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Radiative Corrections to Nuclear Forces in the Pseudoscalar Meson Theogy*

K. M. WATSON AND J. V. LEPORE
The Institute for Advanced Study, Princeton, Nem Jersey

(Received June 13, 1949)

The fourth-order corrections to nuclear forces in the charged and symmetrical pseudoscalar meson theories
are obtained by the Feynman-Dyson method. All infinite parts are reconciled in terms of renormalization
of mesonic and nucleonic mass and charge. The potentials obtained by a non-relativistic approximation
yield ordinary spin independent forces which behave as 1/r' in the non-relativistic region. This singularity
is reduced to 1/r by relativistic effects. The potentials are in disagreement with experiment but the neutron-
proton scattering problem is treated in order to obtain insight into the nature of relativistic corrections at
90 Mev, and it is shown that they are not small.

INTRODUCTION

HE success of the renormalization program' of
quantum electrodynamics has given impetus to a

re-examination of the difhculties of meson theories of
nuclear forces. In particular, there are three questions
to be asked in this connection: (1) Can the renorma1iza-
tion program of electrodynamics be successfully applied
to any of the current meson theoriesi' (2) In view of
the largeness of the coupling constants describing the
interaction of meson and nucleon fields, can one obtain
valid solutions to problems concerned with these
interactions? (3) Will conclusions drawn from these
theories agree with experiments

Case's' treatment of the anomalous magnetic mo-
ments of the neutron and proton indicates that there
are examples for which an afhrmative answer can be
given to the 6rst question; however, his results are not
in agreement with experiment —in the pseudoscalar
theory, for instance, the meson field seems to be too
dosely bound to the nucleon. It also appears that the
renormalization of mass and mesonic charge will not
always make all measurable quantities 6nite. Case' has
found that one cannot obtain finite nucleon magnetic
moments with a vector meson theory and tensor
coupling to the nucleon held. Indeed, Dyson4 has
remarked. that renormalization of mass and mesonic
charge does not seem to be sufhcient to remove all
divergences in any theory for which a gradient coupling
is used. Furthermore, Dyson4 has shown that the
scattering cross section of mesons by mesons is probably
inhnite for all present meson theories. It seems quite
doubtful, then, that present treatments of 6eld inter-
actions will be successful when applied to meson helds.

The second question above poses formidable ana-
lytical difficulties, since one is accustomed to obtain
solutions which are in the form of power series in the
not-small coupling constants. In the hope of minimizing
the uncertainty arising from the terms of higher order
in the coupling constant it has appeared worth while to

* This work was reported at the Washington Meeting of the
American Physical Society (Phys. Rev. 76, 193 (1949)).' See, for instance, F. J. Dyson, Phys. Rev. 75, 486 {&949).' K. M. Case, Phys. Rev. N, 1 (1949).' K. M. Case, Phys. Rev. 75, 1440 (1949).' F. J. Dyson, unpublished.

investigate the scattering of neutrons by protons to the
fourth order in the coupling constant —previous treat-
ments have considered only the second-order interaction
between nucleons. That the deuteron problem can be
expected to be quite sensitive to higher order radiative
corrections follows from the fact that the least unsatis-
factory nuclear potentials calculated in meson theory
are too highly singular in regions of space outside the
nucleon Compton wave-length to predict a reasonable
model for the deuteron. Any possible tendency of
higher order corrections to smooth out such singularities
will thus be of critical importance. However, in the
scattering problem the efI'ective impact parameters
tend to be greater than the de Broglie wave-length of
the colliding particles, and so the scattering cross
section can be expected to be somewhat less sensitive
to corrections arising at very small distances of ap-
proach.

The pseudoscalar meson theory with pseudoscalar
coupling was chosen because of its relative simplicity
and because the fourth-order terms should be large
compared to the second-order terms, since the Dirac
matrix y&(=0(s/c)) occurs in the second order but not
in the important fourth-order terms.

