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which R(Q) can have, viz., R(Qy)~=x,. Beyond this
point R(Q) is constant and equal to xo. Thus Eq. (6)
becomes the sum of two integrals,

vy(E) = {cosO(E) Y

x{ ] (B, QRQ)Q+o fq R Q)dQ}- )

7 ]

Now for energies less than Qp (3 Mev in our case)
the range energy curve for electrons can be closely
approximated by,

R(Q)=0.4Q"® (Q in Mev).

In view of this relation and that of Eq. (1) one
obtains by performing the integrations in Eq. (7)

1“1, E. Glendenin, Nucleonics 2, 12 (1948).
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and setting xo=2 g/cm? for our particular case,

2Cm B*Qo?
vo(E) =—— w| B 0o—Vn—
) =—comtE)u| (NG =7 )
1 1 B? On
fm g2t )
Qo Qx Qux Ong]

where {cosf(E)) is given by Eq. (5), Qi by Eq. (2),
and £=8X10"1° g/cm? Secondary electrons of
energy less than 10* ev will not contribute appre-
ciably to the values of »,(E). Hence, if one sets
n=10* ev, takes the value of the constant C ap-
propriate for brass, and converts from energy to
momentum of the incident mesotron, »(p) can be
plotted from Eq. (8). This curve is shown in Fig. 3
of the text for mesotron momenta between 108 and
1.2X10° ev/c. It should be noted that through the
choice of the constant C appropriate to brass the
number of secondaries produced in the glass counter
envelopes is overestimated. Furthermore, scattering
losses reduce the number reaching the sensitive
volume of the counter. The computed values of
»(p) are consequently high which makes the esti-
mated proton intensity (Fig. 6) conservatively low.
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The shear elasticity and viscosity of liquids have been measured at ultrasonic frequencies by
utilizing plane shear waves in an elastic solid and measuring the reflection loss and phase shift caused
by reflection at a plane interface of the solid and a liquid. The first measurements of this type involved
normal incidence. In a recent modification of the method, oblique incidence results in an enhanced
effect. This paper derives the theoretical relations between the constants of the two media, the
complex reflection coefficient and the angle of incidence. The theory describes some of the general
properties of reflected and refracted shear waves in isotropic viscoelastic media.

INTRODUCTION

HIS paper is concerned with some theoretical
relations involved in a method for measuring

the shear wave parameters of viscous liquids at
ultrasonic frequencies. The experimental details
are described in a companion paper by W. P. Mason
et al., in this issue. The method is based on the meas-
urement of a reflection coefficient for plane shear
waves in an elastic solid, reflected obliquely from a
plane interface of the solid and the liquid which is
being investigated. A pulsing technique is used to
separate the reflections of different orders at the de-
tecting crystal, and the primary shear waves are
suitably polarized so that reflection does not produce
compressional waves in addition to the reflected

shear waves. The complex reflection coefficient is
measured by comparing the amplitudes and phases
of waves reflected from the solid-liquid interface and
from the same surface when the liquid is absent.
Compared with normal incidence methods which
had been developed previously, the oblique inci-
dence method possesses some experimental ad-
vantages, resulting in greater accuracy of measure-
ment, but oblique incidence involves more com-
plicated relationships between the reflection coef-
ficient and the constants of the two media. Solutions
for these relations are derived in this paper. The
theory describes some of the general properties of
plane shear waves in viscoelastic media.

The elements of the system, omitting the elec-
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tronic equipment, are shown in Fig. 1. A fused
quartz rod with obliquely cut ends has a plane
upper surface, which is covered in one part of the
test by a thin layer of the liquid under investiga-
tion. This surface will be taken as the plane y=0
in a system of rectangular x, v, 2z coordinates, with
the z axis perpendicular to the plane of Fig. 1. A
suitably oriented Y cut quartz crystal at one end
of the rod generates plane shear waves with the
displacements in the z direction, and a similar
crystal at the other end is used as a detector. The
waves are reflected repeatedly at the upper surface
and at both ends of the rod, but a pulsing system
separates the reflections of different order at the
detector. The primary displacement is parallel to
the reflecting surfaces and perpendicular to the
direction of propagation, and does not vary appre-
ciably across the width of the rod. Hence, the dis-
placements in the reflected and refracted waves also
have these properties, and there are practically no
compressional components. At ultrasonic frequen-
cies the attenuation in the liquid is so large that a
relatively thin layer of the liquid is equivalent to
an infinite medium, as regards the effects in the
quartz. The measurements indicate that the am-
plitude and phase of the detector output are prac-
tically independent of the thickness of the liquid
until the thickness is reduced to a value of the
order of 0.001 cm.

