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It has long been suspected that if liquids were sheared suS-
ciently rapidly they would exhibit a shear elastic effect as well
as a viscous effect. This supposition was verifled recently by
one of the writers (see reference 8) by employing a torsionally
vibrating crystal and measuring the mechanical loading for the
shear wave by observing the increased resistance at resonance
and the change in the resonant frequency. By this method it
was shown that long chain polymer liquids had shear con-
figurational elasticities in the order of 10' dynes/cm'.

The use of a torsional crystal is limited in frequency to
about 2 to 3 X10'cycles on account of the small sizes needed.
In the present paper the range of shear wave measurements in
liquids has been extended up to 60 megacycles by observing
the effect, on a series of shear waves in a fused quartz rod, of
terminating the rod by a thin layer of a liquid, The shear wave
in the rod is altered in magnitude and phase by the boundary
layer impedance of the liquid. By observing the reflection loss
and the change in phase caused by the liquid layer, a measure
is obtained of the shear impedance of the liquid. By employing
a fused quartz rod for which the shear wave strikes the
reflecting surface at an angle from the normal of about 79

degrees, the effect of the shear wave impedance on the bound-
ary is greatly enhanced and a more accurate measurement
obtained.

Both the torsional crystal and high frequency shear wave
techniques applied to polyisobutylene and poly-e-methyl-
styrene liquids, show that there are two main relaxation
frequencies in these liquids. At frequencies under 100 kc, the
shear stiffness is in the order of 3&(10~ dynes/cm~, while in
the high megacycle range it has increased to 5)(10' dynes/cm .
The low shear elasticity appears to be associated with a com-
posite motion of molecular rotation and translation that al-
lows a configurational change to occur from the most probable
chain shape. When the shear stress is removed, the molecule
quickly returns to its most probable shape. This results in a
low shear stiffness. At high frequencies this motion cannot
take place, and the shear stiffness is determined by motions
within single potential wells, and the value approaches that
for a crystal. It is shown that the dispersion for longitudinal
waves measured recently (see reference 11) is primarily due
to the shear mechanisms investigated.

I. INTRODUCTION

''T HAS long been suspected that if liquids were
- - sheared sufFiciently rapidly, they would exhibit
a shear elastic eAect as well as a viscous effect.
In fact, Maxwell, ' on the basis of a gas model,
predicted that an instantaneous shear distortion
would have a relaxation time v and a relaxation
frequency f, given by the formulas

r = ~ll f= &l(2~r') =pl(2~%), (&)

where q is the shear viscosity and p, the shear
elasticity. A similar result has recently been ob-
tained by Frenke12 by assuming that a liquid has a
short range order similar to a solid, and identifying
the relaxation time v as the mean life in a sedentary
state. For ordinary light liquids, assuminga shear
elasticity similar to a loosely knit crystal —about
10" dynes per square centimeter —and a viscosity
of about 0.0j. poise, the relaxation frequency is in
the order of 10" cycles, which is considerably
above any present day ultrasonic equipment.

However, if we use long chain polymer liquids,
certain significant new effects appear. Long chain
molecules are flexible, and can take up many difer-
ent shapes. Certain coiled-up shapes are more
probable than others and if a molecule is distorted
from this shape, the molecule tends to return to it

' J. Clark Maxwell, "On the Dynamical Theory of Gases, "
Phil. Trans. Roy. Soc. 1ST, 49—88 (1867).

J. Frenkel, Eidetic Theory of Liquids (Oxford University
Press, London, 1946), Chapter IV, pp. 196-200.

in a very short time when the stress is removed.
This type of elasticity is called configurational
elasticity, and the rapidity of regain of its most prob-
able shape determines the relaxation time for such
configurational elasticities.

When a shearing stress is put on such a molecule,
segments of the molecule 20 to 30 chain atoms long
are displaced from one configuration to another
configuration which coincides with an empty space
or hole in the liquid. A single segmental jump will
have two effects on the polymer molecule. First, the
shape of the molecule will be slightly altered by the
motion of the segment, and second, the center of
gravity of the molecule will be slightly shifted.
The result of a large number of successive segmental
jumps will likewise be twofold. First, the molecule
will wriggle about from one shape to another, and
second, the center of gravity will undergo a slow
wandering. When these segment jumps are caused
by the application of a shearing stress, the wander-
ing of the center of gravity produces the viscous
Row, while the change of shape from the most
probable shape produces the shear configurational
elasticity.

