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An attempt is made to interpret the temperature independent factor Do of the previously determined
diffusion coefBcients of interstitial solute atoms in metals. The primary uncertainty in the value of Do given
by the standard reaction rate theory resides in an entropy factor exp(M/R). When cognizance is taken of
an additional strain in the lattice surrounding a solute atom as it passes over a potential energy divide, and
of the increase in entropy associated with an increase in lattice strain energy, one can estimate a "theo-
retical" range within which these entropy factors should lie. All past observations except for C and N in
a-Fe are consistent with this theoretical range. The Do's for these two systems were, therefore, redeter-
mined by more precise measurements, and are found to be an order of magnitude higher than the original
values. The associated entropy factors are consistent with the theoretical range.

I. INTRODUCTION AND RESULTS

HE mechanism of diffusion of interstitial solute
atoms in solid solution is well understood. The

solute atoms disuse by simply jumping between inter-
stitial positions, the direction of each particular jump
being random. The purpose of the present paper is to
see how well the theoretical diffusion rate based upon
this simple model and the observed diA'usion rates can
be brought into quantitative agreement.

The observed atomic diGusion coeKcients are usually
expressed in terms of two constants, Do and E, as
follows:

Q e—E/RT

The theoretical diffusion coeKcient for interstitial
atoms in a cubic lattice has the form

D = cxo~/T.

Here a is the lattice constant, v is the mean time-of-
stay in one interstitial position between jumps, and a
is a numerical coefBcient whose value depends upon
the location of the interstitial positions. The values of
n for face centered cubic (f.c.c.) and for body centered
cubic (b.c.c.) lattices are computed in Section II and
are listed in Table I. While our knowledge of the co-
hesive forces is not sufBcient to permit an evaluation
of the heat of activation E, the constant Do may be
estimated fairly accurately. Towards this end one ob-
serves that, at least over a limited temperature range,
the mean time-of-stay r has a heat of activation, i.e.,

T =10 e—l —le—E/R T

TAam I. Diffusion constants.

The "constant" ro ' is found in Section II to be given by

o
—l ~peh S/

In this equation e is the number of nearest neighbor
interstitial positions, v is the frequency of vibration of
a solute atom in an interstitial position, and 65 is an
entropy of excitation whose precise definition must be
delayed until Section II. Corresponding to the inter-
stitial positions being at the center of the unit cell and
at the centers of the cube edges in a f.c.c. lattice, and
at the center of the faces and edges of the unit cells in
b.c.c. lattices, ' the number of nearest neighbors is 12
and 4 for these two lattices, respectively. Upon com-
paring Eqs. (1)—(4), we obtain for Do the following
theoretical equation

Do= nne~ s/za

The only solution in which the constant Do has been
measured accurately is that of carbon in y-iron. ' In the
case of b.c.c. metals an alternative method is available
for a test of the theoretical Eq. (4). In this method one
studies the internal friction associated with the inter-
stitial solute atoms, a type of internal friction which
was first observed and correctly interpreted by Snoek. '

From these internal friction measurements one finds
directly the relaxation time v„ for the establishment of
an equilibrium distribution between the three types of
interstitial positions, corresponding to the three prin-
cipal axes along which the tetragonal axis of an inter-
stitial position may lie. This relaxation time is equal
to 1/+, where s& is the angular frequency at which the
internal friction is a maximum. It has been shown by
Polder' that the time of relaxation 7„ is related to the
mean time-of-stay v by the relation

Lattice
type H.c.c.

1/24
4

F.C.C.

1/12
12

~= ($)r'

From such internal. friction measurements one may thus
determine directly the mean time-of-stay v, and may
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' J. Snoek, Physica 8, 711 (1941).' C. Wells and R. Mehl, Trans. A.I.M.K. 140, 294 (1940).' D. Polder, Philips Research Reports 1, 1 (1945).
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Thm, E II. Data relevant to difFusion.

