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Electrical resistivity and Hall measurements have been
made over the temperature range from 87' to 900'K on
pure silicon and on silicon alloys containing from 0.0005
to 1.0 percent boron (P-type impurity) or phosphorus
(n-type impurity). X-rav measurements indicate that both
elements replace silicon in the lattice. It is shown that each
added boron atom contributes one acceptor level, and
it is likely that each added phosphorous contributes a
donor level.

The temperature variation of the concentrations of
carriers, electrons and holes, and of their mobilities, are
determined from the resistivity and Hall data for the dif-
ferent samples. In the intrinsic range, at high tempera-
tures, conductivity results from electrons thermally
excited from the 611ed band to the conduction band. The
energy gap is about 1.12 ev. The product of electron and
hole concentration at any temperature is

n.nq = 7.8X 10~T' exp( —12,900/T).

In the saturation range, which occurs just below the
intrinsic range, the concentrations are independent of tem-
perature. All donors (or acceptors) are ionized and the
concentration of carriers is equal to the net concentration
of significant impurities (P or B).

The energy, Ez, required to ionize an acceptor by exciting
an electron from the filled band, as determined from the
temperature variation of concentration at lower tem-

peratures, decreases with increasing impurity concentration
and vanishes for concentrations above SX10"jcm'. The
value of Eg at high dilution, 0.08 ev, is about what is
expected for a hole moving in a hydrogen-like orbit about
a substitutional B ion. The decrease in Bg with increase
in concentration is attributed to a residual potential
energy of attraction between the holes and impurity ions.
The ionization energy of donors is less than that of
acceptors, probably because conduction electrons have a
smaller effective mass than holes. In samples with large
impurity concentrations the carriers form a degenerate
gas at low temperatures, and the resistivity and Hall
coeScient become independent of temperature.

At high temperatures the mobilities of electrons and
holes approach the values

p. =3.0pq = 15X 10~1 & (cm~/volt sec.}.
These values are determined by lattice scattering and are
independent of impurity concentration. At lower tem-
peratures scattering by both ionized and neutral impurity
centers contribute, and the mobility is largest for the more
pure samples. Impurity scattering increases rapidly with
decrease in temperature and the mobility passes through a
maximum which depends on impurity concentration.
Theories of impurity scattering of Conwell and Weisskopf,
of Johnson and Lark-Horovitz, and of Mott give mobilities
which agree as to order of magnitude with the observed.

I. INTRODUCTION

' ELECTRICAL resistivity and Hall measure-
~ ments have been made over a temperature

range from 87'K to 900'K on a number of silicon
samples to which known amounts of boron and
phosphorus have been added. ' Both enter sub-
stitutionally, boron acting as an acceptor im-

purity and phosphorus as a donor. The data are
analyzed to determine the variation of concen-
tration of current carriers and mobility with
impurities and temperature. The results are
interpreted in terms of existing theories of con-
duction in semiconductors. The analysis is
similar to that applied by Lark-Horovitz and

'A preliminary account of this work was presented by
the authors at the Am. Phys. Soc. meeting in New York,
January, 1948. See Phys. Rev. V'3, 1256A (1948). Earlier
measurements are described by G. L. Pearson and W.
Shockley, Phys. Rev. 7'1, 142A (1947).

Johnson to the conductivity in germanium. ' Our
results are more complete, particularly as regards
the wide range of impurity concentrations, than
previous measurements on silicon made at the
Universities of Pennsylvania' and Purdue. 4

1.1 Enexgy Levels in Si1icon

Silicon is an element of the fourth group of the
periodic table, with the same crystal structure as
diamond. Each silicon atom has four near
neighbors with which it forms covalent bonds in
a tetrahedral configuration. The specific gravity
is about 2.4 and the melting point 1420 C. The

~ K. Lark-Horovitz and V. A. Johnson, Phys. Rev. {i9,
258A (1946).

F. Seitz, The Electrical Conductivity of Silicon and
Germanium (NDRC 14—110, University of Pennsylvania,
November 3, 1942).

4 Unpublished measurements of W. W. Scanlon and
others.
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dielectric constant is about 13. The conductivity
at room temperature depends on the presence of
impurities. It is estimated that ideally pure
silicon would have a resistivity of about 10' ohm
cm.

Considerable progress was made in under-

standing the nature of the significant impurities

by research done during the war in connection
with the development of rectifiers for radar
uses. ' Scaff, Theuerer, and Schumacher' of the
metallurgical group of the Bell Laboratories have
found that elements of the third group, such as
boron and aluminum, give defect or p-type con-
ductivity. Elements from the fifth group, such as
phosphorus, antimony, and arsenic, give excess
or n-type conductivity. Impurities which give
p-type conductivity are called acceptors; those
which give n-type conductivity, donors. We
shall give x-ray evidence that boron and phos-
phorus enter substitutionally into the lattice.
Probably the other significant impurities also

occupy substitutional rather than interstitial
positions.

A substitutional impurity atom from the fifth

group has one more valence electron than is

required to fill the four valence bonds with
neighboring silicon atoms. In its lowest energy
state, this extra electron is weakly bound by the
extra charge on the nucleus of the impurity atom.
The electron moves in a hydrogen-like orbit, '
but the electrostatic attractive force is reduced
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FIG. 1. Schematic energy level diagram for silicon.

~ J. H. Scaff and R. S. Ohl, Bell Sys. Tech. J. 26, 1
(1947). A comprehensive review of the work done during
the war under the NDRC is given by H. C. Torry and
C. A, Whitmer, Crystal Rectifier {McGraw-Hill Book
Company, Inc. , New York, 1948). This book will be re-
ferred to as T-W.

6 J. H. Scaff, H. C. Theuerer, and E. E. Schumacher,
"P-type and E-type silicon and the formation of the
photovoltaic barrier in silicon" (to be published in Trans.
A.I.M.E.) .

~ See N. F. Mott and R. W. Gurney, Electronic Processes
in Ionic Crystals (Oxford University Press, London, 1940),
p. 166, For application to silicon, see T-W, p. 66.

by the dielectric constant, ~, of the crystal. The
eRect is to reduce the binding energy by a factor
K which brings it down to the range of thermal
energies ( 0.08 ev). This means that a large
fraction of the impurity atoms are thermally
ionized at room temperature, and the electrons
thus freed contribute to the conductivity.

A trivalent impurity atom, such as boron, has
one less electron than is required to fill the
valence bonds. ' The position from which the
electron is missing may shift from one valence
bond to another in the crystal by motion of an
electron in the opposite direction. The missing
electron, or hole, behaves in all respects like a
particle with a positive charge equal in magnitude
to the electron charge. It has inertia, momentum,
and energy corresponding to a mass of the same
order as the mass of an electron. Thus one speaks
of the velocity, mobility, and kinetic energy of a
hole moving through the crystal in just the way
one speaks of the corresponding quantities for
excess or conduction electrons. The only essential
difference is in the sign of the mobile charge.