The Row of segments has to occur over certain
energy barriers W, and hence the temperature
variations of the viscosity of some polymers such
as linear polyesters have been shown to satisfy
an equation of the type

Q~BZ gW/BT
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g ~gW /8'I (4)

Actual experiments given here and in a previous
paper on longitudinal measurements' show, how-
ever, that the average activation energy is only
~3 of that for viscous Row, and there is a chain
length effect which is considerably smaller than
that for viscous Row.

If we go to still higher frequencies so that single
chain segments do not have time to rearrange in the
time of a single cycle, the configurational elasticity
cannot be excited, but a shear elasticity caused by
changing the relative positions of the segments of
the molecules in single potential wells can still occur
and this is a crystalline type of elasticity which
should be of the order of 10' to 10" dynes/cm'.
This type of elasticity also occurs at low tempera-
tures for which gi. and g~ become so large that the
shear sti6ness is the dominant impedance. All of

where W is the free energy barrier, R the gas con-
stant, and T the absolute temperature. 'fhe prob-
ability of the center of gravity of the molecule as a
whole moving in a given direction depends on the
probability of a number of successive segmental
jumps occurring in the same direction, and hence
decreases with the increasing molecular weight Z.
Equation (2) is an equation proposed by Flory'
and justified on a theoretical basis by Kauzmann
and Eyring. 4 A more general equation which has a
similar segmental How justihcation' is

logy =AlogZ+W//RT, (3)

and this equation holds for the liquids investigated.
When the stress is removed from the molecule,

the molecule returns to its most probable position
by a series of segmental jumps. It has been pro-
posed by Alfrey' that the activation energy should
be the same as for viscous Bow, and that there
shouM be no chain length eEect or

these eGeets can be represented by the equivalent
electrical circuit of Fig. 1. The How viscosity is
represented by q&, the configurational elasticity by
p, 2, the conhguration viscosity which determines the
rate at which the configurational elasticity is
relaxed is given by g2, while p3 represents the high
frequency crystalline elasticity. Another relation
that is equivalent to this is shown by Fig. iB.
The constants of this circuit are related to those of
circuit 1A by the equations

'sl '0l + '92

ll 12 (/1 + l2 )(Pl +@2 )

('si pa —'s2 pi )

('gs +'s2 ) (pP+v2 )pi 02
pg

(~i'I 2' n2'I ~—')'
W =Pi +92 ~

Considerable study has been given to the con-
6gurational type of elasticity and it has been
shown that under equilibrium conditions, the
"kinetic ' theory of elasticity describes the elastic
retractive force, for example as'

F= —T(BS/BL) = (kTv/Lp)[a (1/n )7, —(6)

where T= absolute temperature, L, = length of
sample, 5=entropy, L,o = length of unstretched
sample, v =number of chains in the volume V, and
n=L/Lo. Here this theory a.ccounts nicely for the
widely observed shear modulus of 10' dynes/cm'
and for its increase with temperature. It is, how-
ever, an equilibrium theory and requires time for
equilibrium to be established before it, is valid.
For the torsional crystal measurements reported in
the next section, the elasticity is higher than that of
Eq. (6), and increases with a decrease in tempera-
ture. It appears likely that it is determined by
nearest neighbor interaction, rather than an
equilibrium between all elements of the chain, and

FrG. 1. Equivalent electrical circuits.

' P. J. Flory, J. Am. Chem. Soc. 62, 1057 (1940).
4 Walter Kauzrnann and Henry Eyring, J. Am. Chem. Soc.

62, 3113-3125 (1940).
'Baker, Fuller, and Heiss, J. Am. Chem. Soc. 63, 2142

(1941).
~ Turner Alfrey, Jr., Mechanical Behavior of High I'olymers

(Interscience Publishers, Ind. , New York, 1948), p. 115.
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MEASURED RESISTANCF AND RFACTANCE FOR A SHEAR
VISRATION OF POLYMERIZED CASTOR OIL
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FIG. 3. Equivalent circuits and measured values for castor oil.

has been designated as a quasi-configurational
elasticity.

II. USE OF TORSIONAL CRYSTAL IN MEASURING
CONFIGURATIONAL ELASTICITIES AND FLOW

VISCOSITIES

Since the configurational elasticity of long chain
molecule liquids is in the order of 10" dynes/cm'
while the associated shear viscosities may range
from 10 to millions of poises, the relaxation fre-
quencies of such liquids will be in the order of 10'
to a few cycles, and should be in the range of
easily measured frequencies. In fact, by employing
a torsionally vibrating crystal whose motion is
tangential to the surface, one of the writers'
showed that the shear viscosity and elasticity of
polymer liquids could be measured. In light liquids
the method gives directly the viscosity of the
liquids. Under temperature-controlled conditions
the method is accurate to within a percent.