SHEAR WAVES IN A VISCOELASTIC MEDIUM

The response of a liquid to shearing stress is an
essentially viscous flow if the stress is constant or
varies slowly enough, but a liquid may also have a
partly elastic character in shear which affects the
behavior at high frequencies. The combined viscous
and elastic properties can be represented by dis-
tributed mechanical admittances or impedances
which are complex functions of frequency. T. Alfrey
has described the impedance method of representing
such properties for a general class of linear visco-
elastic media such that the stress-strain relations
obey the superposition principle.!=® When a
medium satisfies this restriction, it is characterized
by a set of linear relations between the stresses and
the strains and their time derivatives, which may
be of various orders. The linear relations are
analogous to the voltage-current relations for a
passive linear electrical network and they can be
expressed in forms similar to the network equations,
involving operators which become equivalent to
complex impedances or admittances when the dis-
turbance is assumed to be proportional to a complex

1T. Alfrey, Jr., Mechanical Behavior of High Polymers
(Interscience Publishers, Inc., New York, 1948).

2 T. Alfrey, Jr., “Non-homogeneous stresses in viscoelastic
media,” Quart. App. Math. 2, 113 (1944).

3T. Alfrey, Jr., “Methods of representing the properties of
viscoelastic materials,” Quart. App. Math. 3, 143 (1945).
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time factor e®*. In particular, for an isotropic linear
viscoelastic medium, the typical relation between
shearing stress and shearing strain can be expressed
in either of the forms

Tee=08:. or YT..=8..=9S../9t, (1)

T, denotes the shearing stress corresponding to the
shearing strain S,,=0¢,/d2+ d¢,/0x, where &, is the
displacement in the z direction, and ¥ and ¢ are
operators which are reciprocal functions of the
operator 9/dt. For a disturbance proportional to
e#t ¥V and ¢ are functions of 7w, as d/d¢ is then
equivalent to 7w. A special case of Eqgs. (1) repre-
sents purely viscous flow; in this case, ¥ and ¢
are real and {=79=1/Y, where % is the (shear)
viscosity. For a strictly elastic solid of rigidity
K~= 1/3!

Too=pS:.=0S../0t, (9/0t=p, Y=s50/0t,

and, when 9/dt=1w, {=p/tw, V=1ws=1/¢.
In general, when 9/d¢ is equivalent to 4w, ¢ and
Y are complex and can be represented by

$(iw) =n+u/iw=n—ip/w=1/Y (i), 2)
Y(iw) =v+iws=1/n"+iw/p' =1/ (iw),

where 9, u, v, s, 7/, ¢’ are real and may all be func-
tions of frequency. If stress is considered to be
analogous to voltage and rate of change of strain
as analogous to current, { corresponds to an im-
pedance operator or complex impedance and Y is
the corresponding admittance operator or complex
admittance. At a given frequency, 5 and " are two
different types of effective viscosities and g and g’
are different types of effective rigidities, such that
n and 1/p correspond, respectively, to resistance
and capacitance in series, and %’ and 1/’ corre-
spond to resistance and capacitance in parallel.
The values of 9, u, 7/, ¢’ may vary with frequency,
but they are always >0. If the phase angles of the
complex ¢ and Y are denoted by arg¢ and arg?,

Slia)= [¢lef s, V(ia)= | ¥]eios
—arg{=argY=tan™"1Q, 3
Q=p/wn=ws/v=19"w/u'>0 ®)
—r/2<arg{<0<argV<=/2.
For different materials, or for a given material at
varying frequency, the properties become relatively

more elastic and less viscous as Q increases. As
shown above, Q increases with u/w and with 3’ but
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FiG. 1. Experimental arrangement.
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decreases as u'/w and 4 increase. If ' and u’ are
independent of frequency, Q is proportional to fre-
quency and is equal to unity at the relaxation fre-
quency fr=p'/27q’; the viscous effect tends to
predominate at frequencies below f, and the elastic
effect at frequencies above f,.

The stress subscripts can be assigned so that
positive T, represents a stress directed toward
increasing z, acting on a part of the medium which
has an outward normal directed toward increasing
x. The stresses T, and T, are equal at any point,
and positive T, denotes a tension. If p is the density
and D,=9/dx, the equation of motion in the z direc-
tion is

D.T2.4+DyTyo+D.T,.=pD 2t,= pD qw= pdw/dt,

where w is the particle velocity in the z direction.