I. THE SCATTERING MATRIX

Q'e assume the nucleon held to interact with a
pseudoscalar meson field. The term in the Hamiltonian
density representing the interaction of the fields is {we
use units in which k=c=1)

&(x)=if„y(*)r„q,4(~)4„(~).

r, (i = 1, 2, 3) are the isotopic spin matrices. y~ =y,y2y~y4
where the y„'s are the Dirac matrices. P, P are the spinor
operators of the nucleon field given by Schwinger, ' and
the p„are the mesonic field variables. @i and @2 are
the 6eld variables for the charged 6eld; and &3 is that
for the neutral field. The coupling constants f„are
restricted by charge conservation to values for which
fi f2, but are otherwise arbitrary real quantities. The
Schwinger-Tomonaga equation for the state function
4 of the system is, in the interaction representation,

i[5&/r~(x) j=e(~)e
1157
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In this representation the commutation relations for
the 6eld variables are those for free 6elds, and have
been given by Case, ' Schwinger, ~ and others.

Since we are interested in a scattering problem, we
shall use the scattering matrix of Dyson, ' which is the
operator transforming the state vector 0' of the system
from its initial value in the infinite past to its 6nal
value in the infinite future, according to Eq. (2). The

=q„—q„', since the four-momenta are restricted by
energy-momentum conservation. iP„ is the Fourier
component of ip(x) referring to an electron with mo-
mentum p. It is implicitly defined by

P(x) = t d'pP„exp(ip„x„)
J

iP„ is deaned similarly.
To 6nd 54 we must consider the Feynman-Dyson

graphs shown in Fig. I. (Heavy lines are nucleon lines,
broken ones are meson lines. )

II. THE EVALUATION OF 84

A: Graph (a)

One obtains'

r/

/g///r

Xap(xz —x4) (4'(xl) Tg fzip(xi)) (ip(x4) r,pe(x4))

XSpIS p(xz xz)T QQSp—(xg x3)r,yz}, (5)

FIG. 1. Graph (a) gives the analog of the vacuum polarization
of electrodynamics, A meson self-energy term is included in the
contribution from this graph. (b) is the analog of the graph
that accounts for most of the Lamb shift in electrodynamics.
{c) contains the sects of the nucleon self-energy. (d) and (e)
correspond to simple scattering processes in which two mesons
are exchanged by the nucleons. (e) can be obtained from (d}
by reversing the direction of the arrow on one of the nucleon
lines, or analytically by taking the charge conjugate of one of the
nucleon current operators in (d).

formal expression for the scattering matrix is

dx„PLH(xi) H(x„)j, (3)

where the P-bracket orders the product of the H's in

such a way that those whose arguments lie on earlier
time-like surfaces precede those on later surfaces. %'e

restrict ourselves to the terms 52 and 54, which contain
the coupling constant to the second and the fourth
power, respectively.

Ke assume that the incoming nucleons have four-
momenta p„, q„, while the outgoing nucleons have
four-momenta p„', q„'. Then the second-order scattering
matrix can be written immediately:

Sz= zz(2x)'(0, riVz4p)(4z —ruses, )(fi'!Xip'+I"), (4)

where p is the meson rest-mass and Ap„=p„' p„—
~ J. S. Schwinger, Phys. Rev. 74, 1439 (1948).

Sp(x)=2
Lzygk), +soj

~

d'k exp(ik, x,)
(2n.)' & 4 +&0 —&&

6p(x) = —2

(6)
1

~ d'k exp(ik, x,)-
(2zr)' " ki,'+zi' zr—

where, as before, p, is the mesonic rest-mass, ~0 is the
nucleonic rest-mass, and e is a positive, real parameter
which tends to zero after the integrations are performed.
The function of e is to determine the manner by which
one passes poles in the integrand. It can be shown that
this choice of the sign of e is equivalent to choosing
outgoing waves for the scattered system and is a
consequence of having fixed the initial state of the
system in the solution (3) of Eq. (2).

Using Eq. (6) and performing the spatial integrations
in Kq. (5), we have:

OXp

S,= 4','(P„ritz/„)—(ik;z'IyziPq) fp'g) (7)
I Ap'+I 'j'

where
t.2+. —t.ap.

(i '+ ~ ')L(i —&p )'+ ~ '$

where the —ie term of Eq. (6) is considered as being
included in p' and Ko when needed. I diverges quad-
ratically, but Eq. (7) includes a correction to Sz in
Kq. (4) arising from the meson self-energy. Interpreting

where SpI
.