The method consists of using a torsional quartz
crystal, measuring the change in resonant re-
sistance, and change in frequency caused by
immersing the crystal in the liquid. Figure 2 shows
the experimental arrangement. These measured
quantities determine the resistance and reactance
components of the liquid for a pure shearing motion.
If the liquid is a purely viscous liquid the wave is
propagated by having layers of mass pdx coupled
to adjacent layers by the viscosity EI/dx of the
liquid layer. An equivalent circuit is shown by the
left side of Fig. 3. One can readily show' that the
so-called characteristic impedance Zo, which is the
impedance of an infinitely thick layer, is equal to

Zo=(srfsIp) (1+j), (7)

and hence the resistance and reactance terms are
equal.

It was shown in a reference' that when a polymer
liquid such as polymerized castor oil was measured,
the resistance and reactance terms were no longer
equal, but the resistance term was larger than the
reactance by increasing amounts as the frequency
increased. The curves of Fig. 3 show the measured
values for castor oil, while the dot-dash line shows
the theoretical value if the liquid were a purely
viscous liquid. This divergence can be accounted
for if the liquid has a configurational shear elas-
ticity as shown by the equivalent circuit on the
right of Fig. 3. The impedance of a liquid with a
single relaxation time was calculated' and is given
by the formula

(f'Ifi')+ (f'Ifi'+f'/fi')' '
~~ = (w)'

2L1+f'/f E']
(8)

( f'Ifi'—)+(f'IfE'+f'Ifi')' '
&~= (pp)'

2 1L +f'IfE1
where f~ is the relaxation frequency fE = Is/(2EFEI)
A plot of this equation is shown in Fig. 4 (by solid
lines). At low frequencies, i.e. for frequencies much
less than the relaxation frequency, the resistance and
reactance terms are equal, and increase propor-
tionally to the square root of the frequency. As the
frequency approaches the relaxation frequency, the
resistance becomes larger than the reactance, and at
very high frequencies the resistance approaches (pp) I

while the reactance approaches zero. By fitting the
theoretical curves of Fig 4. to the measured curve of
Fig. 3 it is found that the viscosity is equal to the
value measured by a falling ball method, namely
18 poises, while the conFigurational sti8ness is
IE = 1/C, = 1.26 X 10' dynes/cm'.

Further measurements' by this method have been
made for a series of polyisobutylene polymer liquids
A', 8, C, and D, having the viscosity average
molecular weights 1060, 3520, 4550, and 5590. The
results are shown by Fig. 5. The viscosities agree
quite well with those measured by falling ball
methods, while the configurational shear elasticities
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8 W. P. Mason, "Measurement of the Viscosity and Shear

Elasticity of Liquids by Means of a Torsionally Vibrating
Crystal, '* Proc. A.S.M.E., May 1947.
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have values ranging from 6X10' dynes/cm' to
5 X 1.0', depending on the temperature and molecu-
lar weight. These shear elasticities do not follow
the temperature relations established for the
"kinetic" theory indicating that equilibrium is not
established and that this quasi-configurational
elasticity is controlled by the reaction of nearest
neighbors. Further measurements by this method
have been made and are reported in a previous
paper. '

GI. MEASUREMENTS OF SHEAR ELASTICITIES OF
LIQUIDS AT VERY HIGH FREQUENCIES

The measurements made with the torsional crys-
tal can be satisfied by a single relaxation frequency,
whereas the discussion in the introduction indicates
that polymer liquids should have two main relaxa-
tion frequencies, the latter one determined by the
high frequency or crystalline elasticity of the liquid.
Rough calculations indicated that the second
relaxation frequency should come in the upper
megacycle range. In order to measure this relaxa-
tion frequency it was necessary to devise a different
method since the torsional crystal method is
limited to about 500 kilocycles on account of the
small sizes of the crystal. Consideration was given
to the use of a thickness vibrating shear crystal of
the A T or BT type, but it was found that the shear
motion was too closely coupled to other modes of
motion, such as flexure modes, to give reliable
results. Hence another method had to be used.

Previous studies" had shown that it was possible
to set up very pure shear waves in a fused quartz
rod by attaching a Y cut or AT shear vibrating
crystal to the quartz rod. For permanent connec-
tion, silver paste was baked to the quartz rod and
the crystal soldered on by a very thin layer of
solder. However, for experimental purposes the
joint could be made of wax, or preferably, a very
thin layer of one of the polyisobutylene liquids.
The success of this joint shows that the shear elas-
ticity of this liquid is becoming quite high. By
sending a pulse down the rod and picking up the
series of pulses by the sending crystal or a receiving
crystal on the far end, the purity of the shear
motion can be tested. Any longitudinal wave will
travel with nearly twice the velocity of the shear
wave, and will appear on the cathode-ray oscillo-
graph at a point intermediate between the sent
pulse and the first shear pulse. In this way it is
found that any longitudinal pulse is at least 50 db
down from the received shear pulse, and is entirely
negligible.