The extra electron required to fill the valence
bonds about the trivalent impurity gives the
atom an effective negative charge, so that it
becomes in effect a negative ion. In its lowest
state, the positive hole will be weakly bound by
the electrostatic field of the negative ion and will

move in a hydrogen-like orbit similar to that of
the excess electron discussed above. The ioniza-
tion energy, that is, the energy required to free
the hole from the negative ion so that it is free
to contribute to the conductivity, is likewise of
the order of thermal energy. At room tempera-
ture the majority of the acceptor impurities will

be dissociated into holes and negative ions.
If sufficient energy is available, an electron

can be removed from a normal valence bond to a
distant place in the crystal. Both the electron so
freed and the place of the missing electron, or
hole, left behind are free to take part in conduc-
tion. The energy required is about j..i2 ev in
silicon. ' Electrons and holes may be so produced
by light quanta of sufticient energy, or by therma1
excitation at high temperatures. In the intrinsic

8S e T-W, p. 65.
'This value, derived from the present experiments,

agrees with earlier values of Seitz (reference 3) and of
G. K. Teal, J. R. Fisher, and A. W. Treptow, J. App.
Phys. 1'V, 879 (1946).
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conductivity range there are equal concentrations
of electrons and holes determined by a balance
between those formed by thermal excitation and
those recombining. The recombination, of course,
corresponds to excess or conduction electrons
dropping back into vacant valence bond posi-
tions. The intrinsic conductivity range occurs at
temperatures so high that the numbers of elec-
trons or holes arising from impurities is small
compared with the total number present.

The energy relations are illustrated in the
energy level diagram" shown schematically in

Fig. 1. The diagram shows the allowed energy
levels for the valence electrons in a silicon
crystal. There is a continuous band of levels, the
filled band, normally occupied by the electrons
in valence bonds, an energy gap of 1.12 ev in
which there are no levels of the ideal crystal, and
then another continuous band of levels, the con-
duction band, normally unoccupied. There are
just suScient levels in the filled band to accom-
modate the four valence electrons per atom. The
acceptor impurity levels lie just above the filled
band and the donor levels just below the con-
duction band. The donors are normally neutral,
but become positively charged when ionized by
excitation of an electron to the conduction band.
The acceptors are normally neutral, but become
negatively charged when occupied by electrons
excited from the filled band.

1.2 Preparation of S~mples

The silicon used in these studies was obtained
from E. I. du Pont de Nemours Company. It is
in the form of long needles and was prepared from
silicon tetrachloride by pyrolytic reduction with
zinc. " The purity is very high —about 99.97
percent with some variation between lots as
shown by spectroscopic analysis. The subsequent
forming with the addition of known amounts of
boron or phosphorus was done by J. H. ScaR
and H. C. Theuerer of the metallurgical group
of the Bell Telephone Laboratories. The steps
which hm'e been described in detail' include (1)
careful determination of the weights of the raw
materIals, (2) melting the charge in a silica

'0 Cf. T-W, p. 49. A quantum-mechanical calculation of
the energy bands in silicon is given by J. F. Mullaney,
Phys. Rev. 66, 326 (1944).

"The method used by du Pont for purifying silicon is
described in T-%, p. 301.

TABI.E I. Composition of silicon alloys.

Sample

1
7

3
4
5
6
7
8
A
8
C
D

Solute

Boron
Boron
Boron
Boron
Boron
Boron
Boron
Phosphorus
Phosphorus
Phosphorus
Phosphorus

IV

Weight Atomic
percent percent

of of
solute solute

0.0
0.0005
0.001
0.002
0.005
0.01
0.1
1.0
0.001
0.0057
0.1
1.0

0.0
0.0013
0.0026
0.0052
0.013
0.026
0.26
2.6
0.00091
0.0072
0.091
0.91

VI

Atoms of Carriers/cc
solute of melt in
per cc saturation

of melt range

0.0
6.7 X10'7
1.3 &(10»
2.7 &(10»
6.7 X10»
1.3 +10»
1.3 )(10&0
1.3 X10»
4.7 )(10»
2.7 X10»
4.7 X10»
4.7 X10~0

8.0 X10+
6.0 X1017
1.3 X10»
2.5 X10»
5.3 )(10«
1.4 X10»
1.2 X10»
4 8 X10~0
1.05 X10»
1.25 X10»
1.7 X1019
2.6 X10~o

VII
Car-
riers/
atoms

of
solute

a
0.90
1.00
0.93
0.79
1.08
0.93
0.37
0.22
0.46
0.36
0.55

crucible by means of an induction furnace in an
atmosphere of hehum, and (3) solidifying into an
ingot by a precisely controlled temperature cycle.

The ingot was cut into thin slabs approxi-
mately 2 cmXO. S cmX0. 1 cm with a diamond
wheel and the surfaces smoothed by lapping with
600 mesh carborundum and water. Metallic elec-
trodes were applied by means of the electrolytic
deposition of rhodium. The entire surface was
usually plated and, after protecting the desired
sections, the excess was removed with an air
blast containing 180-mesh carborundum grains.
By this process non-rectifying electrodes as small
as 0.02 cm in diameter were prepared which
remained intact over the entire temperature
range from 87 to 900 K in an atmosphere of air.

Using the methods described above, samples
having the compositions listed in columns 1—5 of
Table I were prepared.

5.432 X 'IO

I

V

z 5.428
I-
z
~~ 5.424
z0
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V 5.420

SILICON- BORON~»

5 ~ 416
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

ATOMIC PERCENT OF SOLUTE

FIG. 2. Lat tice constan ts of silicon-phosphorus and
silicon-boron alloys at 25'C as determined from x-ray
data.

1.3 Lattice Spacings of Silicon Alloys Conta3~ing
Boron and Phosphorus

In order to determine whether boron and
phosphorus enter the silicon lattice in a sub-
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FK'. 3. Circuit diagram of equipment for measuring
resistivities and Hall coefficients at different temperatures.

stitutional or an interstitial manner, a study was
made of the lattice spacing of these alloys as a
function of the impurity content. Since the
atomic radii of silicon, boron, and phosphorus
are 1.17, 0.89, and 1.10X10 ' cm, respectively,
it is predicted by Vegard's law that if the process
is by substitution the addition of boron should
shrink the lattice appreciably, while phosphorus
should produce only a slight shrinkage. If these
atoms enter the interstices betmeen the silicon
atoms, however, both should expand the lattice
with phosphorus having a greater effect.

The lattice spacing measurements, performed
by E. S. Greiner of the metallurgical group of the
Bell Telephone Laboratories, were obtained by
back reRection x-ray diR'raction from powdered
samples containing varying amounts of boron or
phosphorus. The results, given in Fig. 2, show
that both impurities contract the silicon lattice
and that boron has the greater eR'ect. Micro-
scopic examination of alloys containing more
than 0.5 percent boron by weight showed that a

second phase appears and deposits on crystal
grain boundaries.

The results of this study indicate, therefore,
that for small concentrations a substitutional
solid solution of either boron or phosphorus is
formed in silicon. That each added boron atom
contributes an acceptor level is shown by a com-
parison of columns V and VI of Table I. There
is evidence that not all the phosphorus added
goes into solution, which accounts for smaller
numbers of carriers for these samples.

