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Interpretation of the Thermal Conductivity of Glasses

CHARLES KITTEL
Bell relepkoee Laboratories, Murray Hill, Nno Jersey

(Received November 30, 1948)

The thermal conductivity of glasses decreases with decreasing temperature, while the conductivity
of crystalline substances increases with decreasing temperature. The behavior of glasses is interpreted
in terms of an approximately constant free path for the lattice phonons, so that the conductivity
decreases roughly with the specific heat. The value of the phonon mean free path at room temperature
is of the order of magnitude of the scale of the disorder in the structure of glasses as determined from
x-ray evidence —that is, of the order of 7A. This is about the size of the unit cell of the crystalline forms
of silica.
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' 'T was pointed out first by Eucken' that the
~ - temperature dependence of the thermal con-
ductivity of glassy materials is quite di8ferent from
that of crystalline materials. The thermal con-
ductivity of glasses decreases fairly sharply with
decreasing temperature, whereas the thermal con-
ductivity of crystalline substances —whether single
crystals or polycrystallin- increases fairly sharply
with decreasing temperature' (Fig. 1). A second

distinguishing characteristic of the thermal con-
ductivity of glasses is that the spread of values of
the conductivity from one glass to another, at a
given temperature, is usually smaller than the
spread in the care of crystalline substances. A third
difference is that the thermal conductivity of glass
is considerably lower than for crystalline sub-
stances. The point plotted for Thuringian glass at
1.3'K should be particularly noted.

While the mechanism of thermal conduction in
crystalline substances is quite well understood in
qualitative terms, the corresponding processes in
glasses have not previously been considered. It is
this subject with which the present paper is con-
cerned, and we shall see that the thermal conduc-
tivity data find a natural explanation which is based
on the x-ray evidence as to the nature of the glassy
state; in fact, the thermal conductivity data may
be regarded as a significant additional confirmation
of the random lattice theory of glasses, as developed
by Zachariasen' and Warren. 4

The present concept of the nature of the glassy
state pictures a glass such as fused quartz (Si02)
as a random, but continuous, network of Si—0
bonds. There is a definite structure in vitreous
silica, but it is a structure with regard to immediate
neighbors rather than a regularly repeating crystal-
line structure (Fig. 2). The local order which exists
in the immediate environment of any atom is the
same in vitreous silica as in the crystalline modi-
fications of silica, but fused quartz does not possess
the regularly repeating long range order of the

FIG. 1. Comparison of thermal conductivity of glasses and crystal. Warren has shown that if we try to interpret
crystalline substances. (The data are principally from the the x-ray diffraction pattern of vitreous silica in
Landolt-Bernstein tables. The measurement on Thuringian
glass at liquid He temperature is by P. H. Keesom, Physica

339 (1944-46) Other measurements not shown above on temperature side of the maximum has been explained very

four glasses at liquid He temperatures have been made by sat sfactorlly by Casimir, who showed that the maximum

0r 0 Bilj1 and are to be published ln Physica The trend of occurs when the p ho non mean free path becomes of the same

e conductivity is quite similar in the four glasses measured order as the diameter of the test specimen, while at lower

Bi l. for example he 6nds ~ 1 OX10—4 cal ycm sec deg temperature the thermal conductivity is approximately pro-

for Mpnax glass 8t 1 45 K while Keesom found for Thoringlan portional to the specihc heat. See W. J. de Haa s and T. Bier-
s 08X10 4at 1'3OK)' masz~ Physica 2, 673 (1935)l 4i 752 (1937)t ss 4» 320I 619

(1938); H. B. G. Casimir, Physica 5, 495 (1938); R. E. B.
' A. Eucken, Ann. d. Physik (4) 34, 185 (1911). Makinson, Proc. Carnb. Phil. Soc. 34, 474 (1938); see also
«The thermal conductivity of several single crystals has R. Peiqrls, reference 6.

