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In cz-decay, after the particle has been emitted, the
asymmetrical electric field of the residual nucleus can
cause the a-particle to alter its total energy in conjunction
with a change in the state of the nucleus. Since the ability
of a particle to penetrate the potential barrier increases
rapidly with its energy, the number of particles of each
possible energy finally escaping will not be in accord with
the decay constants predicted by the Geiger-Nuttall law.

It is found that the e8ect is not important (a quanti-
tative estimate is given), except in the case where the

difference between the energies of the two states is less
than about 500 kev.

The investigation allows a theoretical study of the
experiments in which W. Y. Chang found anomalous fine
structure in the a-spectra of Po and Ra. It is found that
very improbable assumptions are required to reconcile
these experimental results with the theory presented here,
and we have been unable to see how any additional eGects
connected with the nucleus could alter this conclusion.

I. INTRODUCTION

HE existence of groups of low energy
n-particles in the decay spectra of po-

lonium' and radium' has been reported by
Chang. Although these groups have weak in-

tensity compared with the main line in each case,
their strength is greater than that shown on the
Geiger-Nuttall curve by factors up to 10' in the
case of Po and 104 for Ra. This divergence
cannot be accounted for within the framework
of the standard theory of O.-radioactivity on the
ground of non-zero angular momenta of the
emitted particles, since improbably high nuclear
spins would be involved. "A number of proposed
explanations of the phenomenon are listed in
Chang's papers. Some of these are concerned
with possible mechanisms within the nucleus,
but one theory which is discussed at some length
in this second paper seems fairly probable and
can be treated mathematically without intro-
ducing any speculation about the exact nature
of nuclear forces, other than that they are of
short range. This explanation supposes that after
the e-particle has been emitted it can still
interact with the residual nucleus and thus, by
altering the nuclear state, change its own energy.
Since the ease with which a charged particle can
penetrate the potential barrier increases very
rapidly with the energy of the particle, changes
of this energy during the flight of the O.-particle
will clearly have some efFect on the relative

' W. Y. Chang, Phys. Rev. 69, 60 (j.946).' W. Y. Chang, Phys. Rev. 'l0, 632 (1946).

probabilities of its emission with the various
possible energies.

After the a-particle has left the region where
nuclear forces act (i.e. , the nucleus), the most
important mechanism which would produce such
an interaction is the force acting on the particle
due to the asymmetry of the motion of electric
charges in the residual nucleus. It is the details
of such a process that are studied here. * (Brems-
strahlung has been shown to be unimportant by
Dancoff. ')

There are two cases to be considered. We
assume always that the parent nucleus is in its
ground state. In the normal case, in the absence
of the Coulomb barrier, the probabilities of decay
to the various states of the product nucleus are
of the same order because the energy of the
a-particle is considerably greater than the energy
differences between nuclear states. However,
the energy of the 0|-particle has such a great
efFect on the penetrability of the Coulomb po-
tential barrier that the most probable process is
the emergence of the particle with its greatest
possible energy, leaving the daughter nucleus in
its ground state. If we now take into account the
interaction mentioned above, the high energy
a-particle, after penetrating part of the barrier,
can excite the nucleus to a higher state and lose
energy itself, 6nally appearing as a low energy
particle. This appears to be the type of process

~ This possibility was first suggested to the author by
Professor Peierls, who in turn attributes it to a remark
made some years ago by Professor Gamow.

'S. M. Dancoff, Metallurgical Project Report, Short
Range A/phas in Natural Radiom6vity.
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envisaged by Chang in his second paper; its
probability would have to be greater than that
of direct decay to the corresponding excited
states. Such a process should occur in the decay
of all O.-emitters; hence, all. should have a low

energy group for each excited state of the residual
nucleus. However, we shall see that the eHect is
not, in general, great enough to be distinguished
from the direct decay, and is certainly not
sufFicient to account for the lines observed by
Chang.

The second case is one in which, for some
reason connected with nuclear structure, the
direct decay to the ground state of the daughter
nucleus is forbidden. The nucleus is left in an
excited state, and the n-particle begins its career
with the corresponding low energy. However,
because of the interaction, the nucleus can now
fall to its ground state, imparting the extra
energy to the O.-particle instead of emitting a
p-ray. This process will also clearly afkct the
relative probabilities of emission. Kith our
present knowledge of the constitution of heavy
nuclei, it does not seem possible to assess with
any certainty the likelihood of the ground state
transition being forbidden. It is not forbidden

by any of the usual selection rules, such as
angular momentum or parity, because these
would make equally improbable the transition
after emission. Nevertheless the "accidental"
vanishing of a usually appreciable factor might
make the direct transition improbable. However,
we shall see in any case that this process is also
incapable of explaining Chang's results.