II. EXPERIMENTAL PROCEDURE

The fundamental experimental data obtained
in this study are the resistivity and Hall voltage
as a function of temperature for each of the
several alloy samples. Resistivity was measured
by the potential probe method, Hall e8'ect from
the transverse voltage in a magnetic field, and
temperature by the thermoelectric voltage of a
Chromel-Alumel thermocouple.

A Leeds and Northrup Type K potentiometer
in conjunction mith a selector switch was used to
measure all of these d.c. voltages. A rotating coil
driven by a synchronous motor was used for
measuring the magnetic field strengths. The indi-
cating instrument for the a.c. measurement was
a teston model 622 voltmeter, and the system
was calibrated with a permanent magnet whose
field strength had been measured at the National
Bureau of Standards. The desired temperatures
were obtained by heating coils operating either
in a thermos bottle containing liquid nitrogen for
the low values, or in an electrically heated
ceramic tube for the high values. Temperature
gradients were avoided by placing the samples in
good thermal contact with a non-magnetic metal
block.

Figure 3 is a circuit diagram of the entire
measuring circuit. The electrode arrangement of
the sample is as shomn, with contact being made
to the rhodium by platinum-rhodium springs
which held their tensile strength over the entire
temperature range. The current through the
sample is determined from the voltage drop
across the fixed resistor Ri. The sample current,
as well as the magnetic field polarity, may be
reversed by switches 52 and 54. Measurements
for both directions of these quantities are re-
quired to eliminate spurious thermal e6ects.
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After showing the Hall eHect to be a linear
function of magnetic 6eld strength over a wide
range, a field strength of 4000 gauss was chosen
for most of the measurements. The current
through the sample was regulated to give the
most advantageous voltage readings and was
usually between 0.1 and 10 milliamperes. At low
temperatures this current was reduced to avoid
Joule heating and at high temperatures, espe-
cially in the high impurity samples, it was
increased in order to raise the Hall voltage to a
detectable level. It was the reduction of the Hall
voltage at high temperatures which limited our
Hall measurements to temperatures below 8000K
for the high purity silicon and to still lower
temperatures for the samples to which large
amounts of boron or phosphorus had been added.
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Fic'. 4A. Resistivity of silicon-boron alloys as a function
of the inverse absolute temperature. Compositions are
given in Table I.

GI. EXPEMMENTAL RESULTS

The resistivities of the silicon-boron alloys are
shown as a function of temperature in Fig. 4A.
Curve 1 is for the high purity du Pont silicon to
which no impurity was deliberately added and
curves 2—8 are for silicon to which the specihed
amounts of boron (expressed in weight percents)
had been introduced in the melt. The tempera-
ture range is from 700 C to —190'C, and the
resistivity limits are from 2)&10' ohm cm for the
high purity silicon to 2 & 10 4 ohm cm for the
one percent boron alloy.

At high temperatures the resistivities all fall
on the same straight line. This is the intrinsic
region in which there are approximately equal
concentrations of electrons and holes. At lower
temperatures the resistivity depends on the im-

purity content, increasing amounts of boron
giving lower resistivity. Since sample No. 1 does
not follow the intrinsic line at the lower tem-
peratures, it is concluded that residual impurity
atoms of unknown elements are present in the
melt. The rapid decrease of resistivity with tem-
perature in the intrinsic range results from the
increase in concentration of electrons and holes
which arise from thermal excitation of electrons
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I

from the filled to the conduction band. Theory
indicates (see Section 5.3) that the resistivity p

expressed in ohm cm should vary as

p g ~Egt2I. T

where A is a constant, k is Boltzman's constant
(8.69X10 ' ev/deg. ), r is the temperature in

degrees Kelvin, and I' g is the separation in

electron volts between the top of the 611ed band
and the bottom of the conduction band. From a
fitting of the experimental data, we conclude
that the value of Eg for silicon is 1.12 electron
volts and the value of the constant A is 1.1 &10 4

ohm cm.
The resistivity of the silicon-phosphorus alloys

is shown as a function of temperature fn Fig. 4B.
These curves have the same general shape as
those for the silicon-boron series and the intrinsic
line is identical.

Hall voltages of the various samples were
measured as a function of temperature and the
Hall coefficient R, in cm'/coulomb, calculated
from the relation

R=10 ' VII/III,

where V~ is the measured Hall voltage in volts,
t the thickness of the sample in cm, II the mag-
netic field in gauss, and I the current in am-
peres. "As stated above, the measurements were
taken with the field first in one direction and then
in the other to eliminate false thermoelectric
effects. The sign of the Hall coefFicient was deter-
mined from the polarities of I, H, and VII.
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FiG. 5A. Hall coefficient in silicon-boron alloys as a
function of the inverse absolute temperature. Compositions
are given in Table I.

FIG. 5B. Hall coefficient in silicon-phosphorus alloys as
a function of the inverse absolute temperature. Composi-
tions are given in Table I.

'2 The length to width ratio of our samples was around 4.
This is sufficient to eliminate the errors due to short cir-
cuiting of the current electrodes as described by I. Isen-
berg, B. R. Russell, and R. F. Greene, Phys. Rev. V4,
1255(A) (1948).
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Figure 5A is a plot of Hall coefFicient as a
function of temperature for the boron-silicon
alloys. In each case the sign of the coeScient was
positive in the low temperature or impurity con-
duction region, which indicates that boron is an
acceptor impurity in silicon. For the purer
samples Xo. 1 and No. 2 the coeScient reduced
to zero and went negative in the intrinsic range.
This negative sign in the region where electrons
and holes are present in comparable numbers
arises from the fact, as will be discussed in more
detail in a following section, that electrons have
a greater mobility than the holes.

Figure 58 is a plot of Hall coefficient as a
function of temperature for the silicon-phos-
phorus alloys. The sign of the coefficient is
negative at all temperatures, indicating that
phosphorus is a donor impurity in silicon.

IV. CONCENTRATIONS AND NOBILITIES

Having measured the resistivity and Hall
coeScient as a function of temperature for the
two silicon alloy systems, it is now possible to
calculate the following additional quantities as
a function of temperature for either holes or
electrons: (1) the number n per cm', (2) the
mobility p in cm'/volt-sec. , and (3) the mean
free path / in cm. In Section 4.1 we deal only
with non-degenerate cases, i.e. , low densities of
holes or electrons at medium and high tem-
peratures. The degenerate cases are considered
in Section 4.2.

The following notation is used:

e =magnitude of electronic charge = 1.6X 10 " cou-
lomb.

n. =concentration of conduction electrons (no. /cm').
nI, =concentration of holes (no. /cm').

%~=concentration of donor impurities (no. /cm').
Kg=concentration of acceptor impurities (no. /cm'}.

y, =mobility of conduction electrons (cm~ /volt sec.).
p, ~ =mobility of holes (cm'/volt sec.).

c=p,./py, = ratio of mobilities.
o =conductivity {ohm ' cm '}.
p = 1/cr = resistivity (ohms cm).

R =Hall coefficient (cm'/coulomb).
l.=mean free path of electrons (cm).
le, =mean free path of holes (cm).

