h. (kg),
A, (ko)-+A. '(ko)+ko.A(ko),

the principle of invariance requires

kg„(I„,+J„,) = ko,[I„,+J„,]=0,
now k»J„„=k2,J„,=O already, since

2k'„ko„) t' 2k).ko„q
k,„] a„„+ )=0=k,.] a„,~

i E" «' i
"Fukuda and Miyamoto, Prog. Theor. Phys. (in press), were

the first to notice that the old results were not gauge invariant.
Their work formed the starting point of this research. I wish to
thank H. Yukawa for making their results available to me before
publication.
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and from this the lifetime

1—4y(1 —x)

~ 0 & 0 m' —«'y(1 —x)

g e /s'e(«/12')2«= 8X10 eg2 sec.

Here, as in all the following calculations, this is the first
non zero term in an expansion in «/m. « is taken to be
300es..

(2) Decay of pseudoscalar meson into two photons
via pseudoscalar coupling.

age («
M=

I I
kg AgXA~ ' dx dy I d4p

x4 E2)

X
[p~+ ~~—.2y(1 —*)]~

This is uniformly convergent, gauge invariant and
unchanged by the subtraction 6elds.

g2e4 ( « ) 2

T
~ ~

K= 1.8X10"g' sec.
~3 &8~)

(3) Decay of pseudoscalar meson into two photons
via pseuodovector coupling.

g2

M= A„(kg)A„(k2) ~ d'p
2s 4(2«) &

Trygyggye ry rypek2gg
X

[(p+ kg/2)'+ m'][(p —k2/2) '+ fn']

-', Trysy~yey&y. k~~pe
+

[(p+k,/2)~+m ][(p—k,/2)'+m']

Tl +/Pre QPIsgykgesk2P

(p'+m') [(p+k,)'+m'][(p —k,)'+m']

Of the three terms in the integral, the first two are
only conditionally convergent, and the convergent last
term is the term required by the theorem of equivalence
of pseudoscalar and pseudovector coupling. "However,
if subtraction fields are used, not only do the first two

~ The equivalence of pseudoscalar and pseudovector coupling
has been discussed by E. ¹lson, Phys. Rev. 60, 830 (1941);
F. J. Dyson, Phys. Rev. 73, 929 (1948) and K. M. Case, Phys.
Rev. 76, (1949).

if one just remembers that k'= —«'=(ki+km)'=24 ks
So we must demand k~P„,= k~.I„.=O. Now I„„is a
function of m and k(: only, and therefore must be
I„„=f(»,m)b„„and k~„f(«, m)=0 requires f(«, m)=0;
I„.=O. Kith both methods we have the result:

ge f «) t f 2k'„k2qp
i

—
i mA„(k )A, (k ) )

8„.+
4s' &2l & «' j

terms converge (to zero), but the last term is changed,
so as to destroy the equivalence between the two types
of coupling. The condition needed for convergence is
(1) P C; 0. Then

air. g AgyA22fe2 1

~=PC, ~ d. I'
dy

(2«)4' 3 3, [1—«'/~ 'y(1 —x)]
2fe' «'«kq AiXA~

(2«)4' m' 24

f'e4 ( «) ' «'
= («f)'X5.5X10"sec. '

4 m) (24)'

from the third term alone, without subtraction field,
we would get

'e~ «y
'

r '=(2mf)' —
~ ~

«=(2mf)'X1. 8X10'4sec. '
w' &8m)

in agreement with the equivalence theorem.
In this case it is, therefore, possible to derive two

plausible results. The equivalence theorem is of course
not rigorously valid here, since, because of the diver-
gence of the pseudovector case, the arguments can be
carried through only formally. However, it is a strong
argument against this subtraction procedure that it does
not maintain such general theorems. On the other hand,
the result obtained on the basis of equivalence is also
questionable, since it is independent of the mass of the
intermediate nucleons, whereas intuitively we require
longer lifetimes with heavier nucleons.

(4) Scalar meson with vector coupling, vector meson
with both types of coupling.