By using a short length of fused quartz rod which
is accurately made parallel and polished on both

' W. P. Mason, J. Coll. Sci. III, No. 2 (May 1948).
'0W. P. Mason and H. J. McSkimin, J. Acous. Soc. Am.

19, 464 {1947).
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Fto. 5. Shear elasticities and viscosities for polyisobutylene
polymer liquids.

ends, and using a single crystal for sending and
receiving, a series of shear wave pulses was set up
in the rod and their relative amplitudes and posi-
tions were shown on the cathode-ray oscillograph
as shown by Fig. 6. Then a layer of liquid to be
studied was put on the polished free end and the
difference in the received pulses noted. At 10 mega-
cycles, for example, it was found that the first
received pulse was decreased by 1.10 db, the second
which had been reflected twice from the fused
quartz-liquid joint, by 2.2 db, etc. It was found by
experiment that the thickness of the liquid layer
did not make any difference until the thickness was
extremely small, i.e. , less than .001 cm. Hence the
liquid layer can be considered an infinite medium,
and the e8ect is only on the reflection coefFicient
which is given by the formula

Rp = (Zs —ZE)/(Zq+ZE),

where Zg is the characteristic impedance of the
quartz and ZL„ the characteristic impedance of the
liquid. The fused quartz having no dispersion and
a very small attentuation (Q) 50,000) can be
considered a pure resistance within less than 1
part in 50,000. However, the liquid impedance Zl.
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will certainly have a phase angle. Hence the reflec-
tion factor Rp mill have a phase angle and can be
represented by

(10)

80)I 103

70

~D
THEORETICAl CURVE

FOR POLYMER O

where R is the absolute value of the reflection coeffi-
cient, and 8, the phase angle. Solving for Zl, we
find

1 —R'+ 2jR sin8
Zz, =RE,+jXz, =8.3X10' (11)

1+R'+2R cos8

mhere 8.3X1.0' is the shear impedance per square
centimeter for a fused quartz rod. Now, since the
impedance ZJ. for all these liquids is less than
0.1(1+j), that for the fused quartz, it can be
shown that the phase angle 0 mill not be greater
than 5', and the reduction in amplitude measures
the resistance term Rl, quite accurately by using
the formula
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A series of measurements mas made for the poly-
isobutylene liquids shown by Fig. 5 for 25'C,
and the resistance components of the shear im-
pedance are shown plotted by Fig. 7. The resist-
ances of the longer chain polymers shorn a marked
rise with frequency which tends to approach an
asymptotic value of about 75,000 mechanical
ohms per square centimeter. The shorter chain
polymers tend to approach a somewhat lower value.

To see if this impedance tends to approach that
which should exist for a liquid mith tmo relaxation
frequencies, calculations have been made for the
case of a liquid with a series element j~pdx and a

Frc. 7. Resistance components of the shear impedance for the
polyisobutylene liquids.

into the formula

we find
ZP ——(ZiZE) I,

shunt element shown by Fig. 1B. The 8 form is
taken since the two relaxation frequencies are easily
calculated from it. Introducing the values

Zi= j4opdX;

( —jpini)/~ ( —jpE'~E)/~
+ . —(1/d~) (»)

-ni —(jpi/~) np (i pp/~)—

Zp = p(pi+ pp)

f4 14E 1 pi 1
+f' X—+ X—

fi fE -pi+14E fp -144+pE fi
24F(4IE+47E) f' ( p& l 1 tF pE y 1

+jf + I
~-+

I

pi+atE fifp &pi+pE& fp &pi+pE& fi
[1+(fE/fiE)]tL1+ (fE/fEE)]

(14)

where fi and fp, the two relaxa, tion frequencies, are
given by

fi = pi/(2~vi); fp pp/(2~9E) (15)
To illustrate the form of the impedance, use is

made of the data obtained for the liquid poly-
isobutylene, polymer D at 26'C. The low frequency

PULSES FOR
NO LOAD

PULSE FOR
LIQUID LOAD APPLIED

viscosity and torsional crystal measurements show
that the flow viscosity is 1600 poises, and the con-
figurational shear elasticity is 4X10' dynes per
square cm. The high frequency longitudinal meas-
urements given in a previous paper" show that there
is a dispersion in the longitudinal velocity which
requires a compressional stiffness of 1.17X10"
dynes/cnip higher at an infinite frequency than the
stiffness at zero frequency. Compressional stiR'-
nesses are controlled by the Lamb elastic constants
)+2@,, and compressional measurements do not

FIG, 5. Series of shear wave pulses.
»Mason, Baker, McSkimin, and Heiss, Phys. Rev. 7'3,

1074-1091 (1948); 'l4, 1873-1874 (1948).
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distinguish whether the dispersion comes in the
) -constant or the p-constant. By means of the shear
measurements presented here, it becomes obvious
that the dispersion occurs in the p,-constant.