Bc=energy gap between filled and conduction bands.
ED —energy difference between donor level and con-

duction band.
By=energy difference between acceptor level and con-

duction band.
an=mass of electron in free space=9.03&(10 ~8 grams.

500
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E3
W
O
Z 50

O

20

IP17 Ip I 8

n/cM3
5 10'9

Fio, 6. Degeneracy temperature in degrees absolute as a
function of electron density.

0' =n8p, ,

R = +3tr/8en = &7.4 X 10"/n

n = a7.4X10ts/R

y = & (8/3tr) oR = &0.85oR

(3)

(4)

(3)

(6)

The positive signs apply to p-type and the nega-
tive to n-type conductivity.

(b) Intrinsic range:
0' =ne&pe+ nI1,&ph

R = —(3tr/8e) (I n.c' ns)/[n, c+n—s)') (8)

If n, =n~=n,
o =«(~.+~a), (9)
R = —(3tr/8ne) ([c 1)/Lc+—1)), (10)
n = —7.4 X 10"(Lc—1)/Lc+ 1))/R. (11)

"For methods of deriving the equations, see, for ex-
ample, F. Seitz, The Modern Theory of Solids (McGraw-
Hill Book Company, Inc. , New York, 1940), Chapter IV.
Cf. T-W, pp. 53-55.

m. =effective mass of conduction electrons (grams}.
my=effective mass of holes (grams).

k = Boltzman's constant =1.37)& 10 "erg/degree.
T=absolute temperature ('K}.
h = Planck's constant =6.55 &(10 "erg-sec.

ne=
I Ea ¹&I=saturat—ion concentration of holes or

electrons {no./cm').
~ =dielectric constant.

E0= (h'/8m} (3n/m. ) & =kinetic energy of electron (or
hole) at the surface of the Fermi distribution.

4.1. Non-Degenerate Electron Gas

The basic equations required for the calcula-
tion of the mobility and concentration from
measurements of the conductivity and Hall coef-
ficient follow:"

(a) Impurity range:
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FIG. 78. Number of charge carriers per unit volume in
silicon-phosphorus alloys as a function of the inverse
absolute temperature. Compositions are given in Table I.
To is the degeneracy temperature.

FIG. 7A. Number of charge carriers per unit volume in
silicon-boron alloys as a function of the inverse absolute
temperature. Compositions are given in Table I. T0 is the
degeneracy temperature.

The numerical factor 3s/8 which occurs in the
expressions for R, p, and n is based on the
assumption that the mean free path is inde-
pendent of velocity. While this is true for scat-
tering by lattice vibrations (thermal scattering),
it is not true for scattering by impurities, which
predominates at low temperatures. A diferent
numerical factor should be used in the impurity
scattering range'4 and intermediate values used
when both lattice and impurity scattering are

"If the mean free path varies with electron velocity as
e~, the factor is 3m &F{p+3/2)/4(j.'(p/2+2))', which reduces
to 3x/8 for p=0. For scattering by impurity ions, p 4
and the factor is 1.93 in place of f.18.

important. For simplicity, we neglect these vari-
ations and use the factor 3s/8 throughout.

The equation relating the moboility p, , the
mean free path l, and the effective mass m, is

p=(4/3)eL(2sm, kT) &(e.s.u.). (12)

If m, =m, the mass of an electron in free space,

p = 2.43 X 10'LT:(c1T1/volt-sec. ),
L=4.12X10 "pT& (cm).

(13)

(14)

Equations (12), (13), and (14) may be applied to
either electron or hole mobility, provided that
the proper effective mass is used.

4.2. Degenerate Electron Gas

At low temperatures and high densities the
electron gas becomes degenerate, i.e. , Fermi-
Dirac rather than Boltzmann statistics must be
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0 = julep,

R= &1/en = &6.25X10'"/n,

(16)

(17)

used. The limiting temperature, To, is that for
which the energy of an electron (or hole) cor-
responding to the energy at the surface of the
Fermi distribution is equal to kTO. This gives

To=(k'/8k')(3/7r)In1=4 2X. 10 "nI .(15)

.Y plot of To as a function of the concentration,
n, is given in Fig. 6. For T&&TO, the electron gas
is non-degenerate, and Eqs. (3) to (14) applicable
to Boltzmann statistics should be used. For
7 QCTp the electron gas is completely degenerate,
and the equations generally applied to conduction
in metals may be used. Some of these are listed
below. The intermediate case, for T To, has
been discussed by Johnson and Lark-Horovitz. "
The equations are much more complicated than
for the two limiting cases, and we will not
attempt to interpret the curves in this region.

The expression for the Hall coefFicient is

slightly di6'erent for a degenerate electroii gas in

that the numerical factor is unity instead of
3~/8. The basic equations are

n=, &6.25 X 10"/R,

p. = +OR,

(18)

where the plus signs apply to hole conductors and
the minus signs to electron conductors.

The relation between the mean free path, /,

and the mobility, p, is

l = (k/2e) (3n/s. ) Ip(e.s.u. ).

lf p is expressed in cm'/volt-sec. ,

1=2.02X10 "n&p(cm).

4.3 Calaculation of n, p, and l

(20)

(21)

Using Eqs. (5) and (18), the density of holes
for the silicon-boron alloys was calculated and
plotted in Fig. 7A as a function of temperature.
Jt can be seen that n varies from 10" to SX10"
and is a function of temperature and boron
content. The degeneracy temperature T0 is

plotted for reference in this figure. Samples 1 to
4 are non-degenerate, and logn increases linearly
with temperature until saturation is reached just
before entering the intrinsic range. In samples
5 to 8, which are degenerate over most of the
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FiG. 8A. Hole mobility versus inverse absolute tempera-
ture for silicon-boron alloys. Compositions are given in
Table I.
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'~ V. A. Johnson and K. Lark-Horovitz, Phys. Rev. 7'l,
374 (1947); 'Il, 531.A (j.947).

Fir. 88. Electron mobility versus inverse absolute tem-
perature for silicon-phosphorus alloys. Compositions are
given in Table I.
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FrG. 9B. Reciprocal of the mean free path of conduction
electrons in silicon-phosphorus alloys versus the tempera-
ture in degrees absolute. Compositions are given in Table I.

Fr@. 9A. Reciprocal of the mean free path of con-
duction holes in silicon-boron. alloys versus the temperature
in degrees absolute. Compositions are given in Table I.

temperature range, n is approximately constant
with temperature. The intrinsic line on the left
was calculated by substituting the high temper-
ature Hall data for sample No. 1 into Eq. (11)
using a value r =3.0 as derived below.

Figure 7B gives the density of conduction elec-
trons as a function of temperature for the
silicon-phosphorus a.lloys as calculated from Eqs.
(5) and (18). Samples A and J3 are non-degener-
a.te and samples C and D degenerate.