These transitions are forbidden by the charge con-
jugation theorem of Furry. "

(5) Pseudovector meson with pseudovector coupling.
The matrix element of this process is infinite, but

becomes finite and gauge invariant by the subtraction
of 6elds obeying (1) P C,=0; the result is zero for both
longitudinal and transverse modes of the photon. It is
not dificult to prove that the transition is forbidden in
all orders of the mass ratio and coupling constants. **

~ %'. H. Furry, Phys. Rev. Sl, 125 (1937).**Note added ie proof.—It has been proven by E. Wigner that
the two photon decay of the vector meson of either parity is for-
bidden by angular momentum conservation arguments. I am
indebted to Professor %'igner for a private communication.

(8) Decay of the Vector Meson into
Three Photons

The matrix element is conditionally convergent. The
integral is made convergent on the introduction of the
subtraction fields. It can then be seen from gauge in-
variance arguments that the Grst non-vanishing term in
the matrix element occurs in 4th order of the mass ratio.
The matrix element for this process resembles very
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much that for the scattering of light on light; there also,
for small momenta of the light quanta, the first non-
vanishing term is of the fourth-order in the ratio of
energy of light quantum to electron mass. Because of
the difhculty of the problem we content ourselves with
an order of magnitude estimate.

ge'
M= —[kg 4A2 ArA3 kg —kr A2kg Agk, A,j,

(a)4' m'

where we have assumed one of the two possible gauge
invariant forms for the matrix element, and neglected
possible numerical factors except the factors of g, which
are easy to determine.

PM'= (1+2 cos'8 —5 cos48+2 cos'8),
3Pfk3/'

where cos8= k&' k2// k~ I / k2/

Sg-'e' r l l dk3
' dkg dk2 ~ 84(kg+k2+ka —k)

6am' & ~ ~ (2w)~

k1'k2'
(1+2 cos28 —5 cos48+2 cos'8)

gVt'a)8
KX 10 '= 5X 10'g' sec.

~ km)

This is a very long lifetime, about (a/m)' longer than
the previous result of Finkelstein. "In Finkelstein's cal-
culation the questionable convergence of the integrals
was put into the background. It is then not surprising
that the result is not gauge invariant and certainly
wrong.

For the vector meson with tensor coupling the lifetime
shoul. d be of the same order of magnitude. For the
pseudovector meson this process is forbidden by an
analog of Furry's theorem. Since the two photon decay
was already shown to be forbidden the first allowed
transition is the 4 photon decay, with a somewhat longer
lifetime than 10 '

g
' sec. '.

(C) Decay of a Neutral Meson into
Positron and Electron

A neutral meson may decay into a positron and
electron by disintegrating into a virtual proton-anti-
proton pair. The pair annihilates with the emission of a
virtual photon. The photon then disappears while

creating the electron-positron pair. The processes are
badly divergent, but made convergent by a liberal
application of conditions i—6. The results are given in
Table I. It should be noted that the lifetime of the
vector meson for this process is much shorter than its
y-decay lifetime, but that the pseudovector meson
decay is forbidden. The most probable decay for the

neutral pseudovector meson would seem to be into one
quantum and an electron-positron pair.

V. DISCUSSION OF THE RESULTS

Since the validity of the method has already been
analyzed, we confine ourselves here to a discussion of
the results on the assumption that the method is correct,
in order of magnitude.

The calculations on the y-instability of neutral
mesons show that both scalar and pseudoscalar mesons
can decay very quickly (10 "—10 " sec.) into two
photons, but that vector mesons decay into three
photons with a long lifetime ( 10 ' sec.) and that
pseudovector meson decay into two or three photons is
forbidden, and the 4 photon decay has an even longer
lifetime. This should be compared with the observa-
tions on p-rays at Berkeley. "Photons of energy in the

TAar.z I. Two photon decay and electron-positron decay
of neutral mesons.

