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Using the newly developed computational techniques and the covariant formalism, the nucleon mag-
netic moments and the neutron-electron interaction are calculated. A pseudoscalar meson theory is
assumed. Finite and unambiguous results are obtained to the lowest non-vanishing order in the coupling
constants. These depend on the unknown strength of the meson coupling. While a not unreasonable
value may be used to fit the proton moment, the corresponding neutron moment comes out much too
large. With this fitting, the neutron-electron potential turns out to be attractive with an equivalent
well depth of the order of 5 to 10 kilovolts.

I. INTRODUCTION

1
~)NE of the simplest of the many properties

predicted by meson theory is the additional
magnetic moment to be ascribed to a nucleon in an
external magnetic field. The anomalous neutron and
proton moments hence serve as a test for the theory.
In the past the theory has failed this test. Weak
coupling theories in particular led to divergent
results.

In the light of recent advances in quantum elec-
trodynamics, this question has been re-examined to
see whether utilization of charge and mass renor-
malization concepts would alleviate the situation.
This has indeed been found. ' In fact, it seems as if a
completely relativistic calculation is all that is
needed to obtain finite magnetic moments' (at least
in a psendoscalar theory). While agreement with
experiment has not been obtained, this could easily
be due to the use of an incorrect model or to the
inadequacy of the weak coupling approximation.

In the following the anomalous magnetic mo-
ments are calculated in the Schwinger-Tomonaga
formalism. This serves, firstly, to place previous
results on a firmer theoretical basis. Secondly, the
use of the greatly improved computational tech-

' K. M. Case, Phys. Rev. 74, 1884 (1948).' J. M. Luttinger, Helv. Phys. Acta, 21, 483 (1948}.I am
indebted to Dr. Luttinger for the opportunity of seeing his
paper prior to publication. It is gratifying to note that the
results obtained with the present method agree with those he
has previously found,

niques make the derivation considerably simpler
and more elegant.

With the present method, another quantity of
experimental interest is obtained simultaneously
with the magnetic moments. This is the neutron-
electron potential. An expression for this quantity
is given below. In particular the spatial integral of
the potential, which is the quantity measured, is
expressed in closed form.

II. EQUATIONS OF MOTION

To describe the meson field we choose the
simplest possibility which may be expected to
yield interesting results —namely the pseudoscalar
theory. Of the two conventional meson-nucleon
couplings for this case, the pseudoscalar coupling
was chosen. It can be shown that this does not
imply any restriction for the magnetic moments.
To the first non-vanishing order, the anomalous
magnetic moments are the same with an arbitrary
linear combination of the couplings, except for a
simple multiplicative factor. '

To treat the neutron, the proton, and all possible
combinations of charged and neutral mesons simul-
taneously, a four-dimensional isotopic spin for-
malism has been used. 7i, r2, 7-3 are the conventional
isotopic spin matrices chosen so that the eigenvalue

' This equivalence also holds for the nuclear forces predicted
by the pseudoscalar meson theory with the same equivalent
pseudoscalar coupling constant,
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+1 of ri corresponds to neutrons, —1 to protons.
7 4 is merely the unit operator in isotopic spin space.
The four real wave functions pi to p4 describe the
meson field. fi to f4 are the corresponding pseudo-
scalar coupling constants. Q~ and @2 describe a
charged field, Pi the neutral field to be added in a
symmetrical theory, and &4 a purely neutral field.
Gauge invariance requires the equations to be
invariant with respect to rotation around the 3 axis
in isotopic spin space and hence, that fi= fi Thi.s
specialization will not be made until the final
formulas are obtained.

In the interaction representation, the covariant
Schwinger-Tomonaga form of the equations may be
stated as follows.

The field operators satisfy the equations of
motion:

g2

+ LA. '+(ii.A.) 'j(4 i'+4 i') (1o')
2k'c'

e ( Bgq BlipHi'"'= ——A„~ pi —4p
ac "& ax„ax„) (10)

Here t,' is the proton's charge. The various special
theories are given by the substitutions:

A„denotes the four-vector potential of the
external electromagnetic held. For the problems of
interest here, the second term in (10) is of higher
order in e. Hence, (10') may be replaced by

( ' —z')&„=0, (1) Charged theory

fi=fi=f&0 fi='f4=0
Sym~c~r;car, &aeory

fi=fi=fi= fW0; f4=0 (12)
f, P are the spinor operators of the nucleon field as
defined by Schwinger. 4 The y„, y„are the usual
Dirac y's and their transposes. Summation from j.

to 4 is implied by repeated indices.

~0 ——3fc/k,

where p and M are the meson and nucleon masses,
respectively.

The commutation relations are

Ly„(x), y.( )xj =icier„„S(x x'), —

I P (x) g'o(x ) } = (1/i) S s(x x')—
Ik-(x), A(x') } = If-(x), ki(x') }=0

In (5) the index a refers to both spinor and isotopic
spin components. 6 and 5 are Schwinger's4 6 and
5 functions for mass p, and M', respectively, except
that 5 is also a unit matrix with respect to isotopic
spin indices.

The Schrodinger equation for the wave fun-
tional is

ich(8@/bo(x)) =H(x)%, (6)

where 8/bo(x) denotes the variational derivative
with respect to the surface cr at the point x.

H(x) ~ p +.H.xiyHe i

R.=if„Py,r.Py. ,

(1—r3)Hi'"' = i+ y„—fA „, —
' J. S. Sehwinger, Phys, Rev. I4, 1439 (1948).

¹utral theory

fi=fi=fi=o f4=f'&0

The above formulation is slightly incomplete
since it fails to satisfy the requirement of invariance
under electric charge conjugation. This defect may
be remedied by defining charge conjugate operators
to P and P which satisfy equations similar to (2).
The charge conjugate expression should then be
added to (8) and the result divided by two. For the
present purposes the eRect of these manipulations
would be manifested by the vacuum expectation
value of gyes, r„P being replaced by zero. Agreeing
that this replacement shall be made wherever the
indicated expression occurs makes it possible to use
the present formulation without explicit mention of
charge conjugate operators.