Figure 8A gives the hole mobility pI, in the
silicon-boron alloys as a function of temperature
as determined by Eqs. (6) and (19).The mobility
varies between 20 and 2QO cm'/volt-sec. , de-

pending on the temperature and impurity
content. In the higher temperature range the
curves for the diferent alloys join a single line
which fits the equation p&=5X10'T &. In this
temperature range, scattering by vibrations of
the crystal lattice predominates. As the tem-
perature is lowered, the mobility reaches a
maximum and then decreases, the maximum
value being dependent on the number of acceptor
impurities present. Impurity scattering will be
described in niore detail in Section 6.f. Sample
Xo. 1 does not follow the normal pattern and we
believe this is due to non-homogeneity of this
melt. Figure 8B g&ves the electron mobility p, ,
in the silicon-phosphorus alloys as a function of
temperature. The general pattern is similar to
Fig. 8A except that the ratio of the plectron to
hole mobility in the lattice scattering range is

about 3.

Figures 9A and 9B give the reciprocal of mean
free path for holes and electrons in the silicon
alloys as computed from Eqs. (14) and (21). In
the lattice scattering range there is a linear in-
verse relationship between mean free path and
absolute temperature just as found in metals.
The mean free path of the electrons in the lattice
scattering range is three times that of the holes.
In the impurity scattering range the mean free
path decreases with increasing impurity content
and at a given impurity content decreases with
decrease in temperature.

V. ANALYSIS OF CONCENTRATION DATA

5.1. Correlation between Impurity Concentra-
tion and Charge Carrier Density

It can be seen from Figs. 7A and 7B that as
the temperature is raised the concentration of
holes in the silicon-boron alloys and the concen-
tration of conduction electrons in the silicon-
phosphorus alloys approach a saturation value
just below the intrinsic range. This results from
the fact that all acceptor or donor impurity
atoms become ionized, and a further rise in tem-
perature cannot increase the nuinber of charge
carriers until thermal energy is sufficient to raise
electrons from the filled to the conduction band.
By comparing the density of charge carriers in
this saturation region with the density of solute
atoms in the melt, one can determine the number
of charge carriers supplied by each ionized im-
purity atom. Such a comparison is given in
columns V, VI, and VII of Table I for each of
the samples under study. The silicon-boron
samples numbered 2 to 7 have a ratio of hole
density to boron atom density close to unity,
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which shows that each donor impurity atom
contributes one hole. In sample 8, to which 1.3
atomic percent of boron had been added, the
ratio dropped to 0.36. A microscopic examination
of this melt indicated that only a part of the
boron atoms went into solid solution with the
remainder forming a second phase at crystalline
grain boundaries. Although the ratio obtained
for each of the four silicon-phosphorus melts is

appreciably less than unity, we believe that each
ionized donor atom produces one conduction
electron and that the small ratio is due to loss of
phosphorus atoms during the processing of the
melt. Such a loss is to be expected since the vapor
pressure of phosphorus is much higher than that
of silicon. A spectroscopic analysis has verified
this conclusion.

5.2 Calculation of Impurity Eonization Enexgies

tion may be written in the form

n. (n.+Ng)/(ND N—~ n,—) =K,. (22)

(n.+Ng) (n, +K,) = NDK„ (24)

which is a quadratic equation for the electron
concentration n, .

If X~ is greater than XD, the semiconductor is

p-type. The same equations apply with nl„N&,
and X~ replacing n„XD, and X~. The corre-
sponding equilibrium constant is

Kg = (2smgk T/k') I exp( Eg/k T—), (25)

The equilibrium constant, A „determined from
statistical considerations, is

K, =(2+m.kT/k')&exp( Eg&/—kT), (23)

in which m, is the effective mass of the electron.
Equation (22) may be expressed in the form

As the equations which determine the varia-
tion of electron concentration with temperature
in the impurity range of an n-type semiconductor
are similar to those which give the hole concen-
tration in p-type material, we will discuss ex-

plicitly only the case of electrons. "We assume
that the concentrations of conduction electrons,
donors, and acceptors are n„XD, and Xg. In
an n-type semiconductor, XD is larger than N~
and all acceptor levels are occupied (ionized).
The energy required to raise an electron from a
donor level to the conduction band is ED. The
equilibrium concentration of electrons, n„at any
temperature is determined by a balance between
the rate at which electrons are thermally excited
from neutral donors to the conduction band and
the rate at which electrons recombine with
ionized donors. The equation governing the reac-
tion may be written

e—+D++-+D.

t7
10

g Et.E|:TRONS

L
oQ

16
l0
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'I he concentration of ionized donors is N~+n„
since X~ electrons go from the donor levels to
ionize the acceptors and n, to the conduction
band. The concentration of neutral donors is

XD —N~ —n, . The law of mass action for the reac-

"The equations to be presented in this section were
hrst derived by J.H. de Boer and W. C. van Geel, Physica
2, 286 (1935). See N. F. Mott and R. W. Gurney, Elec-
tromc Processes in Sonic Crystals (Oxford University Press,
London, 1940), Chapter V.
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0.0&2

FIG. 10. Concentrations of conduction electrons and
holes in sample A, Si+0.001 percent P versus inverse
absolute temperature. Above room temperature, points
are derived from resistivity using lattice scattering mo-
bility as discussed in Section 5.3. Solid lines are derived
from semi-empirical Eq. (45), using saturation concen-
tration %,=10.5X10'. For fit of Hall data in this range,
see Table III. Below room temperature, points are derived
from Hall data, solid line from semi-empirical theory
using Eq. (22), with ND = 12X 10', Nz = 1.5 X 10', ED
=0.045 ev, and m, =0.33m.
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TABLE II. Concentrations and ionization energies of
donors and acceptors as determined from Hall data at lour
temperatures.

Sample

2 —Si+0.0005%8
3—St+0.001%8
4—Si+0.002 /+
5 —Si+0.005%B

A —Si+0.001 / P
8—Si+0.0057'PgI'

15X 10'~
6X 10'7

1.3X 1{P8
2.2X 10"
5.3X1018
1.5 X 10"

9X 10'I

12X10&&
1.25 X 1018

Egor Zg

0.075 ev
0.04S ev
0.037 ev
0.027 ev

0
0.045 ev

0

in which mp, is the efFective mass of a hole and E~
is the energy required to excite an electron from
the filled band to an acceptor level.

The saturation concentrations, attained at
temperatures so high that all donors and ac-
ceptors are ionized, are

n, = ND —N&(n-type), (26a)

n, =Ng ND(p ty—pe). -(26b)
The equations which determine the concentra-
tion in the intrinsic range will be discussed in the
following section.

By fitting the variation of concentration with
temperature as determined from the Hall efFect

(see Figs. 7A and 7B) to the theoretical, the con-
centrations of donors and acceptors and the cor-
responding ionization energies have been deter-
mined. It is only for the purest samples, iso. 1,
"du Pont silicon, " and A, "Si+0.001 percent P,"
that the concentrations of donors and acceptors
are comparable so that both need be considered.
'I he observed concentrations for sample No. 1

are somewhat irregular, so that the interpretation
is uncertain. Values for T&250'K can be fitted
fairly well by taking X&=15X10"X&=9X10"
giving m, =6X10", together with an ionization

energy, E~, equal to 0.075 ev. The efFective mass
of a hole, mh, , is taken equal to the free electron
value, tn, in calculating Eq from Eq. (25). The
best fit to the observed data for sample A was

obtained with Na = 12 X 10" N~ = 1.5 X 10'
giving n. = 10.5 X10', together with an ioniza-
tion energy for donors, ED, equal to 0.045 ev.
It was found that a better fit could be obtained
by taking a value for m, less than m, and a value
m, =0.33m was adopted. This value for nz, is

only about half that estimated from other con-
siderations. Because of the number of adjustable
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Fic. 11.Variation of ionization energy of impurity centers
wi th concentration.

parameters involved, these values are uncertain.
A comparison of calculated and observed values
of m, is given in Fig. 10. The concentration of
holes is also shown.