Indeed, we shall see that there appear to be
considerable difhculties attached to any theo-
retical explanation of Chang's spectra, and the
indications are that, whatever the reason for the
results, it is not to be found in an efkct associated
with the polonium or radium nuclei. * In this
connection we may also mention that Zajac,
Broda, and Feather4 have re-investigated the
y-radiation from polonium and have found no
p-rays to correspond to the levels suggested by
Chang.

= 2e'P Q (rP/r~+') (2/2k+ i) &Pk(cosO';), (2.2)
i k 1

where the sum g; is over all the protons in the
product nucleus, 0; is the angle between r and
r;, and I'I, is a normalized Legendre function.
The form of U for r&ro is also immaterial to
our discussion.

The states of the residual nucleus can then be
specihed by a complete set of normalized or-
thogonal eigenfunctions u (g), and the total
wave function + can be expanded as a series in
these functions.

(Hg Z&~&)u (g) =0, — (2.3a)

II. GENERAL THEORY

To describe the system formed by the +-
particle and the nucleons which comprise the
residual nucleus and to allow for the electrical
interaction mentioned in the introduction, we
employ a many-body wave function, 0, which
satis6es

L
—(h'/2m) Vr'+ V(r) +H(

+ U(r, () —E]@(r,g) =0. (2.1)

This is written to describe the relative motion,
with origin at the centroid of the residual
nucleons. m is the reduced mass (practically
that of the a-particle). r is the position vector
of the a-particle, g denotes all the coordinates
(including spin, etc.) of all the other nucleons,
V'r' denotes the Laplacian operator on r, and H~
is the Hamiltonian of the other nucleons. 8 is
the total complex energy, i.e. , its imaginary part
is —~i7it, where ) is the total decay constant.
V(r) is the potential function for the a-particle
which is generally used in theories of O.-decay.
Outside the nucleus V=2Ze'/r, and inside it
forms a well of some shape which we shall not
need to specify —in fact we do not even use the
assumption that it can be expressed as a function
of r inside the nucleus. U is the potential due
to the nuclear charge asymmetry. For r) ro (the
nuclear radius),

U= P(2e')/(~ r —r;[) 2Ze'/r—

*Note added zn proof: This conclusion has also been
indicated by direct experiments on polonium reported by
Dr. W. G. Wadey in Phys. Rev. V4, 1846 (1948).' B. Zajac, E. Broda, and N. Feather, Proc. Phys. Soc.
60, 501 (1948).

f
u u *d)=1, (2.3b)
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[—(li'/2m) V'+ V(r) (8 '—~' —E)$p. (r)
M, and adding the resulting equations

(r) U'„(r), (2.5)
( f " " f ) ( y(„) P )f

7i'
I

d' l„(l„+1)
2m &dr' r' )

where

Then substituting for 4' in (2.1), multiplying by in (2.5), multiplying through by Pi„(cos8) sin8
u„*, and integrating over g, we find Xexp( —i'), integrating over 8 and y for each

, we get

(r) = J~& *(4)&(r ()& (4)d( (2 6)

Also E—E„&~&=E„,the complex energy of the
mth O,-particle group. Ke take it that the states
are enumerated so that each p„(r) corresponds
to a 6xed angular momentum /„ of the 0.-

particle. **Thus

y„(r) =r if„(r) -2 c~

2g g f ~„™/ri+'. (2.11)
~ k=1

The quantities a™are each a sum of quantities
which depend on integrals of the form

Pi M(~)Pi M'(~)P IM—M'1(~)dp
—i

Since these integrals vanish unless l +1„&k) ~l l ~, we —have the general equations

E +t.
P f P g nm/rk+i

m. -o k=al —l. (

&&Pi„~(cos8) exp(lMy). (2.7) d2f„~ 2m l„(l„+1)
We now apply the addition theorem for spherical + '~

dr' ) k' r'
harmonics to the factor Pq(cosO;) in (2.2), put
this result in (2.6), and find for U„(r) the
following expression;

2 Qr i'+'& C-™P(cos8)I"
(+2 P P~'(cos8)i C»,™cosset

a~1 E.

+Si," sinsy ~, (2.8)

where

C o =(2/2~+1) I „~,P ( o 8,.) „d

C ~m g„~ (2m/21i+1)

cos
&(Pi'(cos8,) sy,m dg, (2.10)

sin

and (r;, 8;, s;) are the coordinates of the ith
proton in the nucleus. Then, substituting (2.7)

**This is true if the parent nucleus has zero spin. Po
and Ra are even-even nuclei. If the spin is not zero (2.4)
should be replaced by %=Z~7c 7~gN, where each p 7

has a 6xed angular momentum. However, there will
clearly be a later averaging process over the c ~ which
can a6'ect the results only by an unimportant numeric&
factor.

k80, m=0, 1, (E 1). (2.12)—
X is the total number of nuclear states whose
interactions are considered.