HI. METHOD

In this application of the covariant formalism,
the greatly simplified method of calculation dis-
cussed by Dyson' will be be taken as basic. Prac-
tically all of his arguments may be carried over
from electrodynamics to meson theory, with the
exception of some trivial modihcations which are
indicated when encountered.

The eBects of interest are of order ef'A„Terms.
of higher order in c or fwill be considered negligible.

For the one-nucleon system the eRective Hamil-
tonian may be written (by transforming away the
R,p„ term which describes the meson-nucleon

' F. J. Dyson, Phys. Rev. 'l5, 486 (1949). I would like to
thank Dr. Dyson for telling me of this formulation before it
was published.
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coupling) as:

f —$)" 1 r

dx&
I

dx„
-=oI Ac) n!& „

XP(H'"'(x,) H, (xg) II,(x„)), (14)

where I' denotes the ordering operator which
arranges the field quantities chronologically.

Strictly speaking II, is given by

for (18) and (19)

ref„f,
Ii, = — A„) )I dxgdx,

2k c

(1—rp)
XP P(xp) y„f—(xp), g(xg) r„ygP(xg),

2

X4'(xp)r Vpk(xp) P{4' (x&)4' (x&) I (20)

EI;(x;) =R„(x;)p„(x,) —bMc'~ (15)

where bM is the change in nucleon mass due to the
coupling with the meson field. Dyson has shown,
however, that for practical purposes, the second
term in (15) may be omitted. This is done with the
understanding that all mass renormalization terms
are to be dropped when encountered. Afterwards
all these terms are to be considered separately.
Hence, instead of (15), we use

II~ =—e
A pJ J

I dxgdxp
2k'c'

XP {$(xl)~ ppf(x&) 4'(xp) ~ Vpf(xp) }

asap(x. ) B@g(xp)
XP 4, (xp)— —y, (xp)

BX t9Xp

H;(x,) =R.(x;)y, (x;). (16)

To the specified order only the first three terms
of (14) contribute. The first term represents the
ordinary interaction between a proton and an
external field. The second term has no diagonal
elements for the one nucleon, no meson state. It
will be shown below that this term does not con-
tribute to the problems considered here.

Thus, the modification of the electromagnetic
properties of the nucleons are due to

1( p)P—
II,fg' ———

{ I
dxg dx,

2L kc)

XP(H'"'(xp), H, (xg), H, (xp)). (17)

This may be split into a sum of two terms:

II,=
( kc)

The one-nucleon, zero-meson portions of (20) and
(21) are now to be calculated. This means that the
vacuum expectation value of the P-bracket in-
volving meson fields and the one-nucleon portion of
the E-bracket of nucleon fields are to be inserted.
Using the given commutation relations calculations
similar to those of Schwinger' and Dyson' give

( P{y,( gx)y, ( x)p}) „=-,'ckh„.hp(x~ —xp), (22)

where 6p is the function whose Fourier transform is

~, (k) = P, +p~r(k'+") (23)
27rm k 2+K2

with P„ indicating that the principal value of the
four-dimensional Fourier integral is to be taken.

A similar though more tedious calculation shows

8@p(xp) By)(xp)
41(xo) A(xp) 4 (x&) 4' (xp)

OX' BXp ~gg

and

P(H, &"&(xp), II,(xg), H, (xp)), (18) 52c' Bhp
bg, bp. Ap(xp —xg) (xp —xp)

4 BX„'

(—zp'
Eip = p { } J JI dxydxp

& kc)

XP(H, „g&"(xp), H;(xg), H, (xp)). (19)

Physically II~ is due to the proton having an
electric charge, while II2 is due to the occurrence of
charged mesons.

Inserting the definition of (16), and using the
commutativity of nucleon and meson fields gives

—Ap(xp —xp) Ap(xp —xg)
BXp

k'c'-' Bkp
+ bg. bp, Dp(xp —xp) (x.—xg)

BX

—b.p(xp —xg) hp(xp —xp) . (24)
OX'

' J. S. Schwinger, Phys. Rev. 75, 1912 (1949),
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Equation (24) is to be inserted in (21). It is seen
that the two terms on the right-hand side of (24)
differ only by a minus sign and the interchange of
indices 1 and 2, i.e. ,

k c
(&I })= (b~ 62 —~~.b2)

X Ap(xo —xg) (x,—x2)
Bxy,

Mp—Ap(xo —xg) (xo —xg) . (25)
t9xp

The one-nucleon portions of the nucleon
P-brackets may be found in precisely the same
manner as has been done by Dyson' for the electro-
dynamic case. Essentially, the procedure is the
following. One P and one g are chosen to be left
as operators. Neither of these may be functions of
xo, for these terms are the self-energy contributions
we agreed to omit. A particular pairing of the
remaining f and P is then selected. The vacuum
expectation value of the P-bracket of each pair is
substituted for the pair. If f and P refer to the
same coordinate, this expectation value is zero—
since all terms have been implicitly charge-sym-
metrized with a resulting vacuum expectation
value of zero. For g and P of different coordinates
we have

where

(~ Il-(x)A(3) })".= 2(S~)P-(x 3)—

B;gg' ——Hg +Hg~+Hg (28)

with b p' the same as 6p but with the replacement
K~~0. Multiplying by a factor of —1 for each Sp
to take account of the anticommutativity of the
spinors, and summing over the contributions of all
pairings, gives the one nucleon portions of the
brackets. For a much more detailed description of
this procedure the reader is referred to reference 5.

The nucleon P-bracket in (20) gives two distinct
terms, each of which occurs twice. The two occur-
rences differ merely by an interchange of x& and x2,
and so the efkct of the second is merely a factor
of 2. II~ and H~~ are the contributions of the two
essentially different arrangements. There is only
one type of term from the P-bracket in (21).