System

Do (in cm /sec. }.;1 (in 103 sec.-1}
E {in cal./mole}
v (in 10"sec. '}
exp(~S/Z}

"empirical"
Theor. range

C in y-Fe

0.07~

32,000"
0.94

0.0005
1.5
18,000
1.3

0.3
1—13

0.008
23'
19,800
1.3

4
1-13

C in a-Fe
SnOek a b POlder' Preeent WOrk

0.29
16,400
1.1

0.07
1—13

0.0014
3 7'
17,700
1.1

0.8
1-10

N in a-Fe
SnOeka b PreSent WOrk Cin Ta

0.0018
4.2f
25,000
1.3

0.8
1—10

Nin Ta

0.29

44,000
1.6

Oin Ta

0.030

29,000
1.1

15
1-16

a See reference 1.
" See reference &.
" See reference 3.
d See reference 2.
e This paper.
f See reference 10.
~ See reference 8.

thereby eGect a comparison with theory through use

of Kq. (4).
The theoretical expressions (4) and (5) for ro and

for Do contain the factors v and exp(M/R), the nu-

merical values of which are rather uncertain. An esti-
mate of the vibration frequency v will be obtained
through the assumption that as a solute atom moves
from one interstitial position to an adjacent interstitial
position, its potential energy varies in a simple sinus-

oidal manner. Thus if x is the coordinate along this

path, we shall assume that

V(x) = (-', )E(1—cos2s x/X), P)
where E is the height of the potential barrier, which

may be taken as approximately equal to the heat of
activation, and X is the distance between the inter-
stitial positions. The vibration frequency v is then,
according to this approximation, given by

v = (E/2rnX') *'.

The values so calculated are given in Table II. As
mentioned above, the interstitial positions in b.c.c.
lattices have tetragonal rather than cubic symmetry,
and hence the vibrations of solute atoms are not iso-

tropic within these positions. Since the paths leading
from any given interstitial position to each of its four
nearest neighboring interstitial positions lie in a plane
normal to the tetragonal. axis, the frequency v defined

by Kq. (8) refers to the frequency of that component
of vibration resolved upon this plane.

From a consideration of the fact that the lattice has
more strain energy when a solute atom is midway be-

tween two interstitial positions than when it is at an
interstitial position, and of the fact that strain energy
reduces the local elastic moduli of the lattice, 4 we an-
ticipate that dB will be positive, and hence the entropy
factor to be greater than unity. Comparison between
theory and experiment can, therefore, best be obtained
by inserting the empirical values of 70 ' or of Do into
Eqs. (4) or (5), respectively, and then, using the above
estimated value of v, compute the entropy factor. The

"empirical" entropy factor so obtained should be
greater than unity but should be less than that value
which would correspond to all the heat of activation E
being in the form of lattice strain energy. This upper
limit to the entropy factor is estimated in Section II.

The empirical values of the entropy factor, together
with the theoretical range, are given in Table II. Only
in the case of C in y —Fe was Do determined directly
from diGusion experiments. The value recorded refers
to the limiting case of in6nite dilution. The values of
D0 for C and N in 0.—Fe were deduced from magnetic
measurements. ' The values of Do for C, N and 0 in
tantalum were obtained from internal friction measure-
ments. When cognizance is taken of the fact that only
a 2 percent error in the determination of E changes
the empirical value of the entropy factor by a factor
of 2, it is seen that only in the case of C in cx—Fe is
there a serious discrepancy between the empirical en-

tropy factor and its theoretical range. The attempt to
resolve this discrepancy instigated the experimental
work reported upon in Section III. As therein described,
these experiments demonstrate that at the carbon
concentrations (~0.1 atomic percent) used, the jump-
ing of the carbon atoms between adjacent interstitial
positions cannot be described by a single time of re-
laxation, as was assumed in the original work. They
further suggest that this anomalous behavior is due to
the interaction of the solute atoms.