With the values of the Fig. 1A constants as
pa" = (1.17X10"/2) =5.85X10' dynes/cm' pz

——4.5
X 10z dynes/cm'

zI~" ——1600 poise; zIz" =200 poise. (16)
This results in the elements of the 1B network
being

q~~ = 1425 poises; g~~ = 175 poises;
zIP =4X10z dynes/cm'

pzs = 5.81 X IO' dynes/cm' (17)
Since the 1H constants are separated out in the
form of two relaxation frequencies, these constants
are more easily evaluated than the constants in
the form 1A. For example, at the very high fre-
quencies, q~~ is relaxed out by the stiffness p, ~~ and
the measurement of the second shear viscosity of
Fig. 14, reference 11,divided by two, gives directly
&2~=175 poise. q&~+p2~ is the "steady" flow vis-
cosity, 1600 poises. p ~ is the measured shear
elasticity of 4X10z dynes/cm'. Substituting these
values in Eq. (14), the resulting resistance and
reactance terms for the D polymer liquid are
shown by Fig. 8. There are two plateaus, one in the
region below 100 kc and the other above 100 mega-
cycles. Hence the measurements with the torsional
crystal in which the constants were evaluated as
though only one relaxation frequency existed, give
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FIG. 8. Resistance and reactance for the D polymer liquids.

very closely the correct results for the lowest re-
laxation frequency. For the high frequency range,
the theoretical values of Fig. 8 are somewhat too
high to agree with the measured curves of Fig. 7.
This divergence is mostly due to the fact that the
stiRness p2~ has a hysteresis component, as shown
in the previous paper, "and this is not taken account
of in the solid lines of Fig. 8. By introducing a
series component p, ~' such that the stiffness im-
pedance 1s

(I z' —jI z)/~

the eRect of a hysteresis component is taken care of.
This results in an input impedance for a long line of

P(Iz~+P2)

(f') (Izz f &t' Izz (P'I ( f'l
I —,11+I —+—

I + I —,II 1+—,I
Izi+IJs (fz ) --Ep2 fm) — pz+pz (fz ) 4 f& )-

(1) (vz' f )' ( vm & (1~
+if I

—11+I —+—
I +I

-yi+Izz ~ fz) Eyz f2) — &IJi+Izz) ( fg)

f''I ( (I2 fl'l
I 1+—111+I —+—

I I

fzm) k 4p, z f2) )

I
P2 P2 J1+——+-
Izz IJ2 fa----

~ (18)

The eRect of this is to raise the eRective relaxation
frequency as shown by the dashed line of Fig. 8.
These values were calculated for a ratio of pz'/pz
=0.45 as found in the previous paper. "This tends
to make the theoretical and experimental values
agree closely as shown by the dashed line of Fig. 7,
and hence all the evidence points to a relaxation
in the shear elasticity as the cause of the relaxation
measured in the longitudinal velocity.

IV. MORE SENSITIVE METHOD FOR MEASURING
RESISTANCE AND REACTANCE COMPONENTS

OF SHEAR IMPEDANCES OF LIQUIDS

The method discussed previously for measuring
the shear impedance of liquids by their eRects on
the reflection coefficient at normal incidence suffers

from the fact that the limiting impedances of the
liquids are only about 0.1. that of the fused quartz,
and hence the eRects on the reflection factor and
reflection phase are very small. It has been found"
that an enhanced eRect can be obtained by re-

LIQUID

SOLDERED
JOIN TS

FK'. 9. Arrangement for measuring the shear impedance of
liquids by reflection at low angle of incidence.

"This idea was suggested and developed by H. J.McSkimin,
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Aecting the shear wave off the liquid-solid interface
at a low angle of incidence. An exact solution for
the reflected wave has been obtained by H. T.
O' Neil and will be published in a companion paper.
It appears, however, that for all the liquids con-
sidered here, the effect of this low angle in de-
termining Z2 is given by the equation

1 —R'+ 2jR sin8
Z2 = R2+jX2——cospZq, (19)

1+R'+2R cos8

where R is the absolute value of the reflection factor,
and 8, the phase angle. Hence the effect of the low
angle is to transform the shear impedance of the
liquid up by an impedance transformation ratio
1/cosy, where q is the angle of incidence from the
normal.