Substituting the various expressions in (20) and
(21) gives the operator in the Schrodinger equation
which describes the modified nucleon electromag-
netic properties. 'This is

is

8hc

(1—r)
XTr r ysSz(xo xi)y Ss(xi —xo)

2

X6p(xg —x2)g (xg) yg v.g(x2), (29)

ief-„'
II~' ——A„J )~ dxgdx2

8kc

(1 —r3)
X f(x,)year, S~(xo xi)v,—

2

XSp(x2 xo) yn—r„g(x2)5p(xg x2),—(30)

ef f, t r

H~ —— A„l dx)dx2
8hc

X$(xl) &1 YSSF(x2 xl) &2'r5

'rgT2Sp(x2 xg)@/TED&(x )}2

8
X. aF(x, x,) —ap(x—, x2)—

Bxp

—g p(xo —x2) 5p(xo —xz) . (31)
Bxp

H~ describes the polarization of the vacuum. It
is due to the production of nucleon pairs by mesons
emitted by a proton. These pairs might be expected
to give a contribution to the electric current density
even at points at a finite distance from the nucleon.
Indeed, it is just these terms which give rise to
charge renormalization and the attendant polariza-
tion phenomena in the electrodynamic case. ' H&~ is
the analog of the principal term in the Lamb Shift
calculations. From the analogy this term would be
expected to describe anomalous moments even for
a purely neutral meson field. II2 is due to charged
mesons and describes the modification of nucleon
properties due to the non-spherically symmetric
charged cloud surrounding the nucleon.

IV. EVALUATION

The isotopic spin dependence of II,f~' may be
considerably simplified by noting that spin and
isotopic spin operators commute and act on dif-
ferent coordinates. Thus, the trace in (29) may be
written

(Trr, (1—r~)/2) TrI'„, (32)
' This term will be shown to va, nish in the present theory.
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where
I'„=Y55p(Xo —X1)Y„Sp(X1—Xo).

Similarly, the matrix operator in (30) is

(1—ro)
f„or,Y55p(X, X—,)Y„Sp—(X2 Xo)—Yor.

2

(33)
in one case is made up of negative mesons and in
the other of positive ones.

For the evaluation of (37), TrI'„ is needed. Ex-
Pressing Sp in terms of Y's by means of (27) gives

TrI'„= —TrY5YKY„Y, Ap(xo x1) &p(xo x1)
Bx),' Bxp'

(1—ro)=f„or„. ,r Y55p( xo—x1)Y„S» (x2 —xo) Yo. (34)

But, from the relations satisfied by the 7 matrices,

(1 —ro) (1—ro)f'r. —r.= (fo'+f4')
2 2

(1+ro) Now,+ (f1'+f2') — (33)

8
+ Ko TrY5YKY» +p(xo x1)~p(xo x1)

Bxg'

( 4l

Ko TrY5Y„Y»l ~p(Xo —X1) l~p(Xo X1)
(axo i

+K,' TrY5Y„&p(Xo X,)&—p(Xo ») —{40)

In (31) the isotopic spin operator is
n ~

~17 2 T2T1 /Z7 3.

With these substitutions, (29)—(31) become

(36)

TrY5Yn, Y, = ', Tr[Y5YKY»Y +-YKY»y Yoj =0 (41)

(since Y5 anticommutes with Y„). Similarly,

Tr Y,Y„=', Tr(y Y„+Y„Y,) =-0. (42)

On changing the name of the summation variable
in the third term of (40) from X to p, we have

2ef. ' (1—ro)
H1" —— ii i dx1dx2 Trr. —(TrI'„)

8kc~ ~ 2

X&p(X1—X2)$(X2)Yor.f(X2), (37)

—se
II,&»= ~„""dx,dx, g(x,)

Skc

Ko Tr Yo(Y17» 7»VK)

8
X

~
Ap(Xo —X1) ~&p(Xo —»). (43)

&ax,p )

Equation (43) is certainly zero if p=)4. If »4p4-'X,

y)y„y~ reduces to the product of two diAerent y's.
But these anticommute, and so the trace is zero.

(1 ro) (1+ro)
X (fo'+f4') + (f1'+f2')

2
'

2
and so

Tr F„=O,

IIg =—0.

XY55p(xo —x1)Y„Sp(x2—xo)

XYgp(xo) 6p(x1 —x2), (38)

ief1f2 t.
B2 = A„J ) dx1dx2

4kc

X4'(x1) &2 Y55p (x2 xl) Y5$(x2)

f
8

X 6p(Xo —X1) 6p(Xo —X2)
Bxy,

Bhp—Ap(xo —xo) (xo —x1) . (39)
ax„

As might be expected, II2 is equal and opposite
for neutron and proton (being proportional to ro)
This merely states that the charged cloud around
the neutron and proton is distributed the same but

This means that not only the charge renor-
malization but all other polarization terms vanish.
A more general proof showing the physics involved
is given in Appendix A.

To perform the integration indicated in II~' and
II2, it is convenient to use Fourier integral repre-
sentations of the various functions. This integration
is greatly facilitated by an observation of R. P.
Feyn man.

If hp(k„) be given by (23), then

—i dkp
F(k„)6p(k„)dko F(k„)—— , (46)

~ c 2x' k„2+K~

where c is a contour in the complex ko plane going
from —~ on the real axis below the pole at kp = —K,

above the pole at ko= K, and then to + ~ on the
real axis. For functions F which vanish properly at
infinity (which is true of those found below), the
integral along c is equal to the integral taken along
the imaginary axis from —i~ to i CC. Hence, with
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1
hp($+$') = ~t exp[i(k„g„+k„g„')7

(22r)2 ~
Xh p(k) (dk), (56)

(47)hp(k„) =
2m' k„'+~'

the understanding that integrals over ko are to be In (50) we insert the Fourier representation
taken on this path, the Fourier transform of h p(x) is

Setting

T= (fo'+f4') ((1—ro)/2)+(fp+f2')((1+ ro)/2), (48)

where h p(k) is the Fourier transform of hp(x).
In (52) we set

g=xs-xo, P'=xo-x2.