II. ANALYSIS

We shall first evaluate for f.c.c. and for b.c.c. lattices
the numerical coeScient u in Eq. (2). Since the dif-
fusion coefBcient is a scalar in cubic systems, it suffices
to consider that the concentration gradient is parallel
to a principal axis, which will be denoted as the s axis.
The plane a=0 will be chosen as lying in a (001) plane
of atoms. We then denote by n(r, l) the number of inter-
stitial atoms per unit area of the r'th (001) plane above
a=0. We shall further denote by 2P the probability
that, when a solute atom jumps into a new interstitial

4 C. Zener, Acta Cryst. 2, 163 (1949}. ~ J. L. Snoek, Physica 6, 591 (1939}.
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position, the jump will be into a new (001) plane. Then

e(r, t+ r) = (1—2P)n(r, t)+P In(r+ 1,t)+n(r —1,t) I.
If we now subtract n(r, t) from both sides, and consider
e to vary only very slightly during a time interval r or
from one (001) plane to an adjacent (001) plane, we

obtain
Bn/Bt= Qf/r) 8'n/Br'

In both f.c.c. and in b.c.c. lattices the (001) planes are
spaced ~a apart, and hence the atomic diffusion co-
efFicient is given by

D= Pa'/4r

From a consideration of the spacing of the interstitial
positions we readily see that P is ~s and 6 for f.c.c. and
b.c.c. lattices, respectively. %'e are thereby led to the
values of n listed in Table I.

Since the jumping of a solute atom from one inter-
stitial position to another may be regarded as one of
the simplest examples of a rate process, it is natural to
deduce the mean rate of jumping, 1/r, from the stand-
ard rate theory developed by Eyring. ' This theory gives 1/r = (nk T/Itp. )e 'r'~ r, — (10)

Here P* is the partition function of the system of solute
atom plus lattice, the solute atom being confined to
move in a plane passing through the divide separating
two interstitial positions, and oriented normal to the
line joining the two interstitial positions. In the second
partition function P no restraint is placed upon the
solute atom. The dominant part of P will, therefore,
arise from the region in the immediate vicinity of an
interstitial position, where the forces may be regarded
as harmonic. It is to be noted that P refers to one more
degree of freedom than does P~.

In order to obtain a ratio of partition functions having
the same number of degrees of freedom, we make the
approximation of separating P into two factors

P=P, Pj*,

where P, is the partition function for a single linear
oscillator, and where P~ is the partition function of
the complete system with the solute atom constrained
to move in a plane passing through an interstitial
position. With this factoring of P Eq. (9) becomes

1/. =(~XT/t)P /P. (9) where hF is the work required to transfer one gram

I.O
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I IG. 1. Variation with temperature of internal friction of an iron specimen containing dissolved C at five frequencies of vibration.

~H. Kyring, J. Chem. Phys. 3, 107 (1932}; Glasstone, Laidler, and Kyring, The Thewy of Rate I'rocesses (McGravr-Hill Book
Company, Inc. , ¹vrYork, 1941), pp. 184-191.
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FIG. 2. Variation of internal friction with temperature for iron containing dissolved N.

mole of solute atoms from a constrained two-dimen-

sional vibration about an interstitial position to a con-
strained two-dimensional vibration about a divide in

a plane normal to the line joining the two neighboring
interstitial positions.

Upon observing that

P. '=2 sinh(kv/2kT),

1/r=nve ~v'sr (13)

This equation now reduces to Eqs. (3)—(4) when we

write

where v is the frequency of vibration of the solute atom
in an interstitial position, and upon observing that in

the cases of interest in this paper only a slight error
will be introduced by replacing sinh(kv/2kT) by its
argument, we obtain

kT/kP. = v.

Even in the high degeneracy case of kv/kT=2, an
error of only 18 percent is introduced by the simpli-
6cation of Eq. (12).

Upon combining Eq. (12) with Eq. (10) we obtain

where hE and DS have obvious interpretations, pro-
vided we can identify AE with the empirically deined
"heat of activation" R. Now the "heat of activation"
of ~ ' is deined by the equation

E= —Ed(lnr ')/d(1/T).

When this empirical de6nition is combined with the
standard thermodynamic formula

DE= d(AF/T)/d(1/T),

the desired identity becomes apparent. It is to be par-
ticularly noted that this identity is valid whether or
not E is a function of temperature.