The remaining non-degenerate p-type samples,
Nos. 2, 3, 4, and 5, contain su%.cient added boron
so that the concentration of acceptors is large
compared with any small residual concentration
of donors. Accordingly, the observed data were
fitted by setting X~ ——n, and N~ ——0. Taking
mq=m, the only remaining parameter is the
ionization energy, E&, which was determined in
each case to give the best fit. The values ob-
tained are listed in Table II and are plotted in
Fig. 11. Figure 12 gives a comparison of the
theoretical and experimental values of ng. The
solid lines were calculated using the constants
listed in Table II and the points are those derived
from Hall measurements. The agreement is satis-
factory.

There is a continuous decrease in E~ as N~
increases. Sample 5, with Ng =6.5 X10",exhibits
relativelv little change in concentration with
temperature, so we have set A~=0. The de-
generacy temperature for this sample is about
150'K. Similarly, the variation of e, with tem-
perature is small at low temperatures in sample
8, which is n-type with MD=1.25X10' We
have set ED=0 for this sample, although this
may be a borderline case as n, changes by a
factor of about two between 150 and 300'K. The
degeneracy temperature for this sample is about
50'K for m, =m, or about 150'K if nz, =0.33m.

In a neutral donor, the electron moves in a
hydrogen-like orbit about the ion. Similarly, in a
neutral acceptor, a hole moves in a hydrogen-like
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orbit about the negative acceptor ion. In each case,
the force acting on the mobile charge is reduced
by the dielectric constant, ~, of the medium. The
ionization energy is reduced by a' and the radius
of the orbit is increased by ~. Since the radius
of the orbit is large compared with the radius of
the ion, only the Coulomb field of the ion is
important in determining the energy. The
ionization energy for a mass m* and dielectric
constant ~ is given by the Bohr formula,

Er = 2712m*e4/~'h'

For the case of holes in silicon we set m* =mh ——m

and a=13, which gives

10
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Eg = 13.5/13' =0.08 ev. (28)

This value is close to that observed for the limit
of high dilution.

The decrease in activation energy with increase
in concentration probably results from a decrease
in the average potential energy of an electron or
of a hole. " If an isolated atom or impurity
center is ionized, the electron is removed to
infinity so that there is no resultant potential
energy of attraction between the ion and the
electron. In a semiconductor the conduction
electrons will tend to shield the ions, so that on
the average any small region of the crystal will
be electrically neutral. There will be a resultant
potential energy of attraction which will be
greater the higher the concentration. Other
things being equal, this energy will be inversely
proportional to the average distance of separa-
tion between impurities, or, for the case of
p-type samples, to X&&. Thus, on theoretical
grounds one might expect the ionization energy
to vary with concentration as

l6
&0

0 0,002 0 004 0 006 0 006 O.OIO O.OI2 O.OI4
I

TEMPER4&URE IN DEGREES K

FIG. j.2. Concentration of holes in samples 2, 3, and 4
versus inverse absolute temperature. Points are derived
from Hall data, solid lines from semi-empirical theory
using concentrations, and ionization energies listed in
Table II.

m, =O.a7m (31)

(28). The value of a was determined by an em-
pirical fit of the data. A theoretical discussion
of the factor a is given below.

Also shown in Fig. 11 are two points, labelled
A and 8, which give the ionization energies for
the donor levels determined from the Hall data
on samples A and B. They lie below the curve
for acceptors. It is probable that the effective
mass of the conduction electrons is less than the
free electron value, m, so that Ez is less than 0.08
ev for donors. A value

Rg ——El —aug&, (29)
gives

Eg) =0.054 ev, (32)
where Ez is the ionization energy for an isolated
impurity center, about 0.08 ev in silicon, and a
is a constant.

The values of E& determined by experiment
can be fitted closely by an expression of this
form. The solid line in Fig. 11 is plotted from

E~ ——0.08—4.3 X 10 'K&~(ev). (30)

The value 0.08 for Ez is in agreement with Eq.

"For a similar suggestion, see T-%, p. 66.

which is in reasonable agreement with the ob-
servations.

An accurate calculation of the potential energy
term is dificult. We will attempt only very
rough considerations to see whether or not the
empirical value is of reasonable magnitude. The
impurities are probably distributed more or less
at random. The mobile charges are probably dis-
tributed in such a way as to shield the ions from
one another. Following the method of signer
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Tsar.E III. Concentrations and Hall coefticient in intrinsic range as determined from conductivity and mobility,
p,.=3pg=15X10'~T &.

Sample

A —Si+0.001J'

n, = 1.05 X 10'7

1 —du Pont Si

ns =0-08X 10"

2 —Si+0.00058

ns =5.9X 10'7

1000/T

1.628
1.472
i.386
1.314
1.285
1.215

1.99
1.87
1.82
1.80
1.78
1.75
1.69
1.63
1.57
1.51
1.40
1.32
1.26

1.34
1.26
1.12

32.8
28.0
25.8
23.7
23.0
21.0

53.5
44.0
40.3
38.7
37.5
36.5
34.6
32.6
31.0
28.7
26.0
23.8
22.3

24.8
22.5
18.8

0.600
0.620
0.534
0.410
0.350
0.264

14.9
14.1
13.1
12.3
11.5
10.2
7.12
4.65
3.05
2.00
0.98
0.69
0.385

0.408
0.340
0.164

eeX10 '7

1.06
1.16
1.40
1.88
2.18
3.06

0.0035
0.0070
0.0105
0.0140
0.0162
0.0215
0.0435
0.120
0.145
0.252
0.592
0.925
1.80

0.07
0.58
3.60

eaX10 "
0.01
0.11
0.35
0.83
1.13
2.01

0.0835
0.0870
0.0905
0.0940
0.0962
0.1015
0.1235
0.201
0.225
0.332
0.672
1.005
1.88

5.97
6.48
9.50

R(calc.)