H'~~ becomes

(49) Sp(g —g') =
(22r)2 &

where

«pl ik. (~o' —s.)]Sp(k) (dk)

—M
dkdhV(xo+k) TvoSp( h)—

Sic

IJ2 becomes

g =Xo Xy, (51)

ief,f,
EE2 —— A„ II ~ dydee'p(xo g) royoS—p(q —g')

2A,c

8
XVA'(xo n') h p(n), h p (n') (52)

l9 /le

As in earlier electromagnetic calculations, we
consider a typical Fourier component of these
operators.

Let

P(x) =a exp(iP„x„); P(x) = b exp( 2P„'x„) —(53).
Since f„fsatisfy (2),

Xv.Sp( 5') v—o4(xo 5')h—p(k+ f') (5o)

After an integration by parts and the change of
variables,

Sp(k) =Fourier transform of Sp( —x). (58)
With (53) there results

—ze
H22 = A„,l

dydee'dkp(xo)

8hc (22r)' &

Ty e p[i(k„—P„')$„]S (—$)r„S (—$')

Xe"p[i(k„P„)$„']—yak(xo) h p(k) (59).
iefqf2 1

dydee'dk
2kc (22r)2 « ~

Xg (xo) r oyoS p(k) y,g(xo)

Xexp[i(Pg' —k,)g),]hp(g)

x exp[i(k„P.)n„'7—(8/821„')hp(s') (60).
The integrals over P, P', g, g' are readily done

since they are just the transforms of the functions
involved. (59) and (60) become

—ieA„r
42r2 dkf(xo) TyoS p(P„' k,)—

8fsc

Xy„Sp(P„k„)pe(xo) h—p(k), (61)

ief~f2A,
H2 ——— 42r' I dg(xo)royoSp(k)yak(xo)

2Ac

and
(iP„y„+«o)a = b(iP„'y„+ Ko) =0, (54) Xh p(kg P«') i(k„—P„)h—p(k„—P„). (62)

P2 jp~2 ~20 ~ (55) Inserting the transforms gives

ieA„ i— p [ip„(P„'—k ) Ko]p [iy«(Pg kg) Ko]pog(xo)
i dkk(xo)Tvo

8kc 2 p4 J [(kx Pxl) 2+ K 27[(k~ P~) 2+ K 27[k) 2+ K27

ief2f2 1 (P„k„)—
H2= A„ i~ dg(xo)royo( —iy,k, +Ko)p(xo)

2kc 2m4 ~ (k 2+ K 2) [(k P )2+ «27[(ko Po )2+

Utilizing the anticommutivity of yo with y„and the relations (54) give

ieA„( —i ) p |t—(xo) T[ip (P k )+Ko]pp[ipz(P& k«)+ ]p(Kxo)oH'=
] (i' dk

8kc (2~4& a [(k P')'+» '7[(k„—P—)'+K '7[k„'+"7
ief,f&„1 t. g(xo) roiy, (k„—P.')(P„—k„)4(xo)

IIg =
2kc 22r4 J [k„'+K '7[(k„—P„)'+ «'][(k„—P,')'+ K']

(63)

(64)

(65)

(66)
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II)(b)
Pl pS rs00 F00

8lc E 42r') & p

4y(x —y)
X 0(xp) Ty.y y1 [y(P' P.)—+xP.j

(X12)'

With a few of the conventional tricks of inte-
grating and differentiations with respect to pa-
rameters, (65) and (66) may be integrated over (k),
and expressed as:

When these various manipulations have been
done in the above formulas, one more consideration
is necessary. This concerns all the "renormaliza-
tion" terms which have so far been omitted. These
terms will be independent of AP. Similar terms
occur in (67) and (70). It might be expected that
these terms will cancel. In any event it is obvious
that such terms should not contribute to the
quantities calculated here. Hence, we will just omit
these contributions.

On setting

with

X [y(P1,' —P1 ) +xPg]p(xp)

(x—y)y+» 4'(«) TV yl 72,4'(xo) (67)
(Z12) '

~P„=P„—P„'. (69)

X12=(x y) y(»—) +2xko, 2

—ay —b(x —y) +K'(1 —x), (68)

this gives

1t (x) =x'Kp'+ K'(1 —x),

t
(x2Kp2+p(x))y(x —y) (»„)2

X
4( ) [y( -y)(».)'+~(.)

MAp f~
dye'(«) TvA'(xo)

162rpl'2c ~o

(76)

EI2 —— -') I' d. t y
" .

,

t'

2hc I 82r2) &11 &p „p J 2

8(x -y) (I -x)
X y(Xo) roiy„[(X y)P„XP—„'j-

(+ 2)$

X [(x—y —1)P„+(1 x)P„']P(x)—

(x-y) y(».)'+~(x)
+ln +»„g (X11)

4 (x)

Kpg

X To„,g(xp) (77)
y(x —y) (».) '+4 (x)

2oflf2
dye'(xp) &pyA'(xp)

2(x —y) (1—x)
+ -- B,„p(xp)iy, rod(xp), (70)

(IC ')'
+22 (x y) (I x)(» )2+y2K 2

+a(x y)+b(1——x). (71)

Equations (67) and (70) may be expressed in

terms of » alone on using (54) and the relations
between the y-matrices. Three types of terms
result. These are

(COnSt. ) A„f(Xo)gpss(Xo)f1((»o) ),

(COnSt. ) A„P(Xp)»,o„.p(Xp) f2((»„)'), (73)

w1th (Toy = 22(yoffe 'rye)

(COnSt. ) A„f(Xp)»,$(Xo)f2((»,)') (74)'
Since these expressions are those for a typical

Fourier component given by (53), it is apparent
that i»„corresponds to the operator B/Bx„acting
on a general wave function. Hence, (74) is

(const. ) A„(xo)(B/Bx„)f( ')f(xo)f(xo) (75)

On integrating by parts, this expression is seen to
be proportional to BA„/Bx„, which is zero by the
Lorentz condition. Thus, all terms of the form (74)
may be omitted.