I means that one must take the spur of
the isotopic spin and Dirac matrices occurring in the
parenthesis. Sp and h~ are the functions given by
Dyson, ' and are
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this mass correction as being included in the "experi-
mental" value of the mass, one can remove the quad-

ratic divergence from Eq. (8) as follows. We consider

the change in S2 resulting from varying p.'
we obtain

fi'f'
Q„r«r.r«ps'][Pq r ysf«]U, (15)

~p 2+~2

hS2= (d52/dp, )8p, . (9) where

We insert for 8p, in Eq. (9) the meson self-energy' to
order f

Su, = (i/) )f,'[4/(2~)']Io, (10)

(the index p not summed) where Io is obtained from I
(Eq. (8)) by replacing hp by k, the energy-momentum

vector for a free meson, obeying the relation k„'= —p,'.
Considering the 5p, p as being included in p, , we subtract
55.. from 5,. On doing this I is replaced by I', where

k -'

is a logarithmically divergent integral.
From graph (c), we have

f'f'
[4.r.Vs4.]{4&r.V5

Ap„-'+p'-

[—iV«p«+«o]

Pp +Ko

U= I'd'k (16)
[(k„+p.')'+ .'][(k„+p.)'+ o'][ k.-'+, ]

I'=I ID=I —I(hp„'—= —p').
where

X[I((iy p+«p)+I~«pp&}, (17)

I' diverges logarithmically, but it still contains a term

which is to be interpreted as a coupling constant
renormalization. Replacing f« in Eq. (4) by f«+Sf&„
and keeping only the linear term in 8f«, we again obtain

an expression 5'S~ of the form of S, if

4 ( I'

(2m)4 '&--«' ~Ap '+p'J

Again subtracting 8'52 from S —8S2 we have

expression with I' replaced by I", where

f f Jk
Ii= dx(1 —x)" [k-'+A]'

d4k

~o ~ [k„'+A]-"

(18)

and A=«0'x'+p'(1 —z). The Feynman relation (13)
has been used in obtaining Eq. (18). It appears most
reasonable to evaluate the indeterminate form in
Eq. (17) as

( II"=I' (Ap„'+p—') lim
} }. (12)—«' Ehp'+p')

L 'v"p+«o]—[iv.p.+«o] —+1.
p„'+«p'

(19)

Using the Feynman representation for product
denominators,

1 I' dx

a& "o [ax+b(1—x)]'-'

QpI"= ',iw '[aP„'+-p']-ln-1+ x(1—') d.g.

"o - &o"

((u l-~
+termsof0}

}
—

} }. (14)
E. Eao) j

The final expression for S, is obtained by replacing
I by I" in Eq. (7).'

8: Graphs (b) and (c)

AVriting the term in the S-matrix arising from graph
(b) and performing the integration over coordinates,

' Compare S. T. Epstein, Phys. Rev. 73, 177 (1948).' This can be easily obtained by adding a term ppBppfp to H(x)
in Eq. (1) and equating to zero the resulting expression in 5 for
the scattering of a single meson in interaction with its virtual
nucleon 6eld. This equation can be solved for bpp.

8 Essentially this result, as a correction to the P nuclear po-
tential, has been given previously by F. J. Dyson in a lecture at
the Institute for Advanced Study.

The term in Eq. (17) that contains I2 is due to the
nucleon self-energy. This may be seen if we replace
"the self-energy part'" of graph (c) by a term arising
from an additional term in the interaction Eq. (2),

where'
5H=5«0~,

b«o=if [I,«,/(2 )'] (20)

This can be obtained in the same manner as bpp. See reference
7'.

"J.S. Schwinger, Phys. Rev. 75, 651 (1949).

Substracting the contribution to Eq. (17) arising from
5«0 removes the I2-term from Eq. (17). The remainder,
containing I&, diverges logarithmically.