In the particular case when one of / or /„ is

zero, there is only one possible value of k, and
the summation over k on the right-hand side of
(2.12) reduces to just one term.

Al,™consists of terms of the form CI,0",
C&~™,and SI,~""multiplied by constants which

depend on the cia's of (2.7). If we take a sta-
tistical average over 3f of the va, lues of

~
CI,O

~
Ci~™(,and [Siir™~,and call this

~ QI,™(,we

can then treat the problem simply as if M were
zero and write

nm —(2m/7') 2 IQ„nm (2.13)

Equations (2.12) are a set of X simultaneous
linear second-order equations for the functions f
There are thus 2N sets of independent solutions,
a certain linear combination of which describes
our problem. For large r, the equations become
independent, and all the f„'s tend to functions
proportional to exp(&ik„r). However, the solu-

tions must represent particles leaving the nu-

cleus; hence we must take for f„ those solutions
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which tend to a„exp(ik„r), where a„ is a complex
constant. Then the ratios between the quantities
s„~a„~ are the relative intensities of the lines in
the O.-particle spectrum. The condition that all
the f„'s should represent outgoing waves at
infinity has thus provided N of the 2N (complex)
conditions needed to determine the particular
linear combination of solutions which applies to
our problem. The remaining N conditions depend
on the nucleus.

The values of the f„'s at ro give the relative
probabilities of an e-particle of each energy F„
being at the edge of the nucleus, i.e. , the relative
probabilities of decay if there were no potential
barrier. The other conditions could be X homo-
geneous equations involving these functions; to
determine these would require extensive knowl-
edge of intranuclear behavior. However, we shall
use our N conditions at infinity, start with the
functions f =a„exp(ik„r), and integrate the
equations inwards. Then the f„'s at ro appear
as functions of the a„'s; if one set is known the
other can be determined. Ke shall find that a
good deal can be discovered without very exact
knowledge of the f„(ro).

Strictly speaking, of course, our problem is
one with given boundary conditions in which we
must find the eigenvalues E„.These eigenvalues
are complex; the real part is the energy of the
escaping particIe and the imaginary part is
proportional to the decay constant. Thus the
eigenvalues are usually experimentally known,
and it is simpler to discuss the problem as above,
using this knowledge.

We have mentioned that f„(ra) appear as
functions of a„'s. So, of course, do df„/dr at r = r, .

If we assume all f and df„/dr given as initial
conditions at r0, we can integrate outwards from
r0 to infinity and find the a„'s. %'e might there-
fore attempt to solve the problem by taking
"reasonable" initial values, such as the presence
originally of only the high energy particles (i.e. ,

fo(ro) = 1, all other f„(ro) =0), and then applying
perturbation theory. There are two objections
to this procedure. Firstly, the initial values must
represent the physical fact that only outgoing
waves are present. Slight errors in these values
would be equivalent to a small admixture of the
solution which at infinity represents an incoming
wave. Inside the potential barrier this solution

grows exponentially as r is increased, and hence
appreciable amounts of outgoing wave might
appear in the solution at large r, for relatively
small initial errors.

In the second place, the perturbation tech-
nique itself turns out to be invalid here. DancofP
has studied this problem by perturbation meth-
ods and has paid particular attention to the case
in which the energy diA'erence between the
interacting states is small ( 500 kev). He found
excitation probabilities greater than unity and
pointed out that while this may indicate that
the eR'ect is appreciable for these energies, it also
means that the perturbation theory is unreliable.
The present author also originally used a per-
turbation theory which required that

~f ~
((~fo(.

Although this condition holds at ro and at
infinity, it was found that at certain intermediate
points ~f ~

was as much as 100 times greater
than ~fo~ in some cases.

We have developed a method for integrating
outward which avoids these difficulties, but it is
more laborious than the inward integration used
in this paper, and is no more reliable (except
perhaps when the differences between the ener-
gies of the states is small).

These functions are the functions which provide
the solution of our problem. Firstly, they have
the correct asymptotic behavior for

f„„a„exp(ik„r), (3.2)

f„y=df„g/dr=0 if jWn, (3.3)

and, therefore, by (3.1), f„ f„Secondly, t.he
X constants a„are still at our disposal and can
be fixed as discussed in the previous section.