(x—y) (1—x) (»„)'
X 2Kp2y2

4'(y) [(x—y) (1—x) (gP„)2+4 (y) j
(x —y) (1 —x)(».) '+4 (y)

)

4 (y)

Koyp»„&o „,rpg.
+ —.(78)

(x—y) (1—x)(».)'+4(y)

The sum of (77) and (78) contains the anomalous
electromagnetic properties. Specializing to various
types of electromagnetic field as done below gives
the magnetic moments and the neutron-electron
interaction.

V. MAGNETIC MOMENTS

Consider a constant magnetic field. Since ihP„
represents the operator B/Bx. , an integration by
parts shows that only the o„, terms in (77) and (78)
remain. These simplify to

ieA„
IIlp = »„y(xp) To„„lp(xp)

16m 2kC
1 fr K(P2

X)l dx)l dy . (79)
o p 4 (x)
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Using the differential operator interpretation of
DP„and integrating by parts gives

His= Bi Q F,„QTa„„g,
16m'kc

(81)

Here the (hP)' in the denominator has been set
equal to zero since the external field is assumed
constant in space and time.

sef,fsA„
Hs —— &P,P(xo) r s~..g(xo)

pl pz ~ y2
X I dx~ dy . (80)

"o 4(y)

chargeless neutron when it emits a meson. It does
contribute to the neutron moment since the
neutron becomes a proton on emitting a meson. The
factor of two is due to the fact that a charged meson
field really consists of two real fields.

It is interesting to note that from the calculation
for a purely charged field that for all possible com-
binations of neutral and charged fields may be
derived —since Bi and 82 are needed for charged
mesons and no new integrals intervene in the
general case.

Evaluating the elementary integrals 8& and 82
and expressing the results in terms of nuclear mag-
netons, we obtain (with li the square of the ratio of
meson to nucleon masses):

with

Hs —— Bs Q F„„frso„,.f,
8m'kc

pl x

Bi——
) dXJ dyiioX /4'(X),

0 a

1 pS
Bs=j d jI dy"y'/4(y).

0 0

(83)

(84)
p =0.

l~s(3 —X) cos 9&/2

2(4l~ —Xs)&

Neutrat 'theory
82

f4' 1 X X(1—)) 1
p = + 1n-

4x'kc 4 2 4

(89)

where Ii„„is the field tensor.

For a proton,

T=fs'+f4', rs = —1

For a neutron,

T=fis+fs', rs=+1

(85)

(86)

Charged theory

f' 1 lw. (2 —7) 1
Py= ~

——X+ ln-
4x'kc 2 2 X

(2 —4li+Xs)

(Q.—Xs)1
cos-'—,(90)

2

Setting these formulas in (81) and (82), equating
fi to fs to f (as necessary for a charged field), and
adding, we find

f'
t

a ln(—1/X) 7, (2 —X)
Pn= ' ~+ cos—~

4or'hc I 2 (4X—X') & 2

I'rotor

IIeff = +
e(f '+f4—') ef'Bs

~1+
16m'kc 8x'kc

X { goo Xf}. (8—7)

The symmetrical theory results are obtained by
adding those for a neutral theory with f4=f to
those for a charged theory. These magnetic mo-
ments are identical (when notation is adjusted) to
those obtained by Luttinger with his "patent state"
method. '

Since X is quite small, these formulas are well
approximated to by:

iso = —(f'/4orhc) 1/or t -', +0(X) },
pn =0.

where 3'. is the constant magnetic field.
The brackets are obviously the magnetic mo-

ments. Physically these correspond just to what we
would expect. The 8& term is equal and opposite
for neutron and proton since it is due to meson
clouds of opposite signs. Similarly, the B~ term,
which is due to the proton's having a charge, is zero
for a proton when only a charged field is present.
This is a consequence of the proton's becoming a

Charged theory

ts, = (f'/4orhc)1/sr {—,'+0(X&) },
ts. = —(fs/4srhc)1/sr {1+0(li&)}.

Symmetrical theory

ts, = (f'/4orhc)1/sr {+4(0&)l}, -
ts„= —(f'/4srhc)1/sr {1+0(li&)}.

ef' —efsBs )

+ t B I, { yo .~y } (88) Neutral theory

l 8srshc 8orshc I (91)

(92)

(93)
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Comparison of these results with experiment is
greatly hampered by our lack of knowledge of the
coupling constant. The very questionable values
obtained from trying to fit the predicted nuclear
forces to the deuteron binding energy or other two-
particle interactions give much too large a value for
the anomalous neutron moment (a factor of two or
more). However, even omitting this consideration
it can be seen that these moments are inadequate.
Experimentally, the anomalous proton and neutron
moments are almost equal in magnitude. The best
of the above theories (charged) has the predicted
values diBering by a factor of two. The lack of
agreement with experiment may be due to the
several causes discussed later.

tionalized units

V,(.) = —(e/4x l.l). (95)

The operator interpretation of BP„shows that

(».)'~— (96)

where the operator acts on gr4$.
Integrating by parts results in this operator

being applied to V'(r). Since V'(r) is independent
of time, the D'Alembertian is equivalent to the
Laplacian acting on U'(r). To evaluate the re-
sultant of the operator on V'(r), the latter is
expanded as a three-dimensional Fourier Integral.
Thus,

VI. THE NEUTRON-ELECTRON INTERACTION* V'(r) = (1/(2 )') V 'e'" "(dp). (97)

Specializing (77) and (78) to the case of the
neutron, and taking the four-vector potential in
(77) and (78) to be that due to a stationary charge
—e at the origin, gives the neutron-electron inter-
action operator. The 0„„terms may be omitted. The
space-space components vanish because there is no
space vector potential. The space time components
describe the interaction of the electric dipole
moment of the neutron with the electron. This
dipole moment is merely that resulting from the
motion of the particle with the previously deter-
mined magnetic moment. As such it is proportional
to the velocity and hence, negligible in the slow
neutron region in which the experiments are per-
formed.