In electrodynamics the I& term in S, cancels the
diverging term in U, leaving a finite result. " Here,
were we dealing only with neutral mesons (f&=f2=0),
this would happen also. However, when a nucleon
emits a charged meson, it changes its isotopic spin
state. Reference to graph (b) indicates that this will
modify its ability to interact with another nucleon. In
physical terms, this represents a change in the proba-
bility that either of the original nucleons will remain
in its initial isotopic spin state to interact with the
other nucleon. This manifests itself in a change in the
e8ective value of the coupling constants. Indeed, we
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8)f„=g, Q f »21,+ Qf » 2—flo U(gP o= —Po)
(2»r) 4»-l .i )=

1 ~l s ~y

(k 1 $ 3) (21) 6J' dxJ dyj dsLcs+f)(y s)

replace the coupling constants fl in So (Eq. (4)) by it is possible to conserve energy for each of two succes-
fl+ 8'fl, where sive scatterings).

To evaluate V p we use the following generalization
fo of Eq. (13).

The 8'fl terms are subtracted from Eqs. (15) and (17)
and considered as included in the measurable values of
the coupling constants. The remaining part of the
scattering matrix is equivalent to Eq. (15) with
replaced by U', where

U'= U —U(hp„'= —p')

1 -
(gp )2

= —i»r'j~ ln 1+ x(1—x) dx
, 9

0 Ko

+terms of order (p/so)'. (22)

+c(x—y)+d(1 —x)1-4. (25)

Using Eq. (25) and performing the k-integration, we
obtain

~ nA )(4'r, rn-4 )
2 Ko

+I»so()P„r.r))P„)()P» r»r) iysps)P»)

+L o(0v r.~y-(p- —8-)4 o)

X(4» rorna(ps 8s)4")I,—(26)
The validity of the interpretation of expressions (21)

as coupling constant renormalization is less clear than
for the case of graph (a). En particular, it does not
seem at all certain that when one goes to higher orders
in the coupling constant that the combinations (21)
will always re-occur correctly.

C: Graphs (d) and (e)

1
Ly =— dx

dLg
L2= —2

dKO

(27)

Graphs (d) and (e) correspond to scattering processes
in which two mesons are exchanged by the interacting
nucleons. Included in graph (d) is the second Born
approximation of the f' potential. ft can be expected,
however, that for non-relativistic energies that vacuum
fluctuation phenomena will give the largest contribu-
tion, since the matrix yo is of the order v/c (v is the
nucleon velocity) when it couples positive energy states
(simple scattering of nucleon) and of order unity when
it couples a positive to a negative energy state (pair
creation). For this reason graphs (d) and (e) wiD give
the major contribution to the total scattering matrix
for non-relativistic energies. These graphs do not con-
tain renormalization efI'ects and lead to a 6nite scat-
tering matrix.

Performing the integrations over coordinate space,
using (Eqs. (6)), we obtain for Sd'.

Sd= C4'v r ~&-4v3C4'» r»r &A'» jf~'f:» 8"1'«o) (23)

where

and

2 dLj,L3=-
KO2 d8'

A= {(x—y —s)'+ (1—x)(y —s)8+-(y —x)8'

+p(1 —x+y
—s) —is I

(28)

I Ko)

(P' P')', (P.-v.)'-
Ko

Similarly, from graph (e) we obtain

of2f2
S,= —»r'= {.Vl()p) r»rip )P))Q» rlr»y )P»).

2 Ko2

+ lV oso()p;r»rl)pv) ()P» rlr»iyPPs)p»)

+ Vo(4'r. rly-(p- 8--)4,)—
X ()p» r),r»ya(pa qa))p») l (29)—

k kp
V a= td'k

f(kg+ pp)'+ so' jDk. q.)'+ so'j—
X{.(k.+~P )'+~'jLk, '+~')

Again the io term (E—qs. (6)) is considered as
included in Ko' and p,'. It will be necessary here to
make explicit use of —io, since graph (d) contains
intermediate states for which energy is conserved (i.e. ,

where

r)l » )o
Nl ———

I dx dy ds(1/1'),
2~o "o ~o

No ———2 (d.V)/dso') )

Xo=+ (2/so') (dNl/d8'),

(30)
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I' =,' (x—y+s)'+ (1—x) (y —s)8+ (8'—8)s(x—y)

+p'(1 —x+y —s) I. (31)

It should be noted that i~ has been set equal to zero
in Eq. (31) since I' is positive definite (8 &~8). This
corresponds to the fact that graph (e) has no inter-
mediate states for which energy can be conserved, since
it corresponds to processes in which two mesons are
successively emitted.