Type of meson
and coupling

Scalar meson

Scalar coupling

Scalar meson

Vector coupling

Pseudoscalar meson

Pseudoscalar coupling

Pseudoscalar meson

Pseudovector coupling

Vector meson

Vector coupling

Pseudovector meson

Pseudovector coupling

Two-photon decay
hfet&me

=SX10» g'sec. 1

forbidden

=1.8XIO" gs sec. '

=5.5X10»(af)& sec. 1

forbidden

forbidden

Electron-positron decay
lifetime

forbidden

. -""(-)
=8.7X1018(~f)s see. 1

forbidden

forbidden

K%4 K

m j (2w)sX675
=5.7X1018gs sec. &

forbidden

&'H. York and B. Moyer, Phys. Rev. 76, 18"1 (1949),

IV. DECAY OF A CHARGED MESON INTO A NEUTRINO,
AND EITHER ELECTRON OR SPIN $(p) MESON

Because of its coupling to the nucleon field, and the
Fermi coupling of the nucleons to the electron neutrino
fields, a s-meson should be unstable against P-decay.
Furthermore, it is not known if the p-meson is coupled
to the x-meson directly, or through the mediation of a
Fermi coupling of the p,-meson, neutrino fields to the
nucleons. In the latter case the x—p, v-decay lifetime
should be calculable in terms of the nuclear force
constant g and the rate of ~-capture of p,-mesons. Un-
fortunately, perturbation theory for these roundabout
transitions yields infinite results. The method of sub-
traction fields has therefore been used to calculate the
lifetimes of such decays of Bose particles into two Fermi
particles via an intermediate Fermi-Dirac field. The
results for several types of x-mesons and Fermi coup-
lings are given in Table II.
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TABLE II. Lifetime for the decay of a meson of mass 300m, into a meson of spin $ and mass 200, and a neutrino, or into an electron
and a neutrino, via the fermi coupling of the nucleon. The value of gy is taken in accord with the tritium-helium 3 P-decay. ~» =mean

lifetime of the x p, v-decay. v„=mean lifetime of the x e, v-decay f=)—$
tSfjr Or tÃe

=g gf

Scalar Vector

forbidden

Type of Fermi coupling

Tensor
Scalar meson, scalar coupling

r =g"gf

Pseudoscalar

forbidden

Pseudovector

forbidden

r&,v=0.16 g 2 sec.

rpv=0. 54 g " sec.

rev=l. OX10 ~ g 2 sec.

rfsv=3.3X10 '4
g 2 sec.

Pseudoscalar meson, pseudoscalar coupling

forbidden forbidden forbidden r '=g'gf'

rev —-1.5 g 2 sec.

r&v=4. 9 g & sec.

(1—2f)r t=g2gfs
m (2w)s 36

f2

r&v=0.37 g 'sec.

r» —-3.1X10 'g -"sec.

forbidden forbidden

Vector meson, vector coupling

r~v =.010/(kg)' See..»=.033/(.g)~ sec.

Pseudoscalar meson, pseudovector coupling

forbidden 4c 4 «7 (1—2f)
(m ) (2r)' 900

rev=3 3X10 "/(ag)' sec.

r» =2.8/(2rg)~ SeC.

forbidden , 2'ui'( )'( )'&(2-2j)

rev =0.32 g 2 sec.

7»=0.73 g 2 sec.

r ' (—)=—(2 4f)—
9 m (22r)'

rev =1.0X10 4 sec.

rfsv =4.7X10 4 sec.

forbidden forbidden

neighborhood of 70 Mev are observed to come from the
target of the cyclotron. Now if the decay of a meson of
mass 300m, were into three or more photons, then the
energy of each photon would be smaller on the average.
Furthermore, the lifetime would be so great that the
meson would decay at a great distance (many meters)
from the target, and consequently not be observed. If
these interpretations of the experiments and the theory
are correct, one is led to conclude that these neutral
mesons are either of the scalar or pseudoscalar type.

The disintegration of the x-meson into electron and
neutrino or p,-meson and neutrino is also interesting in
the light of recent experiments. It is known that the
p-decay of the x-meson proceeds at least by a factor

1OO more rapidly than its P-decay. Now the two
constants which enter into the 2r-meson P-decay are
known approximately: g from the strength of the
nuclear forces and gj from the P-decay of light nuclei.
Previously the calculations were hampered by the
divergences, but conventional momentum cut-off pro-
cedures, "give a lifetime for the process about the same
as the experimental m —p-decay time, 10 " sec. How-
ever, the more definite calculations made here and listed
in Table III give much longer values, therefore dispos-
ing of this difhculty.