With the above results, and interchanging x and

y and the order of integration in (77), the neutron-
electron interaction operator is given by

V'(r)krA
8x'Ac

[r2K,2+&(y) ]x(y —x) (AP ) '
X dx dy

~(y)[ (r- )(»,)*+~(r)j
[(r—x)x(».) '+4 (r) j+ ~ dg l dy ln

~o v(r)

2K&2y2(x y) (1 x)(» ) 2

+ ' dg
@(r)[(x—y)(1 —x)(».)'+eh) j

L(.-r) (1-x)(».)'+~b) j
dy ln (94)

0 0 ~(y)

Here V2(r) is the Coulomb potential due to the
stationary electron at the origin, i.e. , in our ra-

This work was stimulated by learning of a similar calcula-
tion performed by Dr. M. Slotnick using more conventional
methods. M. Slotnick and W. Heitler, Phys. Rev. V5, 1645
(1949)

The Laplacian acting on this is equivalent to multi-
plication by —p'. These replacements may be
summarized by saying that (AP„)2 in (94) is to be
replaced by P', and that this function multiplied
by U~ is the Fourier transform of the potential.

This yields

where

H~, =P*PV(r), (98)

V(r) = e' "V„(dp),
(2-)1 ~

r
* 2«'r'(x r) (1 x)P'V2'

+i d I dy
4 (y) [(x—y) (1 —x) (P')+4(r) j

L(y —x)xP'+&(r) 3
+) dx)~ dy ln 0

0 x

[(x—y) (1 x)P'+ y (y)]-
dx I dy ln V~'. (100)

D 0 ~(r)

Here H~, is in a form such that V(r) is ob-
viously the neutron-electron potential.

An elementary integration gives

V.'= L
—e/(2 )'j1/p' (101)

Inserting (101) in (100) and then putting the
resulting expression in (99) gives the neutron-
electron potential. At least some of the integrations
may be performed —at considerable labor. However,
the only quantity of experimental interest is the
integral of the potential over-all space. This may, of
course, be obtained by finding the indicated func-
tion of r and integrating directly. A simpler method

ef' r' —r' [y'" '+p(y)7x(y x)P'V2, '—
U„=

'

dx
'

dy
4(r) Lx(r —x)P'+4 (y) j
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is found by noting that

t V(r)dr=(2s)&V„(p=0).

For a ratio of 10:1,

Vp = —(410)(f'/4nkc). (108)

1 2X 1
log—

4 3 X

—35 17K 4lt' cos 'lt&/2

+ lt' + — . (103)
3 2 3 (4lt —7')&

It is convenient as well as conventional to express
the integrated potential in terms of the depth of a
square well of width ro which gives the same volume
integral. ro is the classical electron radius. From
(98) we find

3 1 13 1 2) 1
X— ——+4lt + ———log—

2~4 —X 3 4 3

35 17' 4)t' cos-'7 i/2
+As —— +

3 2
(104)

3 (4lt —lt') &

where n is the fine structure constant and m the
electron mass.

Since X is small, an accurate approximation for
~0 is

t f' q 1tmy'
L4~aci ~p Lm&

3
~

13 1 1 354r)t&

X———+- log—+ (105)
2' 12 2 X& 48

Inserting numerical values for the universal con-
stants gives

V.=—(1.36)
~

&44rhc)

( —13 1 1 35m) &i
X i +—log—+ ( kev (10.6)

12 2 74 48

For a mass ratio of 6, (106) becomes

Vp —— (270)(f'/4—shc) ev.

Letting I' go to zero in (100), and performing the
elementary x and y integration which remain, gives

+e'f' 1 13
V(r)dr = — ——74

Sx'~0'hc 4 —X 3

Hr ~e'g. (109)

The second-order perturbation due to this term is

(~i) OA(~I)AO
~pert = p

&~ —~o
(110)

where A denotes the intermediate state.
The numerator in (110) is by (109) of order e4g'.

In the Lamb Shift calculation the energy differences
in the denominator are proportional to the coupling
constants and so reduce the order of smallness of
(110). The neutron, though, does not have any
zeroth-order coupling with the electromagnetic
field of the electron. Moreover, the meson has a
finite rest mass. Hence, the energy diR'erence in
(110) has a zeroth-order term independent of e and
g. Thus, for a neutron in the field of an electron
(110) is of order etg'. Terms of this order have been
considered to be negligible throughout this cal-
culation.

Again, the unknown coupling constant occurs.
This may be 6tted in several arbitrary ways. If the
neutron moment be fitted (f'/4shc)~6 and so the
mell depth is of the order 2 kev. Fitting the proton
moment in the symmetrical theory would give
(f'/4prhc) ~24 and a well depth of 8 kev. Fitting the
singlet state nucleon scattering predicted by the
pseudoscalar theory can give values as high as 50
for the coupling constant. The well depth is then
between 10 and 20 kev. It is interesting, even if
coincidental, that approximate agreement with
experimental values for nuclear forces, the proton
moment and the neutron-electron interaction may
be obtained with one value of the coupling constant.

However, the most important fact to be gleaned
from these numbers would seem to be that it is
impossible to fit the neutron and proton anomalous
moments and the neutron-electron interaction with
the same constants. This is due to the much too
large neutron moments obtained when proton
moment and neutron-electron interaction are ad-
justed to agree with experiment.