For a disturbance in an isotropic viscoeleastic
medium such that the displacement is in the z direc-
tion and independent of z, the strains which do not
vanish are S,,=D.¢, and S,.=D,¢,, the tension T,,
is equal to zero, and the above equations result in
the relations

Sn =Dw= YTzz,
D.Teit-D,Tyo=pD 0,

If w is independent of both y and z in Eqgs. (4), the
stress Ty, vanishes and

Dzw = YTzn

Sy.=Dw=YT,,, @
D24+D2)w=pD Yw.

D.T:.=pDw.

These equations are analogous to the voltage-
current relations for an electrical transmission line.
If current is now regarded as analogous to particle
velocity instead of to strain rate, with voltage cor-
responding to stress as before, the density p corre-
sponds to series inductance per unit length of the
equivalent line and Y corresponds to the shunt
admittance operator or complex shunt admittance
per unit length. In Egs. (2), the reciprocal viscosity
v=1/9" corresponds to shunt conductance per unit
length and the compliance s=1/u’ to shunt ca-
pacitance per unit length. If %’ and u’ are inde-

Pdx pdx

"1 dx 2
tTr)Lc ! dx
% irj “ % gg_
- T Tu
= dx--> - ax-->!
FIG2 FIG.3

£24dx
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FiGs. 2, 3, and 4. Equivalent circuits.
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pendent of frequency, the elements of the equiva-
lent line are as indicated in Fig. 2. If n and u are
constant, the equivalent line is as shown in Fig. 3.

Measurements described in a recent paper? indi-
cate that certain long chain polymer liqiuds have
shear properties at frequencies below 10° c.p.s.
which correspond approximately to equivalent lines
of the type shown in Fig. 2, with constant 5’ and u’'.
Later measurements have been extended to 60 mega-
cycles and show more complicated effects, which
are described in the companion paper in this issue.
In the larger frequency range, the shear properties
of the long chain polymer liquids correspond more
nearly to the equivalent line shown in Fig. 4, instead
of the one in Fig. 2. The numerical values involved
are such that the two circuits are nearly equivalent
in the lower part of the frequency range. In Fig. 4,
k denotes a resistance element which is inversely
proportional to frequency; it represents approxi-
mately some effects due to a hysteresis type of non-
linearity in the stress-strain relations.’

When the motion is assumed to be proportional
to e, the last Eq. (4) becomes

(Dz2+Dv2)w =T?w,

where I'?=14wpY. For motion independent of both
y and z, this equation reduces to D;?w=T"%w, which
has the general solution w= (Ke T*+ K'elz)ewt,
From the first Eq. (4), the corresponding stress is

T:e=Z(—Ke T4 K'eT?)eit, where Z=T/Y.

I' is the characteristic propagation constant of the
medium and Z is the characteristic impedance for
plane shear waves. They satisfy the relations

I'=YZ=1iwp/Z=(iwpY)}=a+1B,
B=w/c=2m/\,
Z=T/Y=1wp/T =(iwp/¥)}=R+iX,

where e, 8, R, and X are real; a is an attenuation
constant, 8 is a phase constant, ¢ is a phase velocity,
and \ is a wave-length. The velocity ¢ is always
different from zero, and the sign of T' is chosen so
that 8 and ¢ are positive. The phase angle of T' is
therefore in the range 0 to 7 and, as a result of (3),

0<LargZ<w/4<Largl'<w/2, 6)
0<X<R, 0<aZlB.

One limiting case corresponds to a strictly elastic
medium, for which

Y=iw/p, a=0, B=w/c,
Z=R=pc, X=0.

(5)

c=(u/p)},

¢W. P. Mason, W. O. Baker, H. J. McSkimin, and J. H.
Heiss, “Mechanical properties of long chain molecule liquids
at ultrasonic frequencies,” Phys. Rev. 73, 1074 (1948).

v 8W. P. Mason, Piegoelectric Crystals and Applications to
Ultrasonics, Chap. 12, Appendices A.8, A.9; in process of
publication.
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In the other extreme, for strictly viscous flow,

Y=1/9, a=B=(wp/27)}, c=(210/p)}
R=X=(wpn/2)%

For a progressive plane shear wave advancing
toward increasing x, the particle velocity and stress
are (the real parts of)

w=wee T*=Keortiwt=b2) T = —Zuw.

