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the adjoining medium. %hen the electron is near
the surface one is not allowed to smooth out the
charge and consider that we have a uniform layer
of charge. The reason for this is that the electron
or the hole sees its image in the adjoining me-
dium and the image follows the detailed motion
of the particle. This effect will cause a raising or
a lowering of the potential of 0.1 ev at a distance
of 1A' from the surface. If the adjoining medium
is a dielectric of lower a, as in the case of silicon
and air, the image charge will have the same sign
as the charged particle. "
For these two reasons one cannot rely completely

on the derivation just given when q is larger than
~ M. Abraham and R. Becker, The Classical Theory of

Electricity and Magnetism (Blackie and Son, Limited, London,
1937), p. 76.

0.5 ev. Most probably the equations are correct
to within an order of magnitude but should not be
trusted further. For y=0.3 ev or less, the surface
effects are not so important and the theory shouM
be fairly reliable. Most fortunately, the maximum
value of p we used for the diR'usion layer in the case
of silicon is less than 0.3 ev, and only one point is
greater than this value for germanium.

Since the potential layer is very thin, tunneling
eEects can be very important. This would be true of
a semiconductor metal junction. For the experi-
ments of Smith this does not play a major role,
since there is a large gap between the two surfaces
which creates a large potentia1 barrier between the
conduction band of the metal and the semicon-
ductor.
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The study of the change of the Schroedinger wave func-
tionals on space-like surfaces as the surface changes is formu-
lated simply. In this formulation, we let S be any space-like
surface with the curvilinear coordinates n, introduce (q(u)5l)
as the Schroedinger functional on it, with the nature of the
functions g{u) not specified for the moment, and write the
Schroedinger equation as

»l(a(u), ~'I& (g(n), ~—l&l = J(g(n), ~l&. (i)

where S' is a surface slightly different from S, and J is an oper-
ator operating on g{e)and depending on S, S', and the choice of
their coordinates u. Obviously, the only necessary conditions
for J is that J is Herrnitian and that (1}is integrable. To get a
theory resembling the existing ones, we require further that

if we construct the expectation value of a certain held quan-
tity at a point P from (q(u), Sl&, 5 being a surface passing
through P, the expectation value is independent of choice of S
and its coordinates u, and satisfies certain differential equa-
tions.

When these differential equations follow from a Langrangian
principle, an expression for J was electively given by Weiss.
His work is given here in a complete form and the proof of the
satisfaction of all requirements completed.

Finally, by a simple transformation on the wave functions
and the observables, we deduce from the VVeiss's formalism
the Tomonaga's formalism. As a consequence, it is pointed
out that the Tomonaga's formalism will encounter essen-
tially the same diSculties as the orthodox Heisenberg-Pauli
formalism.

1. INTRODUCTION

A QUANTUM theory of fields was given by
Heisenberg and Pauli' as early as 1929. The

theory given by them was completely apart from
one aspect, i.e., there was no investigation of the
transformation between the wave functionals for
two different Lorentz observers. It is obvious,
though never pointed out explicitly in the literature,
that the operator transforming the Schroedinger
functional for one Lorentz-frame to that for another
must be related to the integral over space of the
p~4 component of the angular momentum tensor
M„„,. It is also obvious that as the Schroedinger
functionals form a representation basis of a repre-

' N. Pauli and %'. Heisenberg, Zeits. f, Physik 55, j, (1929).

sentation of the homogeneous and the inhomo-
geneous Lorentz group, these operators together
with the space integral of the p4 component of the
energy momentum tensor T„„must satisfy certain
well-'known commutation laws.

Recently, Dirac introduced the study of the
Schroedinger wave functionals on any arbitrary
space-like surface. ' He introduced certain deforma-
tion operators to describe the deformation of the
surfaces and studied their commutation laws.
Though the theory is the most general quantum
mechanics of localizable dynamical systems and can
be employed to check whether any given theory is
relativistic, the explicit construction of the operators

' P. A. M. Dirac, Phys. Rev. V3, 1093 (1948),
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(g(u); b„(u)I).
In a deformation of S to S' given by

x„=b„'(u) = b„(u) +hx„(u),

the corresponding change in 0' is defined by

ae = (g(u); b„'(u)I)- (q(u); b„(u)I).