In the case of the coupling of the m-meson to the
v-meson one has 3 experimental data: (1) the rate of
4r —V-decay (2) the rate of V-capture from the N-orbit

of a nucleus (3) the strength of nuclear forces. Pre-

"R. Christy, Seminar at the Institute for Advanced Study,
April, 1949.

viously it has been considered possible to explain the
experiments in two ways.

1. The x-meson is coupled to the nucleons, and the
nucleons to the p,-meson-neutrino field. The x-meson
then decays via intermediate nucleon pairs, and
p-capture is direct.

2. The ~-meson is coupled to both nucleons and to
the p,-meson-neutrino field. m —p, v-decay is then a
direct process, but p-capture is via an intermediate
~-meson field. The m~p, , v-decay in case 1 sufI'ers from
the infinity difhculties, but its order of magnitude had
been estimated by cutting oft at large momenta. Because
the value of the m-nucleon coupling constant g is so
near to unity, both pictures had been about equally
successful in agreeing with experiment. However, if
one accepts the subtraction methods here described,
the m~p, , v-decay lifetime in picture 1 becomes much
too long compared to p-capture, and only picture 2
which contains no infinities and is unaffected by these
results, is consistent.

I am in great debt to the physicists at the Institute
for Advanced Study for their generous help, especially
to Drs. K. M. Case, F. J. Dyson, N. Kroll, J. R. Oppen-
heimer, A. Pais, S. Power, F. Rohrlich and H. Yukawa.
The investigation was materially advanced by a grant-
in-aid from the Institute. The money for this grant
comes from the AEC .

APPENDIX

1. Units, notation, equations of motion. Natural units are used.

k=c= 1; e= 1/(137)&.
M =matrix element.
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m =nucleon mass.
~= mass of the decaying meson.
p= mass of the product meson, if any.

P(x}=nucleon wave function.
4(x) =4*(x)v4.

y„, p, =1, 2, 3, 4=4 Dirac matrices, y~=y~y~ysy4.
Q(x), @ (x) =meson wave functions.

A„(x)= electromagnetic 4 potential.
4=4 momentum.
k= 3 momentum.

;f„(k)=1/V J y A„(x)e '~"~dax,
=fourier component of vector potential.

8~—8/»q ieA ~.

The Lagrangians are the following

(a} Proton, 6eld, L=p(x}(y„8„+m)P(x).
(b) Free neutron 6eld, L=p(x)(y„(8/8x„)+m)P(x).
(c) Free electromagnetic 6eld„

1 ~Ay BAv ~Ay BAv

(d) Free neutral scalar or pseudoscalar meson field,

1 8@ 8@L= ————+~'qP(x)
2 Bxy Bxy

(e) Free neutral vector meson field,

(f} Free charged scalar or pseudoscalar field,

~4' ~4'L~ — —+8qPp
Bx+ 8$pg

(g) Free charged vector field,

1 a&„* a@„* a&„a

(h) Interaction between neutral scalar mesons and protons,

L=-g~(x)a(x)O( ).
(i) Interaction between neutral pseudoscalar meson and proton,

L= -ig4 (x)+(x)vs' (x)—if(~4/»p )0(x)vsv p0(x).
VG Y&7A'3V4 ~

(j) Interaction between neut'ral vector 6eld and proton,

L= —gy„(x)y(x) ygP(x).

(k} Interaction between charged scalar meson and nucleon,

L=-g~( )O( ) O( )-g~*(.)~(.) *a( ).
(l) Interaction between charged pseudoscalar meson and nucleon,

L= —i'(x}P(x) yg~P(x) —igy*(x) P(x)ysr*g(x)
iJ(ay/ax„)P(x) ~,~„~(x)—~y'~aq /ax„)(x)y(x)& &„*y( ).

(m) Interaction between charged vector meson and nucleon,

L=g4 ()kv 4 —g4 *()4()Y *4.

(n} Scalar Fermi interaction of nucleons,

L=g!~+~+ ~+gf~'r ~~7'~