(7

The negative sign in the last equation is a conse-
quence of the stress sign conventions described
previously. T, is a stress across a plane x=con-
stant, parallel to the wave fronts, and the part of
the medium on the forward or increasing x side of
this plane is acted upon by a stress which has the
same direction as positive w when T, is negative;
this corresponds to a positive value of (the real
part of) —T,,=Zw.

For shear waves such that themotionin the zdirec-
tion may vary with both x and y, the particle
velocity and stresses satisfy Eqs. (4). When this
motion is assumed to be proportional to e®¢, pD.Y
is equivalent to I'"? and Y=T/Z. Hence, Eqs. (4)
are then equivalent to

(D24 D 2)w=Tw, (8)
Tee=ZIDaw, Ty=ZI-Dav.  (9)

A typical solution of Eq. (8) is
Wp=Woe~FFHY = qoeT (matny) (10)

where
G*+H?*=T1?,

G and H are auxiliary propagation constants for the
x and y directions and can have arbitrary complex
values, subject to the boundary conditions and the
restriction G*+ H?=T?, The corresponding restric-
tion on m and n is m?®+n?=1, and because of this
equation, m and =» can be represented by
m=sing and n=cosy. However, ¢ is not neces-
sarily a real angle, as m and % can, in general, be
complex. If ¢ is real, mx+mny is a real distance
which increases in the direction of propagation and
Eqs. (7) and (10) then represent waves of the same
type traveling in different directions. The charac-
teristics of waves such that ¢ is complex will be
considered later.

mini=1,

REFLECTION AND REFRACTION OF
PLANE SHEAR WAVES

Assume that the plane y=0 is a common
boundary of two isotropic viscoelastic media. One
of these may be an essentially elastic solid and the
other a liquid, as in the system described in the
introduction. Let subscripts 1 and 2 refer to the
negative y and positive y regions, respectively, and
with I' replaced by I';, let Egs. (10) represent a
primary wave generated by suitable motion of a
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boundary in a plane mx-+ny=constant, where
m=sing, n=cosp, and 0< ¢<7/2. The real angle
¢ is then equal to the angle of incidence relative to
the normal to the y=0 interface. The primary wave
is partially reflected at the interface, and a re-
fracted wave is transmitted into the second me-
dium. Since the displacement of the interface
caused by the primary wave is in the plane of the
interface and is independent of distance in the
direction of the displacement, the reflected and
refracted disturbances are non-dilatational and the
displacements in these waves are also parallel to
the z axis and independent of z. Hence, in the
absence of reflections from other surfaces, the re-
sultant particle velocities and stresses satisfy Eqs.
(8) and (9), when the appropriate values are as-
signed to I and Z for each medium. The sum of the
primary and reflected particle velocities must be
equal to the refracted particle velocity at the y=0
interface if there is no slip at this surface, and the
stress across planes parallel to the interface must
also be continuous at the interface.

The boundary conditions at y =0 can be satisfied
if the particle velocities in the two media are pro-
portional to the same function of x, and the wave
equation for the first medium will be satisfied if the
primary and reflected particle velocities are propor-
tional to the same function of x and to functions of
y in which the coefficients of y differ only in sign.
The resultant particle velocity in the first medium
will then have the form

wy=wee" (e~ Hv | rellv),

At y=0,

G=I‘1m, H=Tn. (11)

wr=(14r)wee%=.

The refracted particle velocity w, will satisfy the
wave equation for the second medium and the
boundary condition w;=w, at y=0 if

Wy = Twee~ 67 H2y  r=1+47,

Hy=(T?—G)i= (T2 —TPm?) = a,+1B,,

(12)
(13)

where oy and B, are real, representing an attenuation
constant and a phase constant of the refracted wave
for the y direction.

To represent attenuation and propagation of
phase in the direction away from the interface,
toward increasing v, ay and 8, must both be positive,
and therefore the imaginary part of H,? must also
be positive. In terms of the ‘“‘characteristic” attenu-
ation and phase constants of the two media,

Hy?= (a241:)*— (c1+1B1)*m?
= (82— as?)m?— (B2 — a2?) +12 (2B — 181m?)
=au2"’6u2+'i2avﬂm

By = asfa— a1fim? =21 (az/Na — mPay/N1). (14)

To make a,8, positive for all angles of incidence, it
will be assumed that the refracting medium has the
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larger attenuation per wave-length, as/A2>ai/A1.
This restriction is satisfied by the experimental
system indicated in Fig. 1, as the attenuation per
wave-length in fused quartz is negligible in com-
parison with the attenuation per wave-length in a
liquid. (Other cases are discussed in an appendix of
this paper.)