III. METHOD OF SOLUTION

Consider that set of iles functions f which
satisfy the X-equations (2.12) with the boundary
conditions that, at r= ~, f, a; xep(ik, )rand
f„=df„/dr=0, if nWj Call t. hese functions f„;
For a fixed j, f; constitute a set of solutions of
(2.12); as j runs through all values from 0 to
X—1, we obtain X linearly independent sets.
We form by a combination of these solutions
another set of solutions f„edfi ndeby

N —1

f„= Q f„,, n=0, 1, (X—1i. (3.1)
j=0
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Consider now the set j. Let E;= —,'mv, ', Then

k;=mv;/k, x=k,r, «;=4Ze/hv, ,

v.;= 1/vi- =k./k~' (3 4)

d'f„;/dx'+ {y„—y„,«„/x —I„(l„+1)/x'}f.,

Since f;; is the only non-zero function of the set
at x= ~, we employ a perturbation method for
integrating inwards. Thus, treating

lf„;l
«

lf;; l

and neglecting f„; on the right-hand side, (2.12)
becomes

v„;(~)= (dv„;/dx)„=0. (3.12)

Using (3.6), (3.11), (3.10), and (3.8) and simpli-
fying, the equation for v„;becomes, if we suppress
the suffixes on v, y, and F,

X„(yx)v"(x) +2'„'(yx)v'(x) =a;F(x)X;(x). (3.13)

The ' denotes diAerentiation with respect to the
argument of the function. This can be written

(d/dx) {X„'(yx)v'(x)} =a;F(x)Xt(x)X„(yx),
&+4

=f~i
k = )4-lg)

B at/xi+1 (3 5) and, therefore,

= F- (x)f~i (3.6)
f

v'(x) = a,X '(yx) ~ F(t)X,(t)X„(yt)dt,

the terms on the right-hand side are, in general,
negligible compared to I,(l;+1)/x', and may be
neglected. (If I;=0, the right-hand side is zero. )
However, the solution to be developed belo~
allows for the elect of the right-hand side to be
estimated if desired.

We define the confiuent hypergeometric func-
tion X„(x) as follows:

d'X./dx'-+ {1—«„/x —I„(l.+1)/x'}X„=O, (3.8)

X„~expi(x+rt„), as x~ ~. (3 9)

The constant it„ is defined in Eq. (4.5).
From (3.7) and (3.2), we see that (except for

the small right-hand side of (3.7))

Here Bp~ =A+'k "'' AI,"' contains in Qp' a
factor of the order of r;~ where r; is a position of
a proton in the nucleus. Now k,w; is of order 1.
Hence BI,"& contains the factor r,~k,~ ' which is
of order r; Even a.fter multiplication by vie'/k-',

this is still small. Also x is always greater than
unity and is about 10 only a short distance from
the nucleus. Thus in the equation satisfied by
f,; itself, vis

d'f, )/dx'+ {1 «;/x I,—(t, +1)—/x'}f, &

2lt

=f~~ 2 B~"/x"+' (3 7)

and

v(x) =a; X„'(yt) F(u) X;(u)f

aJ ~

The lower limits are determined by the boundary
conditions (3.12). Thus the functions f„; and
hence, by (3.1), f„have been found in terms of
certain hypergeometric functions.

If it is desired to take account of the correction
to f,, caused by the non-vanishing of the right-
hand side of (3.7), a similar procedure can be
used giving

X
~

g(Bi,~~/x"+') X '(u)du . (3'.15)

The integral is always a small quantity compared
to unity, for J3I,~& is of the order 10 4 or less and
the remainder of the integral is at most 10.
(The method of evaluation is indicated in the
next section. )

The expression (3.14) can be further simplified
by introducing

(3.10)fn =a~Xi.
(3.16)g.(x) =

~
X.-'(t)dt,

We use this value in the right-hand side of (3.6)
and also with

f„;(x)=v„;(x)X„(y„;x).
where the additive constant is to have a con-

(3.11) venient value, to be chosen later Then, inte-.
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grating (3.14) by parts, we find x. This may also be checked directly. The
exact definition is

XF.,(i)X,(t)X.(p.;~)dh. {3.17)

This equation expressed a formal solution of the
problem. Its usefulness depends on a number of
things. Firstly, we must be satisfied that the
perturbation solution is close to the actual solu-
tion. Secondly, for (3.17) to be valuable, we
must have manageable explicit expressions for
the hypergeometric functions which appear.
Thirdly, since f„;are found approximately, there
is a danger that the sum g; f;(=f„)is such that
the terms largely cancel, leaving only a remainder
of the order of the errors of individual terms.
We must ensure that this is not so.