The approximation of Eq. (12) is seldom used in

reaction rate theory. The authors wish to point out
that by refraining from making this approximation one

merely deludes oneself into thinking that quantum
eGects have been adequately taken care of. In the
original derivation of Eq. (9) one considers the solute
atom to behave in a classical manner in the vicinity
of the divide with respect to the coordinate describing
the position along a line joining two interstitial posi-
tions. Quantum effects are, therefore, not adequately
taken account of by merely retaining the quantum ex-

pression for the partition function corresponding to a
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vibration near a minimum in the potential energy.
While the first-order quantum effects at the divide

may be estimated by the method introduced by
signer, ' such a refinement would not be justified at the
present time in view of the other uncertainties in the
theory.

Our final task in this section is an estimation of the
entropy factor e~ 's in Eq. (4). Towards this end we set

DS= BAF/—BT.

If all the work AF went into straining the lattice, then
DF would have essentially the same temperature co-
e%cient as the elastic moduli. An upper limit to AS
is thus obtained by setting

AS——E(d lnp/d T),

where p is the shear modulus. Upon taking the values
—0.00026' and —0.00020' for the temperature coefB-
cients d in'/dT of iron and tantalum, respectively, one
obtains the upper limits to the entropy factors given
in Table II.

HI. EXPEMMENTS

The experimental work described in this section had
as its aim the accurate determination of vo and E.

Once this was done, all the remaining empirical factors
in Table G could be computed. For these measurements
use was made of the internal friction peak arising from
the stress induced redistribution in the three types of
lattice sites of the interstitially dissolved atoms of C
and N. It is well known that for an internal friction
process involving a single relaxation time, the magni-
tude of the internal friction, 6, is given by

5= 2hp/[(1/r~)+ r~], (14)

where 60 is the maximum magnitude of the internal
friction. This maximum clearly occurs when the angular
frequency, ~, of the impressed stress is equal to the
reciprocal of the relaxation time, r„. While 60 is but a
slowly varying function of temperature, v„ in this in-

stance is expected to vary rapidly with temperature
according to the equation

r„=r„o.exp(E/RT). (»)
The experimental work involved in the measurement

of r„o and of E in Eq. (15) was the measurement of 6
es. temperature at a number of frequencies with C or
N in solid solution in the iron specimen. The method
of measuring 6 was the same as that used previously in
this laboratory for such determinations. ~" The speci-
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FIG. 3. Superposition of the
internal friction peaks for C
shown in Fig. 1. To avoid con-
fusion about one-half of the
points at the maxima of the
curves shown in Fig. 1 have
been omitted in this plot. The
drawn curve is computed from
Eqs. (14) and {15) with Ec
= 19,800 cal. /mol.
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E. signer, Phys. Rev. 40, 749 (1932).' T. S. Kb, Metals Tech. June, 1948, T.P. No. 2370.' T. S. K0, Phys. Rev. 74, 914 {1948)."T.S. Ki, Phys. R.ev. 74, 9 (1948).
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of the internal friction
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men of iron was a wire 0.026 inch in diameter and about
1 foot long. This wire was made the suspension of a
torsional pendulum; the inertia arm of which could be
changed to give frequencies from ~ to 24 c.p.s. The
entire pendulum was suspended in an insulated double-
walled vertical furnace. To obtain temperatures above
room temperature, the furnace was heated electrically
by windings outside the outer wall. To obtain low

- temperatures, air cooled by passage through liquid
nitrogen was led through the chamber between the
double wa11s. Kith this furnace, temperatures from
—30'C to +200'C could be obtained. Since the in-
ternal friction varies rapidly with changing temperature
(falling to less than —,

' the peak value 15'C o8 the peak),
it is desirable to have the temperature uniform along
the wire. Probing the furnace gave the information
that over the section of the furnace used, at 200'C the
temperature was uniform to 2'C and at O'C to less
than 1'C. Details of the method of clamping the speci-
men and the technique of making the measurements
of b, are given by Ke.'"

The specimens were prepared in the following man-
ner: the iron wires were erst cleaned of residual C and
N by heating for several hours in an atmosphere of
H~ and water vapor at 720'C. One of the wires was
heated in a mixture of dry H~ and n-heptane at 720'C
for two hours to form a solid solution of about .015
percent C in n-iron. The other wire was heated for
three hours in a mixture of H~ and NH3 at 590'C to

form a solid solution of about 0.015 percent N. After
this treatment, the wires were quenched in cold water.
Kith these low concentrations of solute, no observable
precipitation from solid solution occurred during the
measurements.