In a non-relativistic approximation we can drop L3
and X3 terms and the y, 's (f=1, 2, 3) in Sq and S..
This gives

order approximation one obtains

Ly so L2= (A y t(p F2)=6(8)

i (e+4p) ~

!= —— lnp+
I

8

1+L8/(8+4p)]&-
IXln (33)

.1—[8/(8+ 4p) ]&

where p and 8 are defined in Eq. (28).
%e can obtain a non-relativistic expression for the

momentum space representation of the potential energy
of two nucleons (using Eq. (33)) as that expression
which leads to Eqs. (32) in a Born approximation. "

i 2 2
X p

L~~ so'L-](—&v rar~6) (&~ r.r~&e) ~

2 Kp

i f)Pf'
(32)

1 1 fg'f„' 5(8)
(p'q'Iv Ipq)= ——

4 (2s)' (2n.)' «0'

)( r~o) r 0)(r~(2)r (2)+r (2)r„(2)

= —1/(2x)'(f'/2n)'g(8). /K'

Since these expressions do not contain spin operators,
we conclude that there will be no tensor force between
nucleons in a non-relativistic approximation for this
theory.

The exact integration of Eqs. (27) and (30) would
present severe analytical difFiculties. However, it is
possible to obtain terms of order (v/c)' and higher. The
leading term in L~ is of order (c/v). It arises from the
region of z-integration for which A is small. This term
can be integrated explicitly. The next order terms in
L~ have the form

lnL(hp„'/sv')+ const. ],
and a term that is essentially a constant. The leading
term of order (c/v) comes from the second Born approx-
imation of the f' potential and is complex even in the
limit ~—+0, because of the pole in the integrand.

Since I' (Eq. (31)) is non-vanishing, Xq does not
contain the (c/v) term, but is otherwise similar to L~.

In a non-relativistic approximation the leading terms
in Li and Si are canceled by corresponding terms in
~o'L2 and so'X& respectively (see Eqs. (32)). In lowest

1 pfjp) 1 v'" hpo'" Ap
(35)

gg 2 (2v.j 2/2 (gp)2+/2

From Eq. (35) it is seen that in a non-relativistic
approximation V4 does not contain tensor forces, nor
does it contain exchange forces. It is further seen from
Eq. (33) that V' in coordinate space has a 1/r' singu-
larity at the origin (for r 1/so, relativistic corrections
reduce this to a 1/r singularity). Each of these conclu-

5-.

4 ~

CHARGED THEORY

(charged theory; f& f2= f, f——& 0)——

= —3s L1/(2v)'](f2/2v')2/(8)//os

(symmetric theory; f&=f2=fs=f), (34)

where the superscripts (1) and (2) on the r-operators
imply that they refer to particles (1) and (2), respec-
tively. The f' potential is non-relativistically:

4
CHARGED THEORY

k, o-, {)
k a-(}------

oe e

50 60' 90 I20 ISO I80

Fzo. 2. Partial differential cross sections for the charged theory
at 90 Mev contributed by the terms Sq and S4 in the scattering
matrix taken individually.

50' 60» ™90' l20' l50 I80

FM. 3. Effect of relativistic corrections, as herein dined
(page 17) on the partial cross section contributed by the S4 term
in the scattering matrix.

"That the potential can be obtained in this manner was 6rst
noted by Professor H. A. Bethe, Phys. Rev. 76, 191 (A) (1949).
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SYMMETRICAL THEORY

ko ~ (QH)—
k, a; (QH)---"

20"

16-

l2 -0*

b
8 -"2

CHARGED THEORY

50' 60' 90 l20' l 50 I eo~

4

30

———90 MEV l70
--"---50MEY l7!

25 Mf V l7$

60' 90 l2O. lsO leO

FIG. 4. Partial differential cross sections for the symmetrical
theory at 90 Mev contributed by the terms S. and S4 in the
scattering matrix taken individually.

sions is in contradiction to experiment; however, it is
not impossible that higher order radiative corrections
might modify this result.