At this point, a few words are in order concerning
the neglect of second-order e8'ects of the first-order
corrections of the nuclear electromagnetic inter-
action caused by the meson field. In the somewhat
analogous Lamb Shift calculation these terms are
quite important and serve to avoid the infra-red
catastrophe. For the neutron-electron interaction
these terms are of higher order in the coupling
constants and are to be omitted. Thus, if Hr denotes
the first-order correction,



NUCLEON MOMENTS

where

ii„= (f'/4s hc) c2/s,
(f'/4n—hc) D ci+cm)—/w j,

7 (X-3)
log—

2 X

(112)

X(X'—5K+4)
cos '—, (113)

(4X —X') & 2

5 (7 ' —4K+2) 1
C2

————)— log—
2 2 X

X(X'—6K+8) X&

cos '—. (114)
(4X —X') ~ 2

The symmetrical theory results may again be
obtained by adding those for neutral and charged.
For small mass ratios:

VD. SCALAR THEORY

To interpret the above results it is most desirable
to know the predictions of some other meson
theory. There would then be some possibility of
separating out effects arising from the perturbation
approximation from those due to the model chosen.
Fortunately the results of the scalar meson theory
with scalar coupling are readily obtainable. Thus,
substituting i for ys in the previous formulas gives
the effective nucleon Hamiltonian as modified by
interaction with scalar mesons. The calculations
from Eq. (31) on are then very similar to those
given above. It should be sufficient to quote the
results.

In nuclear magnetons the anomalous magnetic
moments are given as follows:

Ãeutral theory

p, =+ (f'/47rhc) ci/2~, p„=0.

Charged theory

TABLE I. Anomalous moments —.'f /4~bc.

Meson mass

Neutral p,~
Neutral p,
Charged p, ~
Charged p,

1100

+0.113
0

+1.33—1.1

+0.183
0

+0.03
+0.34

180

+0.203
0-0.468

+0.870

(f/ )
3(4X—X')

1 cos-9P/2
+ 6 (13/2 —5)i+A') log—+

(4X —V)~

&( (—28K/3+ 67K'/3 —9X'/2

+ 11X4/3 —X'/3) kev. (119)

It has conventionally been assumed that (f'/4irhc)
~3X&. This is derived on the basis of a rough 6tting
of the scalar theory nuclear forces to experimental
data. This procedure has very little to recommend
it since the scalar theory forces are not those
actually observed, i.e. , the scalar theory must have
very little to do with nucleon interaction. However,
we can, in this manner, obtain an order of mag-
nitude estimate. Using such a fit gives much too
small magnetic moments for all except the very
largest meson masses. This is to be expected since
the anomalous moments calculated in a non-
relativistic approximation assuming an infinitely
heavy nucleon are zero. All in all it can be said that
these moments have little in common with experi-
mental ones and should not be expected to agree.
The one striking fact is the logarithmic dependence
on mass. This point will be discussed more fully
below. The above numbers do show that, although
the moments tend to in6nity as the mass goes to
zero, this logarithmic increase is significant only
for very, very small meson masses.

The equivalent well depth for the neutron-
electron interaction' in the scalar theory is given by

(4 —17K+73K'/2 —31K'/2)
V0= -1.36 ' 4m'

ci 3/2; c2 5/2 —log 1/X. (115)

As the meson mass goes to zero, this gives:

Neutral

Charged
ii„=0 240(f'/4irhc. ); y„=0. (116)

(117)

The divergence in (117) is logarithmic. The sum
of neutron and proton moments in (117) is finite
and is

p„+p ++0 48(f'—/4shc. ) (1.18)

To see how important the logarithmic term is,
we have calculated the moments for several values
of the meson mass. The values given in Table I give
the resultant moments divided by (f /4s. hc).

Vp= —6.55(f /4mhc) kev. '(120)
To see the rate of increase with decreasing X, the

well depth for a 10:1 ratio has also been computed.
This is

(121)V, = —26.5(f'/4s hc) kev.

' A similar calculation has been done by Dancoff and Drell
using ordinary perturbation theory. Dancoff and Drell, Phys.
Rev. (to be pubhshed}.

The interesting point about (119) is that V0 is
here proportional to 1/X for small X (i.e. , it is
inversely proportional to the square of the meson
mass). This is to be contrasted to (104) which is
proportional to log) .

For a mass ratio of 6:1, (119) gives
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%ith our wildly hypothetical fitting of the
coupling constant the well depth is seen to be of the
order of several kev.

VIII. CONCLUSION

To summarize, we may say that when provision
is made for mass renormalization, the modifications
in nucleon electromagnetic properties caused by
interaction with a meson field are finite and unam-
biguous. (This is at least true for the scalar and
pseudoscalar theories. ) Some of the present results
are uncertain because of our lack of knowledge of
the coupling constants. The absolute va)ues of all
quantities calculated here are all indefinite, since
any 6t to nuclear force data is questionable in the
present state of the theory. The relative values of
neutron moment, proton moment, and neutron-
electron interaction can be found independently of
the exact value of the coupling constants. It can be
concluded that the quantities calculated above on
the basis of a pseudoscalar theory cannot fit the
existing experimental data. It may be hoped that
other models for the meson field and the coupling
will give more favorable values. The results for the
scalar theory which have been included throw
some light on this point. There is also the possi-
bility that large higher order corrections may
significantly alter the theoretical predictions. Since
the first-order e6ects that have been found are so
large, this possibility is particularly likely.

The one serious difficulty encountered in the
pseudoscalar theory is that the contributions to the
magnetic moments due to the meson's electric
charge is not large compared with those due to the
proton's charge. Qualitatively one can argue in the
following way. The magnetic moment from the
proton's charge is due to a zero-point oscillation of
a particle of charge e over a region of dimensions of
the order of the nucleon Compton wave-length.
Thus, it would be expected that in nuclear mag-
netons this contribution would be

( f' q e 1
f

f'
(4s he) 3fc/h eh/2lVc (4shc~

This expectatioa. is indeed born out by the above
detailed calculation. The meson charge contribution
to the magnetic moments should be roughly that
of a charge e spread out over a distance like that of
a meson Compton wave-length, i.e. , the con-
tributions to the magnetic moment in nuclear mag-
netons should be

p
f' y e 1 ~ f' ~ M

(4shc) pc/h eh/23fc E4shc) p

1
f'»

(123)
t.4s.hc) X'

Thus, the meson contributions should be of order
M/p times the proton contribution. Since the
meson portions are equal and opposite for neutron
and proton, approximate agreement with the
almost equal and opposite character of the observed
moments would be expected. However, (123) tells
us that for small meson masses the meson con-
tribution to the moments should be proportional to
X ~. Equation (92) shows that this is not so for the
pseudoscalar theory to our approximation.