In order to make the device a reasonably short
length —approximately four inches as shown by
Fig. 9—and have it still radiate the whole surface
by the directive shear wave, the angle q was chosen
as 79', giving an impedance transformation ratio
of 5.25 to 1. The solution given by Eq. (19) depends
on the particle motion of the surface being at right
angles to the surface normal. This is secured by
putting the x-crystallographic axis of the quartz
crystal parallel to the reflecting surface for both
sending and receiving crystals.

The method for obtaining the resistance and
reactance components is to determine the reflec-
tion loss per reflection and the phase change per
reflection. The reflection loss is obtained by com-
paring any one of the reflections with a clear reflect-
ing surface with the same reflection, with the
reflecting surface covered by the liquid, and divid-
ing by the number of times this particular com-
ponent has suffered reHection from the solid liquid
interface. To measure phase, two identical fused-
quartz rods were constructed with two input and
two receiving crystals. These are connected in
the circuit shown by Fig. 10. Here the upper
reference bar is connected through a pentode
vacuum tube with an R-C phase shifting net-
work in the input. Since we are comparing two
received pulses occurring at the same time, one has
to balance the amplitude and make the phase 180'

70x103

m 60
V

ExO50

V
z
z40
V
W

z
V~30
z
C
O
4J
n.
—20

RESISTANCE

REACTANCE

0
500 1000 5000 10000

MOLECULAR WEIGHT

FIG. 11.Resistance and reactance at 10 megacycles and 25'C
of polyisobutylene liquids.

diferent. %hen the variable resistance, R, is equal
to zero, the phase shift introduced by the phase
shifting network is zero and 180' is introduced by
the tube. If we make R~ low so that the gain
through the tube is zero, the two received pulses
can be balanced out when no liquid is placed on the
lower rod. Now, when a liquid is placed on this
reflecting surface, the amplitude is reduced and the
phase is changed for the pulse received from the
lower unit. To balance it out now, the gain of the
tube is reduced by introducing a negative bias on
the suppressor grid. By comparison methods it is
shown that this changes the phase of the upper
pulse by less than 1'. Then, to balance out the
phase shift introduced in the 6rst reffection by the
liquid, the variable resistance R is increased, until
the two adjustments annul the received pulse.
By calibrating the phase of the adjustable circuit,
the reflection phase shift can be measured within a
degree. Only a very moderate amount of tempera-
ture and frequency stability are required for this
system.

A few measurements have been made with this
system. Figure 11 shows the resistance and reac-
tance at 10 megacycles and 25'C of a number of
polyisobutylene liquids graduated according to
molecular weight. The lighest liquid, having a flow
viscosity of 0.55 poises, acts nearly like a purely
viscous liquid with only a small amount of shear
elasticity. As the molecular weight increases, the
divergence between resistance and reactance in-
creases, and above a molecular weight of 10,000
the shear elasticity is a very slowly increasing
function of the molecular weight.

A number of these liquids have been measured
at the three frequencies: 4.5 megacycles, 14 mega-
cycles, and 24 megacycles, over a temperature
range. The measurements for three of these liquids
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FIG. j.2. Resistance and reactance curves at various fre-
quencies for liquids having viscosity average molecular
weight of 1060.

having viscosity average molecular weights of 1060,
3520 and 5560 are shown by Figs. 12, 13, and 14.
The highest molecular weight material shows a
stiffness at all three frequencies that increases with
a decrease in temperature. The lowest molecular
weight materia1, on the other hand, appears to be a
viscous liquid at 4.5 mc and only shows a sti6'ness
at 24 mc, or at low temperatures.

The measured results can be fitted by an equiva-
lent circuit having the elements shown by Fig. 18.
Here the sum of g& and g2 equals the low frequency
viscosity, which for these liquids is shown by Fig. 5.
pi, the quasi-configurational shear stifFness for a
number of liquids, is also shown by Fig. 5. If we
plot these as a function of density, it appears that
all of the stiBnesses can be plotted on one curve as
shown by Fig. 15. If we extrapolate this down to

FIG. 13. Resistance and reactance curves at various fre-
quencies for liquids having viscosity average molecular weight
of 3520.

the density of the lowest molecular weight liquid
(P.826 at 25'C), the shear stiffness for configura-
tional conditions will have dropped to 2 X10'
dynes/cm' for this liquid. At the same time the
viscosity as measured by the reQection coeS.cient
of the shear wave nearly coincides with the static
measurements shown by Fig. 5. Hence it appears
that the first relaxation mechanism of Fig. 1 can
be neglected, and the impedance accounted for by a
single mechanism. For the other two liquids, the
relaxation frequency of p, &, p& is much less than the
measured frequency, and as shown by Fig. 8, the
impedance measured can be accounted for by a
single relaxation mechanism having the constants
py and 'Qg.