been found by de Haas and Biermasz to pass through a %.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).
maximum near the liquid helium range; the fall-o6 on the low ' 8, E.Warren, J.App. Phys. 8, 645 (1937); 13, 602 (1942).
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THERMAL CONDUCT1ViTY OF GLASSFS

terms of the older concept of a glass as composed of
small crystallites, rather than as a continuous
bonded network, then we must conclude from the
width of the diffraction lines that the crystallites
are 7A in size. This is, however, just the size of the
unit cell of a typical crystalline form of silica, and
it is rather meaningless to speak of material as
polycrystalline when the crystallites are reduced to
single unit cells. The idea of glass as a continuous
random network is based on this and a number of'

other considerations.
The mechanism of heat conduction in crystalline

substances has been explained by Debye, ' Peierls, s

and others, as sketched below. By analogy with the
corresponding expression in the kinetic theory of
gases the thermal conductivity E is written

where c is the heat capacity per unit volume, v is
average velocity of a sound wave (phonon) in the
material, and h. is the mean free path of phonons;
the factor ~~ is somewhat arbitrary. In an ideal
infinite crystal lattice the mean free path will be
in6nite if the lattice interactions are strictly har-
monic; 6nite values of A in an ideal crystal lattice
are the result of anharmonic terms in the lattice
interactions. The anharmonic terms have two
effects: they limit the mean free path by coupling
together the various lattice vibrations, and by the
same mechanism they are able to produce a dis-
tribution of phonon frequencies corresponding to
thermal equilibrium.

The numerical value of A in a perfect crysta1 wi11

depend on the magnitude of the anharmonic inter-
actions, and also on the total density of phonons,
since the greater the density of phonons, the greater
are the number of possibilities for a given phonon
to interact with other phonons. The phonon density
decreases with decreasing temperature, so that we
should expect the mean free path and thus the
thermal conductivity to increase as we lower the
temperature. This feature of the theory is in agree-
ment with the experimental data which suggest
that the conductivity of crystalline materials
usually varies approximately as 1/T over the
range of ordinary temperatures.

HEAT PROPAGATION IN GLASSES

In the case of glasses the anharmonic lattice
interactions are sti11 responsible for establishing
thermal equilibrium among the phonons, but the
mean free path which enters into the equation for
the conductivity will usually be limited by geo-

P. Debye, in Vortrage N,her dM kinetisehe Theoric der
Mcterie Nnd Elektrisitat, by M. Planck et al. (B. G. Teubner,
Leipzig, 1914).

6 R. Peierls, Ann. d. Physik (5) 3, 1055 (j.929); M. Black-
man, Phil. Mag. 19, 989 (1935).

(a) (b)

FIG. 2. Schematic two-dimensional 6gures, after Zachariasen,
illustrating the difference between: (a) the regularly repeating
structure of a crystal; and (b) the random network of a glass.

metrical effects associated with the disordered
nature of the structure.

If, to take an extreme case, the disorder deter-
mines a mean free path A.o which is a constant,
independent of phonon wave-length and phonon
density, then the thermal conductivity may be
written as
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FIG. 3. Phonon mean free path A as a function of
absolute temperature for quartz glass.

so that the ratio E/c is approximately constant.
Since the heat capacity decreases with decreasing
temperature, the thermal conductivity would also
be expected to decrease, on the assumption of
constant mean free path.

Values of h. for glasses are given in Table I, as
calculated from the experimental values of the
conductivity, heat capacity, density and sound
velocity. It is seen that the values of A are all of the
order of magnitude of the dimensions of a "unit
cell"—that is, of the order of 7A.

The phonon free path in quartz glass at room
temperature is seen from Table I to be longer than
in the other two glasses for which data are given.
This result may be accounted for by the presence
of foreign atoms introduced in the commercial
glasses as "modifiers"; these give additional scat-
tering.