The solution for the refracted particle velocity
can be expressed in another form by letting G=T,M
and H,=T,N. Then M?4N?=1. Hence, M and N
are equivalent to the sine and cosine of an angle,
not necessarily real. Separating the primary and
reflected components of wi;, Egs. (11) and (12)
are equivalent to the following set of equations:

(15)

W, = rwee” M1 me=nw),
Wy = T,woe—rz(Mﬁ—Ny)'

wp - woe—rl (mz+ ’Ml) s
w1 =Wptwr,

m=sine, n=CoSsp,
M=siny=mI'1/Ts, N=cosy=H,/T,.

The angle of reflection is equal to the angle of
incidence, ¢, and in special cases such that ¢ is real,
¥ is the angle of refraction. However, ¢ is generally
complex.

Equations (9) and (15) result in the following
formulas for the stresses in the two media, and the
values of T, lead to a second relation between the
reflection coefficient 7 and the transmission coef-
ficient =147

(16)

When y<0,

Toe=—mZyw1, Ty.=—nZi(wp,—w,). (A7)
When y>0,

T"= '—MZQ'ZZ&, T“= —ZVZ2'ZU2.

As Ty, is a stress across a plane y = constant, parallel
to the interface, this stress must be continuous at
y=0, and as a result of Egs. (11), (12), and (17), the
stress across the interface itself is given by either of
the formulas

Tyo(x, 0) = —nZi(1 —r)wee=%*= — NZytwee— %=

Hence,

(18)

nZ1<1_r)=N22T=NZQ(1+7) (19)

The reflection and transmission coefficients there-
fore have the following values:

r=mZi—NZy)/(nZ\+NZ,)
= (Z1 cosp—Z, cosy) /(Z1 cose+2Z, cosy),

T= 1+7’= 2”21/(7ZZ1+NZ2)

The stress T, is not necessarily continuous at the
interface. Since w;=w, at y=0, Egs. (17) indicate
that as the interface is approached from opposite
sides, the values of T, approach two limits the ratio
of which is mZ,/MZ,. Because of Egs. (16) and (5),
this ratio is also equal to I';2Z,/T'1Zy= Y,/ Y1, which
is generally different from unity. The value of this
ratio does not depend on the direction of propaga-
tion.

(20)
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The product NZ, which appears in the solution
for the reflection coefficient is the impedance of the
second medium for the refracted wave per unit area
of the interface y=0 or of any plane y=constant.
This is shown by the last Eq. (17). Similarly, if
there were no reflection at y=0, nZ; would be the
impedance of the first medium for the primary wave
per unit area of a plane y =constant. The negative
signs in Eqs. (17) are due to reasons similar to those
discussed in connection with the sign of the stress
in the last Eq. (7).

When ¢ is complex, the refracted wave is a dis-
turbance of a different type from an ordinary plane
wave such as the one represented by Eqgs. (7).
Some of the properties of the refracted wave can be
investigated by resolving the quantity Gx-+Hyy
into its real and imaginary parts. Some of the sign
relations involved will be utilized later in the appli-
cation of the theory to the experimental measure-
ments. With o, and 8, both positive in Eqs. (13),
the phase angle of H, is between zero and 7/2, and
from (3) and (16) it then follows that

—rn/d<argM<7w/4, —n/2<argN<w/4.

Hence, the real parts of M and N are >0. Let
Y =A+1B where 4 and B are real. Then, from (16),

N =cosy =cosd coshB—1sin4 sinhB;

M =siny =sind coshB+1 cos4 sinhB
=mI'1/Te=m[ (a1 +181)/ (a2 +1B:)]
=m{[ (a2t B1B2) +iB1B2 (e /Ba— a1/ B1) ]/
' [a?+B:2]}.  (21)

Since coshB>1 and the real parts of M and N are
>0, sind and cosA4 are also >0 and 0<A<=/2.
B has the same sign as m(as/B2—a1/B1). For the
case corresponding to the experimental measure-
ments, a1/B1<Kas/B2<1, hence B and the imaginary
part of M are positive and the imaginary part of
N is negative, providing m0. For normal inci-
dence, m=0= M. An additional restriction on A4
results from the relations sind <|M|<|T:|/Bs,
and when «; is small, |T'1|/B:=B1/B2=c2/c1. In the
experimental system, the velocity ratio c/c1 is
small, certainly less than 0.7, hence 0<A4 <w/4.
This result will be useful later.