—69.5—59—44—29.5—23—15

+495
+151—22—132—178—248—310—206—183—120—58—31—20

+10.4
+1.4—4.i

R(obs. )

—?0—68.5—45—27—20—14

+750
+310—22—151—262—400—489—434—276—212—93—43—25

+8.45
+3.04

The sum of these three contributions is

and Seitz,"it should be possible to draw a roughly relative to a random distribution is
spherical region about each ion which is elec- —0.746e' ~r..
trically neutral. The average radius, r„of such
a sphere is given by

(37)

47rr, '/3=Kg ', (33) —1.646e'/~r, . (38)
or

r, =0.62K~ '. Substituting for r, from Eq. (34), and putting in
numerical values, this becomes

If it is assumed that the mobile charges are
uniformly distributed throughout the sphere,
the potential energy of attraction is

—1 5s'/gr, . (35)

The self-energy of the uniform charge distribu-
tion in the sphere is

+0 6e'/ar, .(36)

This calculation assumes no correlations between
the positions of the mobile charges. Actually,
there is probably a large correlation energy
resulting from the fact that these charges tend to
keep apart. The most stable arrangement, which
will be approached when the kinetic energy is
small compared with the potential, is body-
centered cubic. The reduction in potential energy

"See reference 3, Chapters 9 and 10. The theory of a
metallic modification of hydrogen, which is similar to our
problem, has been discussed by E. signer and H. B.
Huntington, J. Chem. Phys. 3, 764 (1935).

—3X10 'X~' (ev), (39)

5.3. Concentrations in the Intrinsic Range

The expressions (7) and (8) for the conduc-
tivity and Hall coefficient in the intrinsic range
involve four quantities, two concentrations, n, ,
and n~, and two mobilities, p, and pI, . As there
are only two measured quantities, 0 and R, addi-
tional relations are required. One may be ob-
tained from the requirement of electrical neu-
trality. The difference between np, and n, must

which is about —, of the empirical value. The
mobile charges may be concentrated more in the
vicinity of the ions than we have assumed, in-

creasing the energy of attraction.
If this is the correct picture, the assumption of

a single ionization energy independent of the
degree of ionization of the impurities can be con-
sidered to be only an approximation.
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p, = 15X10'T &(cm'/volt sec.),

P,y,
——5X10'T '-.

(41a)

(41b)

The mobilities of holes in samples 2, 3, and 4 and
of electrons in sample B lie on the lattice scat-
tering line over the same temperature range for
which the conductivity of samples 1 and A
become intrinsic. Thus there is every reason to
believe that the lattice scattering mobilities will

apply in the intrinsic range.
Assuming Eqs. (41a) aud (41b) for the mo-

bilities, and using Eqs. (40a) aud (40b) ex-
pressing electrical neutrality, the concentrations
'fi, and nh, in the intrinsic range can be found from
either the conductivity or the Hall coefhcient.
We have determined n, and nI from the con-
ductivity and used these values to calculate the
Hall coefficient to compare with the observed.
The conductivity may be expressed in the forni

0 =ega(cn, +ng)

I or a /'-type sample we set n, =n~ —n, and find

be equal to the net concentration of impurity
ions, which in turn is equal to the saturation
concentration, n„ in the impurity range. Thus

n, =n. n"—(n-type), (40a)

n, =ng —n,, (P-type). (40b)

At high temperatures the mobilities of electrons
and holes in all samples approach the values cor-
responding to lattice scattering, which are ap-
proximately

n.kg=4(2wmkT/k')'(m, mg/m') I exp( —Eg/kT)
=2.4X10"(m,my, /m') &T'

Xexp( —Ea/kT). (44)

This equation is of the correct form, but the
numerical factor is considerably larger than the
theoretical. The difference seems too large to
account for by the term involving the effective
mass. In fact, the mass term operates in the
wrong direction, as the evidence is that m, is only
about two-thirds of m. Neglecting the difference
in effective mass, the discrepancy is a factor of
about 32.5. It is most likely accounted for by a
variation of Bg with temperature. 1f there is

5

IO26

IO25

0 SAMPLE.
X SAMPLE 2
0 SAMPIEA

A plot of log(n. n/T') versus 1/T should then
give a straight line. Such a plot is shown in Fig.
13. Values of n, nq/ T' calculated from the values
of n, and n~ determined as above for the three
samples all lie on the same straight line whose
equation is:

n,n"/T~=7. 8X103 exp( —12,900/T). (45)

nh=((0/egg)+cn, )/(c+1). (43)

For an n-type sample, we set n, = n~+n, , and find

ng=((a/egg) cn, )/(c—+1) (4. 3a)

Using these equations, both n, and nI were deter-
mined in the intrinsic range for samples 1, 2,
and A. The values are listed in Table III.

Statistical theory indicates that the product
of the electron and hole concentrations at any
temperature is independent of impurity concen-
tration and is given by:"

"See, for example, R. H. Fowler, Skxtistka/ Mechanics
(C™r~dgeUniversity Press, London, 1936), second edi-
tion, Chapter 11. While not given explicitly, Eq. (44) can
be derived readily from the relations expressing e, and ez
in terms of the Fermi level.
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Fto. 13. Plot of n, nk/T' versus inverse absolute tern-
perature for samples 1, 2, and A. Equation of straight line
is ~s+a/T'= 7 8X10 ' exp(12,900jT)
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Sample

2 —Si+0.00058
3 —Si+0.0018
4 —Si+0.0028

Impurity
centers jcm'

0.6X 10's
1.3 X 10'8
2.5X 10»

1.8 )(
10»Ng

1.1
2.3
4.5

3.1
3.1
8.3

2X10 '
2X10 s

2X10 '

A —Si+0.001P
8—Si+0.0057P

1.0X10»
1.25 X 10's

0.19
2.3

3.1 0.67X10 6

5.5 0.67X10 '

linear variation, we may write

Tssr.E IV. Fit of mobility data by 1jp=eT &+bT&. other samples. This would correspond to an
electron mobility of about 19&10'T& for the
intrinsic range of p-type samples as compared
with 15X10'T & for electrons in n-type samples.
4 real difference of this sort would be surprising.
If the higher value is used to compute n, and n~

for the p-type samples, it is found that values of
n,nq/T' for the different samples do not lie on
the same line. It is possible that the theory for
the Hall coefficient in the intrinsic range requires
modification.

Eg(T) =Eg(0) PT. — (46)

The empirical equation for n,nq/T' can be
brought into agreement with the theoretical by
taking

Eg(0) = 12,900/11,600 = 1.115 ev, (41')

P = k log32. 5 =3.0 X 10 4 ev/degree. (48)

The value of Zg(0) is in close agreement with
photoelectric studies of a silicon p —n junction
at low temperatures. "These studies also indicate
a shift in response corresponding to a change in

80=0.j. ev between 90'K and 290'K, a range
of 200'K, giving P = 5 X 10 '. The difference
between this value of p, obtained at low tem-
peratures, and ours may be accounted for, in

part, by the effective mass term.
In the limit of high temperatures, the concen-

tration may be found by setting n, =n~ =n in

Eq. (45) and solving for n Using E.qs. (41a) and

(41b) for the mobilities, the conductivity may
be found for Eq. (9).The corresponding equation
for the resistivity in the intrinsic range is

p =1.1 X 10 ' exp(6450/T) ohm.