Obviously, we must introduce an equation

AiM = J%,

(2)

(4)

(5)

where J is an operator operating on the coordinates
g(u) of + and may be looked upon as a matrix with
both rows and columns labelled by functions g(u).
Obviously, (i) Eq. (5) considered as a total dilferen-
tial equation for + must be integrable. This con-
dition replaces the study of the Poisson brackets
between the operators II's and P's in Dirac's paper.
(ii) Jmust be Hermitian, so that the length of 4 does
not change. As 0 is a functional, its length can be
best pictured by first letting (ui, ui, u3) take discrete
values (mia, mrna, m~a) only, (mi, mm, ms ——0, &I,
+2, ) so that the square of the length is

t
~

da(u') da(u")" l(a(u'), a(u"), ".'

b„(u'), b„(u"), I) I', (6)

where u', u", ~ . denote the different discrete
values of (ui, um, um), and then passing to the limit
a~o.

The above gives us rules for the determination of
0", but to get a physically sensible theory, we must
construct expressions for the different "expecta-
tion values" in the state O'. For this purpose, let us
consider any given point I' with coordinates x„,
draw a space-like surface S passing through I',
introduce a coordinate system u on the surface so

II corresponding to a given parametrization of the
surface, and the operators I' corresponding to a
given dynamical system is not simple work. A
simpler and equivalent formulation of Dirac's work
is as follows.

Let 5 be any space-like surface, (ui, um, u3) any
arbitrary set of curvilinear coordinates on the
surface, so that on the surface, we have

xp=bq(ui, u2, ug).

Now let us introduce the Schroedinger wave func-
tional 4, which depends on S and its coordinate
system u (i.e. , is a functional of the functions
b„(ui, ug, uq)), and is further a functional of certain
functions g(u) whose nature we shall not specify
at the moment. Such a functional may be considered
as a vector depending on b„(u) with components (or
coordinates) labelled by functions g(u), and will be
denoted by

that x„=b„(u) on it, and assume

df/dt= —(M) 'IH, fj. (8)

If II contains only operators g and 8/Bg, (8) are the
classical Hamiltonian equations of motion, and
these are derivable from a Lagrangian.

In the last section (II3), we show that it is pos-
sible to get from our Eq. (5) Tomonaga's formalism'
by a simple transFormation. The result obtained
here is slightly more general than the original
Tomonaga's formalism which does not allow points
on the surface S to interact. The possibility of
obtaining Tomonaga's formalism from the Weiss's
formalism implies that the Tomonaga's formalism
will encounter essentially the same difhculties as
the orthodox Heisenberg-Pauli formalism and will
not give us anything essentially now.

3 P. Neiss, Proc. Roy. Soc. A156, 192 {1936).
4 S. Tomonaga, Prog. Theoretical Phys. 1, 27 {1946).

dq(u') ~dg(u"). I(q(u'), g(u"), ~ ~

b.(u'), b.(u"), I) I'a(u. ) (7)

divided by the length (6) be the expectation value
of a certain field quantity g(x) at I', uz in (7) being
the u-coordinates of I' on this surface S. Under this
assumption, we naturally expect (iii) the expecta-
tion value given by (7) divided by (6) is independent
of the choice of S and that of the coordinate system
u on 5, and (iv) the expectation value will satisfy
certain differential equations, known as the field
equations for g(x). The last two conditions are not
absolutely necessary, they may be discarded or
replaced by similar ones, but their satisfaction will
bring the present theory very dose to the usual
field theory of Heisenberg and Pauli.