Multiplying the above values of M and N by
Ty =as+18,, it can be shown that

G=T.M=a' sin(4—a)+1p’ sin(4+5b),
Hy;=T;N=0o' cos(4d—a)+1i8" cos(A+0b),
o' = [as®+ (a?+B,?) sinh?B ]},
B' = [B2?+ (ax®+B,?) sinh?B ¥,
a=tan"[(Bs/a;) tanhB],
b=tan1[ (as/B;) tanhB].
Then
Gx+Hyy=a'x"+18"y,
x'=xsin(4 —a)+y cos(4 —a),
y' =xsin(4+4+b)+y cos(A+b).
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Substituting these results in (12) and letting
wo=Ke™®!, the refracted particle velocity has the
form

Wy = TKe—a'z’-{-i(wl—-ﬂ’y')'

These equations indicate that o' is the effective
attenuation constant, 8’ the effective phase con-
stant, and w/B’ the effective phase velocity of the
refracted wave ; x’ and v’ are real distances measured
in certain directions such that x’=constant repre-
sents a plane of uniform amplitude and y’=con-
stant represents a plane of uniform phase. In
general, these two sets of planes are not parallel.
Hence, the amplitudes are generally non-uniform
over any wave front; x’ increases in the direction of
the greatest rate of attenuation and ¥’ increases in
the direction of propagation of phase. The angles
between these directions and the direction of in-
creasing y are 4 —a and A+, respectively. Thus
when ¢ is complex there are two angles of refraction,
one for the direction of propagation, A+b, and one
for the direction of greatest attenuation, 4 —a. The
angles a and b are of like sign, with the same sign
as B and therefore the same sign as ay/B:— a1/Bi.
The effective attenuation o’ per unit distance is
greater than the ‘‘characteristic’” attenuation a; and
the velocity of propagation is w/g8’, which is less
than the characteristic velocity of propagation w/gs.

EVALUATION OF THE CONSTANTS OF THE
REFRACTING MEDIUM

In the system of measurements described in the
introduction, the reflection coefficient 7 is measured
experimentally and the preceding theory then leads
to solutions for the constants of the refracting
medium in terms of the known quantities. With
reflections of different orders separated by means
of a pulsing method, the reflection coefficient is
measured by comparing waves reflected from the
interface between the two media with waves re-
flected from the same surface when the refracting
medium is absent. In the latter case, the stress
across the reflecting surface is zero and Eq. (18)
indicates that the reflection coefficient is then equal
to unity. Hence, from Egs. (15) the particle velocity
in the wave reflected from the free boundary is
wy=woe T1mz=ny)  With the refracting medium
present, 7 is different from unity and the particle
velocity in the reflected wave is w, =rw;, for equiva-
lent primary waves in the two cases. Hence the
complex reflection coefficient 7 can be evaluated by
comparing the amplitudes and phases of w, and w;.
If p=mx—ny=distance in the direction of propa-
gation of the reflected waves,

wf=-woe—-l‘1p=Keiwt—-(a1+i61)p= I-wf[ei(wt-ﬁxp)’
Wy =1rWs= !w"ei(wt—ﬁm—ﬂ)'

r=w,/w;=Re~ ¥ where R=|w,/w;|=|r|. (22)

SHEAR WAVES
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R is the relative reduction in amplitude and @ the
phase shift of the reflected waves caused by the
presence of the refracting medium. If 8 is positive,
the phase shift is equivalent to an increase of $8;p
and therefore corresponds either to an increase of
the effective transmission distance p, or to an
increase of frequency, as B8; increases with frequency.

When the reflection coefficient 7, angle of in-
cidence ¢, and characteristic impedance Z; are
known, the value of the ‘‘refracted wave impedance”
NZ, can be calculated by means of Egs. (19) and
(22):

NZy=Zm[(1—r)/(147)]=Zng, (23)
where
g=Q1=r)/(1+7)
=(1—R2+142R sin8)/(1+ R?*+ 2R cos#b)
=[(14+R?>—2R cos)/(1+ R?*+ 2R cosf) ]}
Xexp[ tan~!(2R sin6/(1 —R?))7]. (24)

The value of g corresponding to a given complex
value of 7 can also be derived in other ways. Let the
amplitude ratio in nepers be denoted by

L=log.|w;/w.| = —log.R.
Then

r=Re #=¢g L1

g=tanh[ (L+16)/2]=1< tan[ (6—4L)/27].