To see the importance of relativistic corrections, we

investigate the differential scattering cross section.

o,(8)= n'E'~ S2 ', 04(8) = sr'E'
~
S4( '-'. (36)

The flatness of the fourth-order curve and the forward
maximum reflect the high singularity of the potential
and the fact that only ordinary and not exchange forces
are contributed by the fourth-order potential. The
coupling constant was chosen as (f'/2s) =6.4. We shall
return to this point in a later section.

The importance of relativistic corrections is indicated
in Fig. 3. Here the partial cross section contributed by
the fourth-order term in the scattering matrix alone
has been plotted vrith and without inclusion of relativ-
istic terms. Since there is some ambiguity as to what
one might mean by a relativistic correction, it seems
vrorth while to discuss this point in some detail. As vre

III. SCATTERING CROSS SECTIONS

For the case of the charged theory the constant fa ——0
and f& f2=f. A——s a consequence of the fact that only
charged. mesons are present the matrix element corre-
sponding to diagram (b) vanishes identically since it is
incompatible with electric charge conservation. For the
problem of neutron-proton scattering (e) vanishes on
the same grounds and (d) contributes. Similarly for
the scattering of identical particles (d) vanishes and

(e) contributes. The contributions of the two diagrams
are, however, identical in a non-relativistic approxima-
tion (see Eq. (32)). After the infinite part of diagram

{a) has been interpreted in terms of charge and mass
renormalization it gives a very small e6ect on the
cross section of the order of a percent.

The neutron-proton scattering cross section has been
treated in the approximation of retaining consistently
all relativistic eRects of order (r/c)' in those terms of
the scattering matrix up to the fourth power of the
coupling constant. Figure 2 shows the partial cross
sections at 90 Mev contributed by the second- and
fourth-order terms taken separately. Thus in the center
of gravity system

FIG. 5. Estimate of differential cross sections for the charged
theory computed by using the eighth-order S-matrix (Eq. (A. 1)).

have pointed out before (Eqs. (26) and (29)), the
scattering matrix can be written in terms of the two
invariant collision parameters 8, 8' which represent the
square of the momentum transfer divided by Kp' and
the maximum value of this quantity respectively. In
terms of the angle of scattering 0 there exists the
following relation:

(37)8 = 8' sin'(0/2).

In terms of these parameters 04(0) may be written

(r4(8, 8') =04p(8)+ (8') l(r4g(8, 8')+ 8'042(8, 8')+

The terms in (8')i and 8', etc. , can be said to represent
relativistic corrections since in the center of gravity
system

8 = 4p /K ~(v/c)" (38)

where p is the momentum of one of the colliding
particles.

If vre now let 8' tend toward zero the terms involving
o-4l and o42, etc. , tend to zero whereas o4p remains 6nite
and is identical with the partial cross section vrhich

vrould have been contributed by the non-relativistic
potential (Eq. (34)). The meaning of the non-relativistic
cross section o«seems rather unique when the limiting
process is characterized in terms of the invariant
quantity O'. The condition for the validity of our
non-relativistic cross section is simply

8'« I or (2p)'«ao'-. (39)

Inspection of the curves in Fig. 3 shows that relativistic
effects, when so defined, are rather large. The result is,
at first sight, surprising, but it must be remembered
that at 90 Mev 8'~—,

' and therefore the terms o4~ and
o.42 need not be small.

For the symmetrical theory f&=f2=f& f Here due-—.
to the presence of the neutral meson all the diagrams

play a role. It turns out, however, that after identifica-
tions of charge and mass renormalization terms in

diagrams (a) and (b) that they contribute less than one

percent to the cross sections. Barring the inconse-

quential eBect of the Lamb shift and vacuum polar-
ization terms there are, in the non-relativistic limit, no
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exchange forces contributed by the fourth-order poten-
tial in the symmetrical theory (Eq. (34)).