The question arises as to what extent this failure
to predict equal and opposite anomalous moments
justifies throwing out the pseudoscalar theory and
in what way higher order corrections may be
expected to modify the present statements. Sug-
gestions as to the answers to these questions are
given by the neutron-electron interaction and the
scalar theory results. In measuring the integral of
the neutron-electron interaction and the magnetic
moments, essentially two properties of the meson
cloud are determined. The former measurement
tells us about the spherically symmetric charge dis-
tribution while the latter gives information about
the asymmetric portion of the cloud. A priori one
would expect the symmetric part to extend out
somewhat further but that the orders of magnitude
of the two regions would not be appreciably dif-
ferent. In the pseudoscalar theory the portion of the
integrated potential coming from the meson dis-
tribution can be seen to be proportional to logX.
This corresponds to a potential of the form
exp( —ar/r') in the distant regions which contribute
to the neutron-electron interaction. On the other
hand, we have seen that the regions of space over
which the asymmetric charge distributions which
contributes to the magnetic moment exists are of
linear dimensions 1/~0. Thus, in the pseudoscalar
theory we have, to first approximation, an aniso-
tropic meson distribution extending to the nucleon
Compton wave-length followed by a symmetrical
distribution of the form exp( —ar/r'). In the scalar
theory the integrated potential is inversely propor-
tional to X, corresponding to an exp( —~r/r) sym-
metrical distribution. The meson portion of the
magnetic moments are proportional to logX for
small X. Hence, the asymmetric charge distribution
is spread over a region of linear dimensions some-
where intermediate between the nucleon and meson
Compton wave-lengths.

From the above, one can conclude that the failure
of pseudoscalar theory to give approximately equal
and opposite moments is not an indication that all
models will similarly fail. The pseudoscalar theory
is peculiar in that the meson cloud accompanying
a nucleon is particularly closely bound to the
nucleon. In other theories the mesons can be more
widely spread out giving some hope of approximate
agreement with experiment.
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One can also make some estimate as to the rela-
tive changes in the quantities calculated here that
will result from taking into account higher order
corrections. From the general knowledge acquired
in dealing with additional radiative corrections, it
can be said that the general effect is to spread out
density distributions. Thus, including further terms
in the coupling constant would distribute the efFects
over a distance which might be something inter-
mediate between nucleon and meson wave-lengths.
Hence, quantities such as the neutron-electron
interaction calculated here should be relatively
unaffected. In particular, the scalar theory potential
would be less affected than that found in the
pseudoscalar theory. The magnetic moments, as
calculated here, have their principal contributions
from quite small distances. These would be expected
to suffer substantial modification when radiative
corrections are included. This is particularly true
for the pseudosclar magnetic moments. Thus, pre-
cisely those calculated quantities which are in most
Aagrant contradiction with experiment are those
which have been least accurately computed.

The objection to the pseudoscalar theory that
the calculated moments are not even approximately
equal in magnitude would still seem to be rather
serious. Although the calculated moments may be
expected to suffer considerable alteration in mag-
nitude by the spreading out, it is difficult to see why
the relative magnitudes of proton charge and meson
charge contributions should be altered. In order for
agreement with experiment to be achieved, the
efFects of the higher order terms must be highly
selective. The proton "Zitterbewegung" must be
but slightly changed while the anisotropic meson
current is spread out to the meson Compton wave-
length. That this will happen is rather debatable.

It is the author's personal opinion that the most
hopeful approach is to continue to seek some model
which gives rough qualitative agreement with ex-
periment when calculated to the first order in the
coupling constant. Including higher order cor-
rections might then be expected to give quantitative
agrement. The results found for the scalar theory
indicate that the finding of such a qualitatively
agreeing model is at least a possibility,

In conclusion I would like to thank Professor

H;nt, =gP~, (A1)
where 0 is some combination of y's, and g is the "mesonic
charge. " For the expression to be covariant under the trans-
formation

Xj~Xj ~
X4~ X4 ) (A2)

(A1) must be modified by the introduction of the charge
conjugate to B

H t'=(g/2)[404+0'00'j, (A3)
where primes on the p denote charge conjugate operators.
Whether the plus or minus sign is to be taken in A3 follows
uniquely from the properties of 0.

Suppose the plus sign is found necessary for a given 0.
Since P~P', P~P under the transformation e~ —e, the
requirement of invariance for H;„&' requires that

(A4)e~ —e, g~g,
i.e., particle and antiparticle have the same charge g.

On the other hand, if the minus sign holds in (A3), charge
invariance requires

and then particle and antiparticle have equal and opposite
"mesonic charges. "

On examining the five Dirac covariants, it is found that
vector and tensor coupling require opposite charge. Scalar,
pseudoscalar, and pseudovector coupling must have the same
mesonic charge. Hence, for the last three types of coupling,
all vacuum polarization terms vanish.

J. R. Oppenheimer for several very i11uminating
discussions.
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APPENDIX A

Vanishing of vacuum polarization terms

The result obtained in Section IV, that not only the charge
renormalization but all other polarization terms vanish for
the pseudoscalar coupling, may be based on a considerably
simpler and more general physical proof suggested by Pro-
fessor J. R. Oppenheimer. It is deduced from the theorem
that polarization phenomena vanish when particle and anti-
particle have the same "mesonic charge" (f). Vacuum
polarization is due to the creation and separation of pairs.
However, if particle and antiparticle have the same "mesonic
charge, " the force on the particles of a pair due to a virtual
meson will be the same. Therefore, the meson field will not
separate the pair and there will be no polarization.

The relation between the mesonic charges of particle and
antiparticle may be derived from the twin postulates of
invariance under time reversal and charge conjugation. Let
us suppose an interaction term is to be used which contains
some Dirac covariant. Omitting the meson field quantities,
this term will be