IV. EVALUATION OF THE SOLUTION

cos'n =x/». (4.3)

Suffixes have been dropped. (The term of X in

exp( —&o) which appears inside the barrier is
quite negligible for the calculation in this paper. )
These equations were developed primarily for
the region where x(a. However, it can be seen
that this restriction is not essential to their
derivation, and the expression (4.1) equally
represents the hypergeometric function for large

' M. A. Preston, Phys. Rev. 71, 865 (1947).

The problem has been formulated in terms of
a complex energy 2 which represents the decay
process. However, in the numerical calculations
which we are about to outline, we ignore the
imaginary part of E. This is justified, since the
imaginary part is so small that it does not have
any appreciable effect on the values of the
functions considered in this section.

The first step in the evaluation of (3.17) is to
obtain an explicit expression for X„(x). This
function depends on a„, which is usually about
50. Thus we want the asymptotic formulae for
large a„. These have been obtained in a number
of papers. We shall use the particular result'
that, when /=0,

X = (cota) & exp(&o), (4 1)

co = »(n —cosa sina), (4.2)
and

X„=C(1/x+-', »„—d/dx) (cotn„) & exp(co. )
C(g K +tann„) (cotn ) exp(a&„). (4.6)

As x~~, tann„—+ —i. Hence, for the correct
infinity behavior, we choose C so that

X.= (1 —2i/». ) '(1+2 tana„/»„)
X (cot&»„)~ exp(~„). (4.7)

Equation (4.6) cannot be used near x=», for
there dX/dx is not equal to the derivative of the
approximate expression for X, which is actually
the first term of a semiconvergent series. ' How-
ever, when x is of the order of a, the centrifugal
term is very small compared with 1 —«/x (except,
of course, in the actual limit), and hence the
solutions are almost independent of l„ in this
region. Thus even when x is near», (4.7) gives
X„with only a slight error, since when 0. ap-
proaches zero, X„behaves, aside from the con-
stant factor, as if l„were zero.

The correcting factor in (4.7) is never very
different from 1, since, at the nuclear radius,
tana„/»„0. 05 and it decreases to zero at the
boundary of the potential barrier; then it be-
comes imaginary and its magnitude changes
from zero to about 0.02 as x goes to infinity.
Thus, in calculating the integrals (3.17) and

' E. J. Whittaker and G. N. Watson, Modern Analysis
(Cambridge University Press, London, 1946), p. 340.' L. Infeld, Phys. Rev. 59, 743 (1941);also see reference
5, Eq. (5.2).

X =exp( ——,'an. )(»w) &

X I'(1+-,'i ) W;;,, g(
—2ix), (4.4)

where W is Whittaker's function. (Compare Eq.
(4.1) with Eqs. (3.18) and (3.2) of reference 5
and the definition of W. ')

Using the known asymptotic expansion for lV
(see reference 6, p. 343), it can be checked that,
for x tending to infinity and» large, both (4.1)
and (4.4) have the same expression, vis. ,

exp(ix ——',i» logx+is) I 1+0(1/x) I,
where

g =i1.= —,'s+-', ».(log»„—1 —log4). (4.5)

Thus when l„=0, we shall use (4.1) for X„.
When l„&0 it is most convenient to employ a

suitable recursion formula to estimate X„.7 For
example, if /„=1,
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TABI.E I. Values of E.
I„, (p 1)=— exp( —(0 0 o)+ oo ooo)(x/$)o

r X10& cm

8.27
9.36

10.0
1 1.5
16.0

I+0

4.1+ 9.6i
3.4+ 10.6i
2.9+11.2i
1.6+12.4i—2.9+15.5i

Ino

0.24
0.26
0.27
0.31
0.38

Iou

5.7
6.0
6.1
6.2
6.3

X(cotn cotp tanno tanpo) &dt, (4.15)

(0—1) = exp((" —0o) —(oj —ohio)) (&/j)"
J~.„

(3.16), the eEect of this term can be represented
by a constant mean value which is not very
different from one.

If l„ is not too much greater than one, con-
siderations very similar to these will still apply.

Now

—cosp; sinp;) } (4.9)

= —,'p„' exp( —20»), (4.10)

d/dx(-,' exp( —2oo)) =exp( —2oi) tana.