In order to evaluate these constants, p& is set
equal to zero, and f& to infinity. Solving for the
resistance and reactance terms we find .

(Pm f)»+l —+-
I

&p~ f2&

(2o)

(21)

A plot of these values for a value of p~'/p, =p.45
(the value found from longitudinal measurements)
is shown by the dot-dash lines of Fig. 4.

Fitting the reactances and resistances measured

and shown by Figs. 12, 13, and 14 to these curves,
the asymptotic value of R = (pp2)I and the relaxa-
tion frequencies fq can be determined for the diRer-
ent temperatures and different molecular weights.
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Then knowing the density p, the value p2 can be
determined from the equation

Pa=~~ /P (22)

The second shear viscosity, g~, can be determined
from the formula

(23)

where f. is the relaxation frequency.
The high frequency shear elasticity p, m is shown

plotted on Fig. 15 as a function of the density.

Since over this range the change in density is
roughly proportional to the change in temperature,
it is seen that the variation in high frequency shear
elasticity parallels quite closely the variation in
quasi-configurational elasticity as a function of
temperature. However, the difference due to
molecular weight change does not even approxi-
mately follow the variation in density, unlike the
quasi-conhgurational elasticity. The viscosities g2

are shown plotted as a function of 1/T by Fig. 16.
All the slopes are approximately parallel, and indi-
cate an activation energy of about 12 kilocalories.
'The low frequency viscosities, shown by Fig. 5,
have an activation energy of 16 kilocalories for
molecular weights of 3500 and above, but for the
lowest molecular weight of 1060 the slope is less
and the indicated activation energy is about 12
kilocalories. Since a molecular weight of 1060 corre-
sponds to a repeating chain of 19 links, i.e. , perhaps
about the size of an Eyring segment, it may be that
an activation energy of 12 kilocalories is the value
for the motion of a single segment. The values of
gt plotted on Fig. 16 then represent the motion of
individual segments caused by a chain retraction.
There is a chain length effect due to the fact that
there is an increased improbability of all the seg-
ments moving in the same direction as the chain
increases in length.

Since both quasi-configurational (in the sense of
relaxation times leading to apparent stiffness for
shape changes), and crystalline elasticities in all
probability are determined by nearest ne&ghbors,
the action of any segment may be represented as
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due to the potential well distribution shown in
Fig. 178. The viscous How of the molecule requires
a translation and rotation and hence occurs over the
free energy barrier hU~. On the other hand, an
extension or contraction of the chain as a wholeI
which occurs when con6gurational elasticity occurs,
requires no change in the center of gravity of the
chain, and probably results in a lower over-all free
energy barrier hU~. When a shearing stress is put
on the liquid, one mell is lowered compared to the
other, as shown by the dotted line. At low fre-
quencies„sufhcient time is given so that a viscous
How occurs over the high energy barrier. As the
frequency increases there is not time for an actual
transfer of the center of gravity in the time of a
single cycle, but a local distortion still can occur
across the lower energy barrier. This is a reversible
process and results in the quasi-con6gurational
elasticity since entropy changes tending always
toward most probable chain shapes are concur-
rently happening. Since the motion that can occur
is large, the con6gurational stifFness is small. At
still higher frequencies, even the local distortion
cannot occur and the only e6ect is the displace-
ment of the segment from its equilibrium position.
This results in a very high shear stifFness of the
~.:rystalline type. According to the measurenients,
the height of the Row viscosity activation energy
barrier is 16 kilocalories per mole, whereas the local
distortion energy barrier is 12 kilocalories. The
same relative slope of the configurational and
crystalline stiHnesses with temperature shown by
Fig. 15, indicates that there is a correspondence
between the shape of the bottom of the two poten-
tial wells and the complete free energy curve, As the
chain length decreases, the distinction between a
local distortion and a true How motion disappears,
and for liquids having a chain length in the order of
one Eyring unit or less, the two potential wells
become equal and the potential well distribution is
similar to that for a light liquid as shown by Fig.
17A. Under these circunsstances the quasi-cori-
6gurational elasticity disappears.