The increase in the phonon free path at low tem-
peratures can be understood as a consequence of
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TABLE I. Calculation of the phonon mean free
path A, for glasses. ~

Material Temp, K c' pvi &nv) A

Quartz
glass

ioo'C
room
-80'C—180 C—238 C

(o.oo37)
0.0034
0.00275
0.0017

(0.0009)

0.194
0.172
0.12
0.059
0.014

{0.97 )(106)
1.45 X10& (0.97 )(10&)

(0.97 )&10')
(0.97 &(10')
{O.97 y, 10')

7.8A
8.1
9.5

12.0
15.0

Crown
glass

Flint
glass

0.00163 0.161 1.41 )(10& 0.94 )(10' 4.2

0.00143 0.117 1.54 &(10e 1.02 &(10' 4.8

*For purposes of comparison we may mention that A for a quartz
crystal {(] axis} is of the order of 700A at —190'C. The data used above are
taken from the LandoLt-Bornstein Tabellee and from Bergmann Der Ul1ra-
schall. K is in cal. /cm-sec. -deg. ; c' is in cal. /g-deg. ; pv is in g/cm'-sec. ;
the mean value (pv) is arbitrarily taken as $ of the value pv for longitudinal
waves.

the more uniform propagation conditions which
obtain when the wave-length of the dominant
phonons becomes substantially larger than the
dimensions of a unit cell of the glass. The mean free
path may be expected to begin to increase when the
temperature drops significantly below the value
given by

kTo=kv/D

where D is the unit cell length. For glasses

(6.6X10 ")(4X10')
To = =2/O'K,

(1.4X10 '6)(7X10 8)

and this value is more or less in agreement with
experiment (see Fig. 3, where A vs. T is plotted for
quartz glass).

There are several ways in which we can under-
stand qualitatively the mechanism by which a dis-
ordered structure limits the free path of a phonon
of wave-length X appreciably smaller than the
scale D of the disorder.

1. One method is based on the distinction
between plane elastic waves and normal modes of
vibration. In a regular periodic lattice the normal
modes of vibration are essentially identical with
plane waves, so that in an infinite medium a plane
wave mill, if we neglect anharmonic interactions,
propagate indefinitely without loss of energy to
other modes of vibration. But in a disordered lattice
the normal modes are no longer plane waves: if we
set up a plane wave it will soon become highly dis-
torted, as the original wave may be viewed as the
sum of a number of normal modes with various
eigenfrequencies. The resulting distortion may be

described approximately in terms of a mean free
path.

2. Another method is based on a consideration
of Fig. 1b which shows the random network of a
glass. A plane elastic deformation started along one
side of the network will not propagate in plane
form, since diferent portions of the original plane
deformation will travel down bond linkages of dif-
ferent overall length, leading to phase destruction
and to distortion of the character of the deforma-
tion.

3. Another approach to the problem utilizes the
concepts which have been developed by the present
author, and by Mason and McSkimin, ' in analyzing
the results of measurements of the attenuation of
ultrasonic waves ( 20 mc/sec. ) in polycrystalline
solids. It is found experimentally that when the
wave-length is much smaller than the grain size
the "free path" is a constant, independent of fre-
quency. We have the following physical picture of
the mechanism responsible for a constant Ao in this
limit: the sound wave loses a certain proportion of
its energy by reHection at each interface between
adjacent crystal grains. The intensity penetrating
a distance x will be reduced with respect to the
incident intensity by a factor of the order of e
where D is the grain size, and E. is the reHection
coefficient. The phonon free path here is then
Ao ——D/R.

It should be mentioned that the viewpoin t
developed in the present paper is applicable to heat
conduction in liquids, as it is well known that in
liquids the phonon free paths are of molecular di-
mensions, and that the lattice structure is in some
respects similar to that of a disordered solid.

I wish to thank Dr. W. P. Mason, Dr. W. Shock-
ley, and Professor P. Debye for stimulating dis-
cussions which led up to the analysis given in this
paper. The 1948 Shelter Island Low Temperature
Conference sponsored by the National Academy of
Sciences provided further opportunity for discus-
sion. I am indebted to Dr. D. Bijl of Leiden for his
kind permission to refer to his measurements in
advance of publication, and to Professor C. J.
Gorter for informing me of the existence of these
measurements.
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