Therefore, we may define

g (x) =-',p.' exp( —2oi.), (4.8)

where p' is the mean value factor, almost unity,
which we have just discussed. Then

X (cotu cotP tanao tanPo) &dt. (4.16)

Here we have written 0, &g, P, n for 0„;,oi;, P;, n,
and have denoted by subscript 0 the value of
any quantity when t =x =k;r. These integrals
are to be found by numerical methods. If
B„&E;, I,„as it stands can be evaluated for a
given value of k,r; its integrand is a decreasing
exponential. However, I„, has an increasing
exponential integrand inside the potential barrier,
and in the external regions where it is oscillatory,
the amplitude of the oscillations is of the same
order of magnitude as the value of the integrand
near the end of the barrier. However, the integral
is convergent since, as t~ ~, this amplitude goes
to zero like t &. To evaluate I„; numerically it
is therefore necessary to transform it. This can
be done by the substitution of the complex
variable

where u=2i arc cos}y„j(t/~j)~}. (4.17)
cosp„j p» coscxj pnj (j/Kj) (4.11)

Substituting these explicit forms of g„, X„,X; in

the expression (3.17) for s„j, we find

X }I;;(k)—I;„+(k)}/x'+' (4.13)

where

I +(fi —1) =I +(P —1)

exp(0 Qo+ ~ ~o) (x/—t)&—
X (cota cotP taneo tanP, ) &dt, (4.14)

&'»( i") = »( ) =
o jVi~p~i(co™ocotpo)

Xexp(ojo —Qo) QBp j

X }I.j (k) I„;+(k)}/x'+', —(4.12)

vj„(k„r)= —,'u.pj„(cotao cotpo) &

Xexp(Qo oio) QB—o"j*

It can then be seen that in the n-plane the path
of integration can be taken as the line parallel
to the real axis from u=ipo to u= ~+ipo On.
this path, both real and imaginary parts of the
integrand have a rapidly decreasing exponential
behavior. The numerical work is laborious, but
the results are reliable.

To find the numerical value of I„;+either the
method for I;„or that for I„; can be used.

V. APPLICATION TO POLONIUM

As an example, we apply the considerations
of the previous sections to the case of polonium,
where Chang has reported twelve low energy
radiations. We consider first the simplified case
of a spectrum of two lines —those connected with
the ground state and a typical excited state.
For the latter, we have taken the line labeled ag

by Chang. Thus the energies are Z0 =5.303 and
Z„=ZQ =4.111 Mev. Then, in the notation of
the previous sections, we have, ignoring the
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effect of all states but these two, TABLE II. Parameters in Eqs. (5.2).

fo =foo(kor)+fo (kor), f „=a„X„(k„r),
f„=f„p(k„r)+f„„(k„r), f„o=v„o(kpr) X„(k„r),

fop =aoXo(kor), fp„=vo„(k r)Xo(kpr).

rO X101~ Cm XO

8.27 6.0X 10"
9 36 6.6X10»

10.0 2.0X 10»

$.1X j.0» 4.j, X j.0«
5.1 X 10&6 3.4X 101
1.5 X 10's 3.0 X 10'4

(0.4+1.0i) 10~
(0.3+1.0i) 107
(0.2+ 1.02') 10~

goo B D

We shall study this case on the assumption that
the transition is "dipole, "***that is p=2 and
lo ——0, /„=1. Then Xp ——(cota)&e", where cos'n
= kor/Kp, and a& = Kp(n co—sn sinn). Also X„=I o„
+2 tanP)/(o„—2i) I (cotP) &en, where cos'P =k„r/»„,
Q= rc„(P cosP—sinP). Then we have

v p(kor) = pap& p p p(cotap cotPo) & exp( —(Qo —~o))
XBi"'f I-o (1)—I-o+(1) I /(kor)'

and

vp„(k„r) = —,'a„pp„(cotao cotPp) & exp(Qp —cop)

XBi"'*IIo. (1)—I.o"(1) I /(kor)'.

The values of the integrals I have been calcu-
lated and are shown in Table I. The meaning
factors p„o and po„can be seen to lie between 0.95
and 1.05. We shall replace them by unity. We
also write

Bi"'=Ap' = (2m/k') 2&Qi"' ——(2@'me'/3k') R (5.1)

where R is of the same order as, e.g. ,

Cyo" =
~

pi„*Zr; cos8;pppd(

We then And

fp(rp) =Xp(ap+a„exp(ib)R*B),
f„(r,) =X„(a„exp(ib)+apRD),

where ro is the nuclear radius and ao, a„are real.
The values of the known quantities in Eqs. (5.2)
are shown in Table II. Note that 8 and D,
which represent the eR'ect of the electrostatic
interaction, are not sensitive to the value of the
nuclear radius. Since the e8'ect is an extra-nuclear
one, occurring over distances large compared
with ro, this is a satisfactory result. We may
also note the justihcation of the perturbation
methods. If the perturbation calculation is justi-
fied, it is necessary that

I RDX„
I ((Xp and

IR*BXpI((X . By its definition (5.1) IRI is
certainly less than 10 ", the greatest possible

**~ In p-ray transition dipole and quadrupole eHects are
of approximately equal importance; however, in the long-
range e6'ects considered here we may expect the dipole to
predominate.

distance of a proton from the center of the
nucleus; hence these inequalities hold.