Thus ¢ can be evaluated by means of Eqgs. (24) or
by means of charts of complex hyperbolic or cir-
cular tangents, such as Kennelly’s charts.®

If the densities of the two media are known,
besides the values of 7, ¢, and Z;, separate solu-
tions for Z, and N and the other constants of the
system can be derived by the following method,
based on preliminary evaluation of sin2y and cos2y
from the known data. From Egs. (5), (16), and
(23):

m=sing, n=cose, 2mn=sine;
M=siny=mI'1/Te=mkZ,/Z,,

where k= p1/ps;

N=cosy=qnZ,/Zy=qnkl's/T';

2MN =sin2y = 2mnkq =gk sin2¢. (25)

Except for an ambiguity of sign, the value of cos2y
is then given by =(1—sin?22¢)}. The sign can be
determined with the aid of the formula,

cos2y = cos24 cosh2B —1 sin24 sinh2B.

It was shown previously that in the experimental
system, 0<A <x/4 and B>0. Hence the real part
of cos2y is >0 and the imaginary part is <0.

The different steps involved in the solutions can

s A. E. Kennelly, Chart Atlas of Complex Hyperbolic and
Circular Functions (Harvard University Press, Cambridge,
1914).
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now be summarized as follows:
g=(1—n/(1+7),
sin2y = gk sin2¢.
If >0:
cos2y = [1—sin22y |},
real part>0, imaginary part<O0;
M=sing=[(1/2)(1 —cos2y) 1},
real part >0, imaginary part >0;
N =cosy=[(1/2)(1+cos2y) ]},
real part >0, imaginary part <0.

If =0, ¢y=0, M=0, and N=1. The characteristic
impedance and propagation constant of the re-
fracting medium can now be evaluated by means of
the alternative formulas:

Z2=Z1M/mk=Z1nq/N=iwp2/I‘2,
I‘2=I‘1m/M=I‘1N/nkq='iwp2/Z2.

The ‘“‘characteristic’’ attenuation constant is the
real part of Ty=as+iB,, the ‘‘characteristic”
velocity of propagation is w/B., and the viscoelastic
admittance Y, and impedance {; have the values
Y,=T3/Z, and {;=2Z,/T,. Separating these into
their real and imaginary parts leads to the values
of the effective viscosities and effective elastic
parameters defined by Egs. (2). For most viscous
liquids, the ‘‘parallel” viscosity 7’ and stiffness u/,
and their reciprocals » and s, will probably be
approximately independent of frequency in a fairly
wide frequency range; this will not be true of the
“series’’ viscosity g and stiffness u.

Measurements have been made on a number
of viscous liquids covering a large range of vis-
cosities. In each case, |sin2¢/| was small relative
to unity, and therefore some simple approxima-
tions could be used in Egs. (26) and (27). With the
rules given previously to determine the signs, it
follows that when |sin2¢|<1:

cos2y=[1—sin2¢y ]} =1—(1/2) sin®2¢— - - -,
N =cosy=[1/2(14cos2y) ]}
=1—(1/8) sin?2¢— - - -,
M =siny = (sin2¢)/(2N) =(1/2) sin2¢+ - - -.

For all of the preliminary measurements, the
values of |sin2y| did not exceed 0.2. Hence, N
differed from unity by less than two percent. In
such cases, Eqgs. (27) are very nearly equivalent to
the approximations

Zy=Zmg=[(1—r)/(1+1)]Z cose,
Iy =T1/nkg=[ps/p1][T1/cose][(1+7)/(1—7)]

These approximations will probably be sufficiently
accurate for most of the materials likely to be

r=|w./ws|e ¥, k=p1/pa;

(26)

(27)

(28)
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investigated by the oblique incidence method. If the
factors cosy and 1/cose are omitted in Egs. (28),
these equations have the same forms as the rigorous
solutions for normal incidence, but the reflection
coefficient 7 will, of course, have different values for
oblique and normal incidence.

APPENDIX

In the theory of refraction derived in this paper,
it is assumed that the refracting medium has
the larger attenuation per wave-length, in order
that the assumed solution for the refracted wave
may have appropriate directions of attenuation
and propagation of phase. This restriction is satis-
fied in the experimental system which has been
described, as the attenuation in the fused quartz is
practically negligible. However, the necessity for
the restriction indicates that the equations which
have been given do not represent a complete solu-
tion for all cases and a question arises concerning
the conditions under which the assumed solution is
sufficiently accurate. The distinction between the
different cases can be explained by the existence
of diverging waves which are unimportant in some
cases but not in others. In order to derive a com-
plete solution for all cases, it would be necessary to
take account of the nature of the source and some
associated features of other boundary conditions
which were not mentioned previously.