For fields g(x) whose field equations are deduced
from the variation of a Lagrangian, an equation of
the same na, ture as Eq. (5) was given some time
ago by Weiss. ' Unfortunately he has eA'ectively only
considered a one-parameter family of surfaces and
thus we do not have the requirements (i) and (iii).
In $2 we shall extend his work to general deforma-
tions of surfaces and point out that all conditions
mentioned above are satisfied. We shall only indi-
cate how the proof of the integrability is carried
out and leave out all mathematical details.

The restriction to fields satisfying the Lagrangian
principle is a serious one, though this does not
exclude us from considering any of the existing
fields in quantum mechanics. At the same time, it
is difficult to see how one can get rid of the La-
grangian principle. As soon as one has the Schroe-
dinger equation,

hi(ae/a~) =II+,
one has the Heisenberg equation of motion,
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BI./Bq" —B/Bx„(BL/Bq„) = 0.

Let us introduce

(9)

X„=~,pg„ (1o)
Buj BQ2 BQ3

where e„,fl„ is plus or minus one according to whether
n p8p, is an even or odd permutation of 1 2 3 4 and
is zero otherwise. Let us introduce

P-=&.(BI/Bq. )

G„=IX„QPq„, —

q„=q„(Bx„/Bu„) (13)

Then, following the spirit of Weiss's method, we let
J in (5) be

t'
' dsids2dÃg(Gpdxp), (14)

where G„are functions G„(q, q„P, B /xBu„) ' of
g, q„P, Bx„/Bu„as given by (10), (11), (12), (13)
and g, g„p are operators satisfying

q(~')(q'(~); ) =q'(~ )(q'(~) I)
q.(&')(q'(~) )= (Bq'(~ )» ')(q'(~); I), (»)
P(u')(q'(u); ) =hb(q'(u); I)/Bq'(I'),

u' being a given value of u. The form (14) for J is
slightly more general than the corresponding one in
gneiss's original formulation, since we do not restrict
ourselves to a one-parameter family of surfaces.

To prove the integrability of (5) with J given by
(14), we calculate by means of (5), (14), the change
M of + as the functions b„change from initial
values b„io&(N) to the final values

2. THE THEORY OF %EISS IN COMPLETE FORM

Let x„be (x, y, s, ict) as usual, and let q~ be the
field quantities. Let q„denote Bg /Bx„and let ql
satisfy equations obtained from the variation of a
Lagrangian I . We have thus

is J3+~'& where +&" is the initial wave function.
Equation (5) is integrable if B%'"&=0.

Let us consider the Hamilton-Jacobi equation
from the Lagrangian I., which is

( Bq BI Bxp)~I= I"G„I q,
Bu, Bq(u) Bu,)

(du =duidu2dug) (19)

This is always integrable provided that the field
equations are consistent and admit solutions, and
the solution I(q(u), b„(u)) of (19) is

I.(q, q„)dxidx2dxidx4, (20)

where the integral extends over a volume bounded
by two space like parametrized surfaces, b„&"& and
b„, and the surfaces at infinity, g and q„, in I satisfy
the field equations, and the whole integral is con-
sidered as a functional of b„t'" and b„and the func-
tions q&~'(u) and q(u), which are the values q, take
on the surfaces. From (19), we calculate the change
AI of I as b„changes from b„"' to b„&f' in the above
two ways, and the difFerence of these two EI's
must be zero, since (19) is integrable. It can be
easily verified that this difFerence is precisely B
if we replace p contained in 8 by BIioi/Bq(N),
I"' being the value of I on the surface t)"'. Thus
8@&'&=0 and the integrability of (5) is proved. '

It is possible to verify directly that the operator
B is zero, but the direct verification will be left out.
The above proof indicates incidentally what
changes in the formalisms are necessary for Fermi-
Dirac fields.