Next, let us consider the eEect of assuming for
co and c„ the values given by Chang. ' Since the
squares of these quantities are proportional to
the respective partial decay constants, we have
a /ap='&X10 '. (Xp=2 8X10 " Xo=5.9X10 '
sec.-'.) Now I&RI &10—', thus
Therefore f =a„exp(i8)X Als. o IR*Ba„I is at
most of the order of ao, but since 10 "is probably
a high value for IRI, the term a„exp(ib)R*B
does not alter fp very much. Hence If„/fpI
='a X /apXp =' 10'. This means that the proba-
bility of decay with energy E„ is much greater
(10') than with energy Ep, in the absence of the

barrier. At 6rst sight, this might appear to be
the explanation of Chang's results; vis. , the
emission of an n-particle with energy Eo is a
forbidden process as compared to the emission
with energy E„, but a transition from 8„ to Z~
takes place outside the nucleus. However, we
shall see that these assumptions are in contra-
diction with the observed absolute intensity of
the e-particles.

By the conservation theorem, we have, for
the general case of N states,

y ir-i
P y„y„*dv= — g(y„*grady

at ~ o 2im~ —p„grad& o) ndo,

where the integrations are over the volume and
surface of a sphere of large radius and @ is
defined by Eq. (2.4). Now the energy is complex
so that PP p * contains a factor exp( —)j,t) and
the rate of charge of the volume integral is
—lI,J'PP„P *dv. This integral can be split into
two parts, one over the region inside the nucleus
and one over the region outside, i.e. ,

g(I pn+I m)

=+I+.
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However, ~p ~

decreases very rapidly outside
the nucleus, so QIp can be neglected. For the
surface integral, since the sphere is large, we
can ust the asymptotic expression for p . The
result is

X=gv„~a ~'/QI, ".

In the case we have been considering where
only two levels are concerned,

X= vpa oo/(I o+I,"), since v„a„'«voao'.

Ke must now consider the integrals I and I,"
which involve the behavior of the wave functions
inside the nucleus. It is reasonable to make these
functions and their derivatives continuous at the
nuclear boundary. We have seen that with
Chang's intensities, ~f„/fp( 10', and we may
also note that f '/f„and fp'/fp are of comparable
magnitude. Thus whate~er the explicit internal
expression of the wave functions, it is clear that
I;"&&I; . Hence, with Chang's relative intensities

X=vpao /I =(vpap /'v c )(v /8' ), (5.4)

when 8," is the internal integral in the standard
theory without interaction. (The function f„
differs from X„, which corresponds to it in the
standard theory of radioactivity, only by the
factor a„.) But since ao»a„, the partial decay
constant X ='(v,c '/vpaoo)X. Hence X =v„/8,"
=X„', where ) „' is the partial decay constant on
the standard theory. Thus, when interaction is
allowed for, the partial decay constant is practi-
cally unchanged from that expected on the
standard theory.

In other words, although we may assume
suitable conditions to obtain the relative intensi-
ties found by Chang, the total decay constant,
which is determined from the partial one by the
ratio voao'/v„a„', is much less than the experi-
mental value. For example, if we take the nuclear
radius 8.3X10 " cm (which on the standard
one-body theory fits the experimental data for
the intense main line' ), we 6nd that if a„/ap
='7)&10 ', then ) ='5X10 '4 sec. ', whereas the
experimental value is 6X10 ' sec. '. Of course
with a larger radius we can increase the value
of X. Taking ro ——11.5)&10 "cm, we find ) =1.5
X10 ' sec. ' and with ra='12. 5X10 " we find
that X is about the observed value. However,

the nuclear radius as a parameter in the one-body
model is always less than 10—"cm and, using the
law r o ——R& &, we would expect about 9 X 10 "
cm for polonium. A radius such as 12.5X10 "
cm would imply a most unusual extension of the
region where nuclear forces hold.

The above arguments are not essentially
altered if we allow for the emission of particles
in more than one low energy state which can
interact with the nucleus and acquire the energy
of the main line. Equations (5.2) are then
replaced by

N —I
fp/xp ap+ ——P a e""R *8,

1

f /x„=aoR„D +a„e' ", m=1, 2, (X—1).

Now as the difference between Eo and E
decreases, D increases and so presumably does
R . However, for m great enough, we have as be-
fore

~
apD R„~&&a, if we use Chang's intensities.