The primary wave represented by the first Eq.
(15) can be regarded as generated by motion of a
boundary of the first medium occupying part or all
of a semi-infinite plane mx+ny= C=constant,
which meets the boundary y=0 at x=x,=C/m. If
the entire semi-infinite plane is assumed to have a
suitable forced motion, the boundary conditions
specified previously apply only to the part of the
plane y=0 for which x >xo. The second medium
must then have an additional boundary where
other conditions apply; this may be the rest of the
plane y=0, or it may be some other boundary—for
example, the plane x =x,. In some cases it may be
permissible to ignore the additional boundary con-
ditions, but this will not always be true. If the
source is assumed to occupy the entire semi-infinite
plane mx+ny=_C, there will be additional com-
plications caused by secondary reflections at the
source.

Under certain conditions the problem will be
simplified if it is assumed that only part of the
plane mx+ny=C is driven, so that the primary dis-
turbance consists of a beam in which the wave
fronts are essentially plane, but are of finite width
in the direction perpendicular to the z axis. This
neglects the effects of divergence at the sides of the
beam, which is permissible as regards the primary
beam if the width of the driving surface is suffi-
ciently large relative to the wave-length. Then in
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some cases, the reflected and refracted disturbances
may also consist principally of non-divergent beams,
in which the wave fronts are essentially plane. This
will tend to be the case if the attenuation is small
in the first medium, or in both media, the latter case
being analogous to a well-known case of optical
reflection and refraction. The solutions for such
cases can be represented with sufficient accuracy by
Eqgs. (15), within the limits of the respective beams.
However, a fundamentally different situation may
occur if the attenuation in the first medium is rela-
tively large. If the primary wave is represented by
the first Eq. (15), within a limited beam, there will
be a restricted part of the y=0 interface, say the
region x,<x <xs where the primary particle
velocity is
-woe—I‘:mz=wOe—(a1+iﬂl)z sing

This is proportional to the real function e-«1=sine
and if a;sing is large enough, the forced motion
of the interface in the vicinity of x =x, will have the
predominant effect, resulting in diverging secondary
disturbances in both media, with wave fronts which
tend to be cylindrical. Furthermore, if the charac-
teristic attenuation of the second medium is small,
then in the vicinity of the plane y=0 at sufficient
distance from x=x, the diverging disturbance in
the second medium will tend to have a greater in-
tensity than the primary intensity at nearby points
on the other side of the interface. Hence, in such a
region, the resultant direction of propagation in the
second medium will have a component toward the
interface instead of away from it. This direction of
propagation cannot apply throughout the second
medium, of course, especially near x=x,, but in a
limited region, the refracted disturbance may cor-
respond approximately to Egs. (12) and (13), with
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positive a, and negative 8,. The region in which
this situation exists will become larger as the
distance between %, and x; increases, but x, cannot
be assumed to approach — «, as the amplitudes
would then be infinite at x=— «. To derive a
general rigorous solution it would be necessary to
modify the boundary conditions, taking into
account the fact that the primary wave function
does not apply to all values of x. The rigorous
solution would be very complicated at best.

Equations (14) indicate that the criteria which
determine whether the divergent effects are im-
portant or not are the angle of incidence and the
attenuations per wave-length in the two media.
The equation can be expressed in the form

ayBy= alﬂl(mc2—5in2§0)v

where
met= asfs/cifr= (az/a1)(€1/¢2) = (@2/N2) / (r/\1).

¢ and ¢y denote the characteristic velocities of
propagation in the two media. If the second medium
has the larger attenuation per wave-length, m2>1
and «,8, >0 for all angles of incidence. For trans-
mission in the reverse direction, the second medium
has the smaller attenuation per wave-length,
m.? <1, and «,B8, is positive or negative according
as the angle of incidence is less than or greater than
the critical angle ¢.=sin"'m.. It seems probable
that the solutions derived in this memorandum will
be reasonably accurate whenever m. is large
relative to sin?p, which will be true for all angles of
incidence if m.? is large relative to unity. As m.?
and sin?p approach equality, the formulas become
inaccurate as a result of the increasing importance
of the divergent effects.