The other requirements are easily seen to be
satisfied. For (ii) we note that the Hermitian
character of J can be ensured with a proper choice
of the Lagrangian. For (iii), let us first consider two
surfaces passing through the same point I' with ug
taking the same value on them. Thus

b &~&(u) =b &'&(gc)+hix„(u)+Amx„(N) (16)

in two ways, one by letting b„(N) pass through the
intermediate functions

b„&'&(u) =b„i'&(u)+mix„(u), (17)

Ax„=O at u=u~.

The Heisenberg equations of motion,

(~q) (~) = —(») 'P, q(~) j

(21)

(22)

and the other by letting b„(N) pass through the
intermediate functions

b„&'&(I)= by&'&(u)+hiixp(Q), (18)

and compare the two results for 6+ to the second
order in A~x„, h~„. Let us say that their difFerence

' We drop the suf6x n.
~ Equation (15) restricts us to Einstein-Bose fieMs, but this

restriction is really not essential.

gives us immediately Ag='0. Next we consider a
change of parameters from u to some new param-
eters, say v. If a change of parametrization is con-
sidered as a change of b„(u), we may employ (22)
again and we prove readily that there is no change
of q at the point I' as this b„changes. Finally, (iv)
must be satisfied, as it must be in a Weiss theory.

~ That the integrability of {5}may follow from that of {j.9}
is learned by the author from Professor Dirac.
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G„=G„'+eG„', (23)

where both G„' and G„' do not contain the charge
constant e. Let O', G' denote J'G„'hx„du and
J'G„'hx„du, and let us write the wave functions
(q; bl) as (gib) Obv. iously, the equation

AM =6% (24)

is integrable and the solution may be written in the
form

(q(u)lb)= (g(u)IR(bb, )lb, ), (25)

where bo is any given b and R is an unitary operator.
With respect to variations hx„of b, we have

»R=
I

G„'hx„du IR, (26.1)

and with respect to variations lb&„of bo, we have

of

»(R ') =I G„'hx„du ~R '

»R= —RI G„'hx„du I. (26.2)

Let us introduce a wave function (g(u) I
bib) con-

nected to the general wave function (gib) in (5) by

(g(u) I bib) = (q(u) I
R(bib)

I b). (27)

Looked upon as a (g(u) lbi), it satisfies the wave
equation (5) without the interaction terms. Its
variation with respect to b for a constant b~ is
given by

»(g(u)lb b)
= (g(u) R(bib) I 0'+ eG' j I b) + (g (u) I

»R I b)
= (g(u) R(bib)eG'Ib) (28)
=(g(u) eG'*(bbi) lbib),

where operators with *'s are defined in g(u) repre-
sentation by

(b2bl) R(blb2)IR (blb2) R (b2bl)/R(b2bi) ~ (29)

Considered as a function of u and b2, g~(u)(b2bi)
satisaes the Heisenberg's equation of motion

8 J. Schwinger, Conference of physics, Pocono Manor,
National Academy of Science, April 1948.

3. TOMONAGA'S FORMALISM

Another study of the change of Schroedinger
wave functionals on space-like surfaces was given
by Tomonaga and has been found useful in formu-
lating a relativistic quantum electrodynamics. ' Let
us see if this formalism can be obtained from our
formulation (5).

Let us consider for de6niteness only electrons and
the Maxwell field. Then

without the interaction terms. It reduces further at
b2=bi to g(u).

For the interaction between the electrons and the
electromagnetic Geld, G„' is equal to N„I.', where
el.' is the interaction term in the Lagrangian.
Hence if Ax„are nearly zero everywhere except at
a certain value of u, the operator in (28) is

eI, '*(bb 2)

evaluated at this value of u times the volume hV
between the original surface S and the displaced
surface S'. This fact has been employed by
Schwinger to introduce a differentiation of 0 with
respect to the surface at a point on the surface.