The partial cross sections 02(O), 04(O) obtained in

the case of the symmetrical theory are shown in Fig. 4.
They have been computed in the same approximation
as the corresponding terms in the charged theory.
Again the flatness of the fourth-order curve reflects the
high singularity of the potential. The fact that the
forward-backward cross-section ratio for this curve is
about one must be attributed to exchange forces
introduced by relativistic corrections. The coupling
constant (f'/2s)~4. 8 was determined roughly by the
requirement that the fourth-order partial cross section
agrees with the corresponding quantity in the case of
the charged theory.

We are indebted to Professor Bethe for sending his
results to us in advance of publication and to Professor

J. R. Oppenheimer for helpful criticism.
This work was carried out while one of us (K.W.)

was supported by a grant-in-aid through the Institute
for Advanced Study supported by the Atomic Energy
Commission and the other (J.V.L.) was the holder of
an Atomic Energy Commission Postdoctoral Fellow-
ship.

APPENDIX

The S-matrix which has so far been obtained may be used to
compute the cross section up to terms proportional to f'. There
are, of course, other terms involving f due to higher order terms
in the S-matrix. An attempt was made to improve the present
approximation by taking the potential which we have obtained
(Eqs. (34) and (35)) and solving the equation of motion again.

i(ae/at) = Ve.
This equation may be solved in the same manner as Eq. (2) and
the S-matrix can be found. We may now identify those terms in
S corresponding to the terms Sm and S4 which have been correctly
dealt with. Thus an S-matrix of the form,

S=Sq+S4+Se'+Ss', (A.1)

can be found. Of course, the terms in Se' and Ss' depend on the
singular potential (Eq. (34)) so that it is necessary to cut oG the
integrations. This cut-oG was arbitrarily chosen as the nucleon
Compton wave-length. The results are not sensitive to this choice
since the relativistic e8ects would introduce a cut-oB in this
region anyway.

A coupling constant f /2m =6.4 was estimated in this way by
fitting the total cross section at 90 Mev reported by Segre and
his collaborators. ~ The results are given in Fig. 5. The total
cross sections are nearly energy independent in the range con-
sidered.

~ Hadley, Kelly, Leith, Segre, Wiegand, and York, Phys. Rev.
75, 351 (1949).
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The photo-magnetic and photoelectric cross sections have been calculated for y-energies 2.62, 2.76 and
6.2 Mev, using diferent values of the deuteron binding energy (2.19 and 2.24 Mev). The calculations were

carried out for a symmetrical theory with meson potential (Mgller-Rosenfeld theory), the corresponding
neutral theory (ordinary force) and a third version with no sP-interaction. Non-central forces were neglected.
Results are given for two ranges, equivalent to meson masses 200 and 300. The influence of the y-ray
momentum on the angular distribution of the photo-nucleons should be noted.

q ROM the point of view of nuclear force theory the
photo-disintegration of the deuteron is one of the

fundamental experiments. Measurements of the total
cross section and the angular distribution of the photo-
neutrons (or -protons) for moderate energies are now in

progress in several laboratories, ' '* and we hope that
' Wilson, Collie, and Halban, Nature 163, 245 (1949).' N. O. Lassen, Phys. Rev. 74, 1533 (1948); Phys. Rev. 75, 1099

{1949).' B.Hamermesh and A. Wattenberg, Phys. Rev. 75, 1290 (1949).' Meiners, Smith, and Slack, Phys. Rev. 75, 1632 (1949).' Snell, Barker, and Sternberg, Phys. Rev. 75, 1290 (1949).
* We are indebted to Dr. Hans Halban, Oxford, and Dr. N. O.

Lassen, Copenhagen, for kindly informing us of experimental
results before publication.

the theoretical results presented in this note will be of
some use for the interpretation of the experiments.

We have calculated the photo-magnetic and photo-
electric cross sections, 0 and o„**for the y-energies
mainly used in experiments so far: 2.62, 2.76 and 6.2
Mev. As a theoretical basis we have employed the
MIjlller-Rosenfeld (MR) theory and, for comparison,
the corresponding neutral theory (N) and a third
version (0) where the interaction in the P-state is
assumed to be zero. The three cases can be characterized

**For a survey of the theory of the photo-disintegration, see
e.g., L. Rosenfeld, Nuclear Forces (North-Holland Publishing
Company, Amsterdam, 1948), pp. 132-135, 175-179, 452-453.