The actual measurement of the internal friction was
then carried out at once. A specimen was mounted in
the apparatus and the temperature was lowered to
about —35'C. Gradually reducing the air flow allowed
the temperature to rise to room temperature very
slowly (about 1'C every 6ve minutes). When the
furnace reached room temperature, the air was turned
oB completely and the furnace was heated to 100'C in
steps of a few degrees by gradually raising the furnace
current. Measurements were made of the internal
friction at intervals. Further measurements made at
selected points with the temperature of the furnace
falling again to room temperature gave data practically
identical with that obtained with rising temperature.
The temperature measurements themselves were made
with an Al-Cr thermocouple placed near the center of
the wire.

Measurements obtained for C and N at a number of
frequencies are plotted in Figs. 1 and 2. These plots
permit the immediate calculation of K using an equation
amply discussed elsewhere. '

d(luau)I= —z. (16)
d(1/T) g,.„„.
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To determine E from Figs. 1 and 2, plots were made
of lnv rs. 1/T at 6/d =0.1, 5/6 =0.2 etc. , for
both sides of the internal friction peak. awhile each
set of points lay on a straight line, the slopes of these
lines showed a consistent variation, increasing slightly
in passing from the extreme left to the extreme right
side of the internal friction curve. The average of these
slopes was substituted into Eq. (16), yielding for the
efFective heats of activation E~ the value 19,800&400
and for E~ the value 17,700+400 cal/mole. From these
values of E and from an observation of v„p, the position
of the maximum at a given frequency, the value of 7-p

was computed. For nitrogen 7„p is determined to be
1.8X10 "sec., hence vp

' in Table II is 4X10" sec. '.
For carbon 7„p is 2.92X10 "sec., hence Tp is 2.3X10"
sec. '. It is to be observed that the estimated errors in

the determination of E lead to large errors in the de-
termination of ~p ' and hence in the calculation of Dp

and e~ ' Thus Dp and e~ '~ are possibly in error

by a factor of 2.
The values of Ez and of Kz previously determined by

Snoek' were signiicantly smaller, being 18,000 and
16,200, respectively, and hence led to estimated values
of Dp about 10 times smaller than those estimated from
our experiments. Snoek determined these values origi-
nally by magnetic relaxation measurements, and later
found these values to be in fair agreement with his in-

ternal friction measurements, but stated that slightly
higher values would have been in better agreement.

If the internal friction were accurately described by
Eqs. (14) and (15), then on a plot of 6 vs. 1/T it should
be possible to superpose all the curves by shifting them
on the 1/T axis. Further, all the curves should fit a

curve computed using Eq. (15) with a value for E as
determined above. Such plots are shown in Figs. 3 and
4. It is seen that for both C and N the experimental
points lie signi6cantly outside the computed curves.
This slight excess in the breadth of the experimental
curves over that of the theoretical curve 6nds a ready
interpretation in a possible slight dispersion of re-
laxation times. Such a dispersion would indicate that
all the interstitial positions were not quite energetically
equivalent, and hence either that the lattice contains
imperfections, or that the solute atoms interact with
one another. This interpretation is strengthened by the
observation that, the experimental curves lie closer to
the theoretical curve the higher the frequency of
vibration, and hence the higher the average tempera-
ture during a run. A higher temperature will reduce
any tendency of the solute atoms to cluster about
lattice imperfections or about one another. The same
type of discrepancy between the experimental and ideal
single relaxation-time internal friction curves were
found by Ke&' in his study of C, N and 0 in tantalum.
It is interesting to observe that the order C, N and 0
is both the order for an increasing discrepancy and for
an increase in concentration, as measured by the peak
in the internal friction curve. This coincidence indi-
cates that, at least in tantalum, interaction between
solute atoms is responsible for the discrepancy, rather
than lattice imperfections. Such an interaction is con-
sistent with the strong attraction between interstitial
solute atoms in b.c.c. lattices found by one of the
authors. "

"C. Zener, Phys. Rev. 74, 634 (1948).