Another interesting result is obtained by coin-
paring the values of viscosity q2 measured by the
high frequency shear technique with the value
measured in longitudinal measurements of Fig. 14,
reference 2. The longitsrdinal n)easun niente, whirli
determine the sum of the compressional viscosity x
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plus twice the shear viscosity g~, are shown plotted
by the solid lines of Fig. 16. For the lowest molecu-
lar weight (polymer A) the longitudinal viscosity
is about 2 times q, indicating a negligible compres-
sional viscosity. The longer chains have a com-
pressional viscosity which is, however, a consider-
able fraction of the shear viscosity. Evidently corn-
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pressional viscosity is a steep function of average
chain length. As nearly as can be judged from the
relative slopes of the viscosities measured by
longitudinal and shear waves, the activation energy
of the compressional viscosity is equal to that of the
second shear viscosity.

Some measurements were also made for a poly-
O.-methyl styrene liquid and the results are shown
by Fig. 18 for three frequencies over a temperature
range. One interesting difference is at once obvious,
namely, that any hysteresis effects are small, since
at low temperatures the ratio of reactance to re-
sistance becomes greater than 50, whereas it did
not exceed 8 for polyisobutylene. This correlates
also with the fact that the high frequency losses of
solid polystyrene are much less than those of high
molecular weight polyisobutylene at ordinary tem-
peratures. Analyzing the data of Fig. 18, using the
solid curves of Fig. 4, one obtains the shear elas-
ticity p, 2 and the shear viscosity g2 shown by Fig. l9.

The shear elasticity is somewhat higher than that
for a 5560 molecular weight polyisobutylene but
has about the same change with temperature. The
variation of g2, however, is much larger for poly-
Ot-methyl styrene than for polyisobutylene, and
corresponds to an activation energy of 23.6 kilo-
calories.

Some measurements were also niade of very light
liquids such as water and cyclohexane. By observ-
ing the fifth and seventh reflection for both ampli-
tude and phase changes, measurable results were
obtained. For both cases within the experimental
error, the values agreed with the steady flow meas-
urements. Hence in agreement with Eq. (1), they
are considerably below their relaxation frequencies,
and indicate that no configurational type elastici-
ties exist for these liquids. These measurements
show that the enhanced losses for longitudinal
waves for these liquids must be due to compres-
sional viscosities,
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Ultrasonic Measurements on Rochelle Salt Crystals*

O'. J. PRIMAL&

l'kysics Departn~ent, Rensselear Polytechnic Institute, Troy, Eezu York *

(Received November 15, 1948)

A pulse technique at 10 Mc/sec. has been used to study the anomalous elastic properties of rochelle
salt single crystals at temperature around the upper Curie temperature. The temperature dependence
of foiled crystal constant 84@ and of the attenuation of waves which contain a component of shear
strain in the X crystallographic plane is reported. The attenuation measurements are formulated in
terms of the interaction theory.

The dependence of the velocity in 45' X cut crystals of rochelle salt on a d.c. field in the X crystal-
lographic direction shows a marked unipolarity. This change in velocity which is caused by the bias
field arises from the two following sources: one is the usual saturation on e6'ect which produces a
change in velocity that is independent of the polarity; the other is the morphic effect which results
from the induced monoclinic constants, and which produces a velocity change, the sign of which is
dependent on the polarity.

L INTRODUCTIOÃ
' 'T is well known that rochelle salt exhibits extra-
s ~ ordinary elastic, dielectric, and piezoelectric
properties: Several experimental and theoretical
studies of these properties have been made. '

In the past the data on the elastic properties
have been obtained principally by the self-reso-
nance method. Recently Huntington' has used a
pulsed ultrasonic technique for determining a con»-

*This paper is a portion of a dissertation submitted in
1948 to Physics Department of Rensselear Polytechnic Insti-
tute in partial fulfil}ment of the requirements for the degree
of Doctor of Philosophy.

*~ Now at Battelle Memorial Institute, Columbus, Ohio.
'For a review of the investigations of rochelle salt, see

W. G. Cady, Piezoelectricity (McGraw-Hill Book Company,
Inc. , New York, 1946).' H. B. Huntington, Phys. Rev. I2, 321 (1947).

piete set of elastic moduli for rochelle salt at room
temperature. The present paper reports the use of
the ultrasonic method to study further certain
interesting aspects of rochelle salt.

In the self-resonance experiments the wave-
length of the sound waves in the specimen is of the
order of the specimen dimensions, while in the
pulsed ultrasonic method the frequency is suf-
ficiently high that the specimens are essentially
infinite compared to the wave-length of the sound.
The boundary conditions for the two cases lead to
expression for the velocity in terms of the elastic
compliance coeAicients 5;, and of the elastic moduli
C;;, respectively.

The interesting elastic phenomena in Rochelle
salt center around the anomalous temperature
dependence and the saturation effects (both