Also 8 decreases with Eo E;hence—
~
a„R *8

remains of the same order as ao or less for all m.
Thus it still follows that

~f /fp ~&&1, at least for
m large enough. Thus we can still reduce (5.3)
to an equation similar to (5.4), vis. ,

N—I
X=voco / P c~ ff

M

where M is the lowest value of m for which

~f /f p
~

&&1 is valid. That is

(N —1

X='voao'
( p a„'v /X '

~

&(voao'/v„a„')X„o,
E~

where n is some value of m&3L Thus, just as
before, X is much less than the experimental
value, unless a large radius is taken.

To summarize, we may say that Chang's
results can be explained with our model only on
the basis of two assumptions: that the direct
transition to the ground state is (more or less)
forbidden and electrostatic interactions occur
after the o.-particle has left the nuclear region
and that the radius of this region must be much
larger (~25 percent) than it is in the case of
other radioactive elements. This latter assump-
tion would involve us in many new difficulties.
It is to be noted that any explanation involving
strictly nuclear behavior does not affect this
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point; it could only alter the ratio (fo/f„) at r~.

Coupled with the inability of Zajac, Broda, and
Feather4 to find y-rays which would confirm
Chang's results, these theoretical arguments
would suggest that the source of the lines
observed by Chang was not in the polonium
nucleus.

VI. GENERAL DISCUSSION

We may consider what the effect of the electro-
static interaction will be in a general case.
Considering again for simplicity the case of only
one level in addition to the ground state, Eqs.
(5.2) can be solved for ao and a„. The result is

ao fo/Xp ——R*Bf„—/X„,
( )u e"=f„/X„DRfo/X—o.

In general the quantities (fo( and [f„[,which as
indicated in Section III determine the proba-
bilities of decay in the absence of the potential
barrier, will be of the same order since Eo —E„ is
small compared with the total energy of the
escaping particle. In (6.1) the terms fo/Xo and

f„/X represent the eRect of the barrier in the
standard theory and the other terms R*Bf„/X„
and RDfo/Xo introduce the corrections due to the
interaction after emission. If we assume ~fo~
= ~f„~ we see that the interaction alters ao by a
fractional amount ~R*BXO/X„~ and alters a„by
the fraction ~RDX /Xo~. To form some idea of
the magnitude of these changes we may consider
the case of polonium for which we have worked
out numerical values, Taking 2=10 ", we shall
obtain upper limits for the effect. Then
~R*BXO/X„~ (10 ' and [RDX„/Xo( (10 '. Since
the decay constants involve a„', these correspond
to changes of certainly less than 2 percent in ) 0

and 20 percent in X . Thus the upper limit of
the effect is a 20 percent change in the decay
constant of the state of lower O.-particle energy.
When it is remembered that the dependence of
X on energy is logarithmic, it will be realized
that even this upper limit does not give a very
large effect. The above calculations are' for
Eo —E„=1.2 Mev.

As Ep —E decreases, the effect of the inter-
action becomes more pronounced. In fact as this

difference gets small it can be confirmed that the
ratio

~

R*BXO/X
(

becomes greater than one (al-
though

~
DRX„/Xo~ probably decreases slightly).

However, when this happens we have clearly
violated a condition for the validity of the
perturbation assumptions implied in the use of
Eq. (3.5). Nevertheless, we are led to suspect
that when the energy difference is of the order
of 500 kev or less the interaction with the
nucleus after emission may appreciably affect
the relative intensities of the two o.-particle
groups, As we have indicated above, it is this
region of energy differences to which Dancoffe
has paid particular attention, and his results
also indicate that the effect is probably fairly
large. In some of the elements which have a fine

structure in the o.-spectrum, the lower energy
n-particles do not obey the Geiger-Nuttall law
very exactly. This has been attributed to a
non-zero value of the angular momentum quan-
tum number l. We now see that if the energy
levels are separated by less than about 500 kev
(e.g. , RaC) the partial decay constants may be
altered by the electrostatic interaction also. It
is not easy to separate these two causes, since
there are at present few independent estimates
of either l or R, but they may have effects of
roughly the same order of magnitude, changing
X„by a factor of about 2 or 3.

We may also consider brieRy the effect when
the ground state transition is accidentally more
or less forbidden, i.e. , ~ fo [ && If„(. Then (6.1)
becomes a exp(ib) f„/X and ao f~/Xo R*-— —
&&Ba„exp(ih). Thus, if ~fo~ is very small a line
may appear with intensity

~
R*Ba„~', which

would be less than that expected for energy E'0.

On the other hand, if ~fol is somewhat larger,
there may be destructive interference making eo
vanish, and what would have been a line with
abnormally low intensity disappears entirely.
There does not appear to be any example of
either of these processes in the present experi-
mental data.

It is a pleasure to record my appreciation of
many stimulating discussions with Professor R.
E. Peierls which have been of the greatest help
in this investigation.