(28) can be put in a nicer form by introducing a
representation (q*'(bib2) I). As q* and g have the
same eigenvalues, we may let g*', g' (and similarly
g*", g") denote the same eigenvalues. Defining
(g"(bib2) I & by

(g*'(bib2) I) =(g'IR(bib2) I), (30)

we have

(g*'(b,b,) I
g*(b,b,) I )
=(q'IR(bib2) lR '(bib2)gR(bib2) l I)
=q'(O'I R(bib2) I)= q'(q"(bib2) I) (»)

and thus q (bib2) is diagonal in this representation.
From (28) and (30)

»(q* (bib) lb) =»(g'IR(bib) lb)
=(q'IR(b, b)eG"'lb) =(g*'(bib)

I
eG'lb) (3 )

A further simplification is obtained by intro-
ducing (q'(bi) lb) defined by

(q'(bi)
I b) = (q'I R(bib) I b) = (g') b)b), (33)

so that

(g'(b ) l»=Z'(q'IR(b b ) lg"&(g"(b ) I»,
etc. , and an operator l(b) by

(g'(b ) lf(b ) lq"(»)) =(g'II*(b b ) lg"& (34)

Then (28) becomes

»(q'(b ) I b& =&" (g'
I
«'*(bb ) I

g"&(g" I
b b&

=&' (g'(bi)
I
e@'(b)

I
g"(bi))(g" (bi) lb)

= (g'(b ) I
et."'(b)

I b). (35)

When G„'=N„I', we obtain precisely Tomonaga's
formalism. As it stands, (35) is slightly more
general than Tomonaga's formalism, since the
operator in (35) may be an integral over u of non-
commuting quantities. Though the formulas giving
the change of the wave functional with respect to
the surface S still depend on the parametrization of
S, the coordinates of the wave function do not, as
pointed out by Dirac.

The expectation value of an operator l(u) on the
surface b is, in terms of the wave functions in (5),
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(bt&tb) or
Z, (blq')(q'll t» (36)

produce the same result. In fact, if we let the wave
function in (5) be subjected to the transformation

Transforming to w ave functions of the type
(q'tbib), it becomes

(bib t
l*(bbi)

t bib). (37)

Transforming to wave functions of the type
(q'(bi) t b), it becomes

Z. ,-(b I q (b.))(q (b.) ll(b) I
q-(b.))(q-(b.) I » (»)

or simply (b t l(b) t b).
The passage to Tomonaga's formalism consists

essentially of introducing (q'(bi) tb) by (33) and
operator q(b) by (34). Thus all features in the
orthodox Heisenberg-Pauli formalism are more or
less retained in the new formalism. For example,
we have in electrodynamics supplementary condi-
tions on the wave functions in (5), and by intro-
ducing the transformation (33), (34), we deduce
the corresponding supplementary conditions on the
new wave functions. If the supplementary condi-
tions on the wave functions in (5) are consistent
and are satisfied always if satisfied for one surface
b, so are the new supplementary conditions. Further,
Schwinger has shown for electrons interacting with
the Maxwell field that from (35), a certaip trans-
formation of the wave function produces a wave
equation with the same left-hand side but with the
operator on the right-hand side as a power series of
e with the leading power e .Thus similarly, a certain
transformation on the wave function in (5) will also

S(b) = (e/—ki)
J

8 i(bib)GiR(bib) (41)

where dx„ in 6' is the change of b~ and the integra-
tion is carried out with respect to such increments
from any initial surface to the final surface b. The
wave equation for the new wave function is

(42)

A further transformation enables us to get rid of 6'.
The question of the self-energy of an electron or

a photon will not be discussed here, as it has been
discussed already by a number of physicists. The
purpose of the present section is to show that the
Tomonaga's formalism is essentially the same as
the Heisenberg-Pauli formalism and it seems likely
that it will encounter the same difhculties.

In conclusion, the writer wishes to thank Pro-
fessor P. A. M. Dirac and Professor H. C. Corben
for many stimulating discussions.

(ql b)--= s""'(q lb).M (39)

where S(b) is an operator depending on b and satis-
fies

hiDS = —eG' i—[S, 6'j, (40)

we find that the above is integrable, and admits the
solution