Values of the Hall coe%cient, R, were calcu-
lated with use of the values of n, and nI, deter-
mined from the conductivity. The calculated
values are compared with the observed values in

Table III. Good agreement is obtained for the
n-type sample (A), but there are discrepancies for
the p-type samples, (1) and (2), which appear to
be outside the limits of experimental error. Agree-
ment can be obtained by using a value of c =3.75
instead of the value 3.0 obtained from the ratio
of the mobilities in the sub-intrinsic range of

~'F. S. Goucher, H. B. Briggs, G. L Pearson and W.
Shockley, "Photoelectric and electric studies of P-N
junctions in silicon and germanium, " to be published in
Phys. Rev.

m, /mg =0.65. (49)

This ratio is about the same as that required to
explain the difference in ionization energies
between donors and acceptors, but is about

» A. H. Wilson, Theory of Metals {Cambridge University
Press, Cambridge, 1936},p. 211.

~ F. Seitz, Phys. Rev. 73, 549 (1948}.

VI. LATTICE AND IMPURITY SCATTERING:
ANALYSIS OF MOBILITY DATA

0.1. Lattice Scattering

We have seen that the mobilities of electrons
and holes in all samples approach the same
limiting curves at high temperatures, inde-
pendent of impurity concentration. The mobility
in this temperature range is determined by scat-
tering by vibrations of the crystal lattice. It has
been shown by Wilson, "and later more generally
by Seitz," that in a non-polar material such as
germanium or silicon the mean free path is inde-
pendent of velocity. Above a few degrees abso-
lute, the scattering by lattice vibrations is
isotropic, and energy is conserved during col-
lisions. The mean free path varies as T ' and
in the non-degenerate case the mobility varies
as T &. These theoretical predictions agree well
with the experimental results for silicon, and, as
pointed out by Seitz,"the observed values are of
the expected order of magnitude.

The difference in electron and hole mobility
(Eqs. (41a) and (41b)), a factor of three, may
result at least in part from the fact that the
effective mass of a conduction electron is less
than that of a hole. Theory indicates that the
mobility varies as (m, ~g.) '". A factor of three
would require that

(mg/m, )'~' = 3
or
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twice as large as that derived in Section 5.1 from
concentration data for sample A. The larger
value is probably more nearly correct.

field of any one ion extends, so that 2d is some-
thing like the average distance between near
neighbors. For the purpose of numerical calcu-
lation, we take

6.2 Impurity Scattering —Non-Degenerate d=0.5%1 &. (52)

At lower temperatures impurities contribute
to the scattering, so that the mobilities are
higher in the purer samples. The impurity
centers which give the largest scattering are the
donors and acceptors. Scattering by both ionized
and neutral centers is large at low temperatures.
It is not possible to make anything like an exact
calculation of the way the mobility should

change with temperature when both lattice and
impurity scattering is involved for the following
reasons:

(1) The theory of the scattering, particularly
by neutral centers, is complicated, and only
rough approximations are available.

(2) Scattering by the lattice, ionized centers,
and neutral centers are not additive because they
depend in diferent ways on the velocities of the
carriers. '3

In this section we attempt to give only a brief
outline of theoretical considerations involved in

impurity scattering, and to indicate roughly the
correlation between theory and experiment. Ke
discuss first the case of a non-degenerate gas and
then the degenerate case.

Conwell and Weisskopf'4 have given an ex-
pression for the resistivity of a semiconductor
which is based on scattering by ions which are
present with a total concentration Ny. The ex-
pression for the reciprocal of the mobility, which

applies for a non-degenerate gas, may be written
in the form

l /~ —P7 ~3I2e3mzi2)/(2'62~2(PT)3I&)

X log(1+x') (e.s.u. ), (50)

x=2.3X104X &T. (54)

A neutral donor or acceptor consists of an
electron or hole moving in a hydrogen-like orbit
about the corresponding ion. The calculation of
the scattering by such a center is mathematically
the same as that of the scattering of an electron
by a' hydrogen atom, which problem has been
treated theoretically by Massey and Mohr. "
An exact calculation is difficult, particularly for
incident energies less than the ionization energy,
for which exchange effects are important. In the
limit of zero velocity of the incident particle, the
cross section for scattering is 124 times that of
the Bohr orbit. The cross section decreases rapidly
with increasing velocity, but is still large when
the kinetic energy of the incident particle is less
than about 25 percent of the kinetic energy of an
electron in a Bohr orbit. The radius of the orbit
about an ion in a semiconductor is increased by
the dielectric constant and the cross section by
the square of the dielectric constant.

To compare the scattering by neutral and
ionized centers, we write down an expression for
the mobility in a semiconductor containing X„
neutral scattering centers. The reciprocal of the
mobility is related to the effective scattering
cross section, A, by

The choice of the numerical factor is somewhat
arbitrary. Inserting numerical values for the
fundamental constants and converting to prac-
tical units, Eqs. (50) and (51) may be written for
application to silicon in the form

1/zan=1. 8X10 ' XzT I log(1+x') (53)

x = 6adi:T/e'. (51)
1/p = (m/e) X„vA (e.s.u. ), (55)

In these equations d is the average distance the

~ W. Shockley (unpublished} has made calculations of
the resistivity when both lattice scattering, with ll, inde-
pendent of velocity, and scattering by ions, with /I e ',
are present. Large deviations from simple additivity are
found.

~ E. Conwell and V. F. Weisskopf, Phys. Rev. 69, 258A
(1946}.The problem is mathematically identical with that
of the scattering of electrons in an ionized gas which has
been solved to the same approximation by S. Chapman,
Monthly Notices, R.A.S. 82, 294 (1922}.

where v is an average thermal velocity for the
carrier. We may set

A = 124m. ~'A 0'n(T), (56)

where a(T) is a numerical factor which equals
unity at 1=0 and decreases with increasing

~ H. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc.
A132, 60.5 (1931);A136, 289 (1932).
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Tsar. E V. Limiting low temperature resistivities and
mobilities for degenerate samples.

Sample

6 —Si+0.018 1.4 X 10"
7 —Si+0.18 1.2 X 10~0
8—Si+1.08 4.8X 10"

P 1.87 )& 10'7/'n

31 1.25X10 ' 1.33X10 '
30 1.62X10 ' 1.56X10 '
54 2.2& X10 ' 3-9 X10 4

C—Si+0.1I' 1./X10" 130 2 5 X10 ' l.l X10 '
D —Si+1.0I' 2.6X10' 50 &.0 X10 ' 7.2 X10 '

j. / p =a T '-' +6T'. (58)

This form is suggested by assuming additivity of
lattice and impurity scattering, and by the form
of Eq. (53) for impurity scattering. The first
term represents impurity scattering and the
second term lattice scattering. The coeEFicient b

is equal to 2 &(10 ' for the P-type samples and to
0.67X10 ' for the e-type samples. Values of a
which give the best fit to the observed data are
listed in Table IV.

temperature. Putting a = 13 for silicon, sub-
stituting in Eq. (55), and con~ crting to practical
units gives

1/p = 7.6 X 10 -''1V T~o.(& ) (57)

This equation may be compared with Eq. (53)
which applies to ionized centers. The effective
scattering cross sections will be equal for a tem-
perature such that

7'=2.4X10' log(1+x')/n(T).

I t is not unreasonable to expect that the effective
scattering cross section for neutral centers is as
large or is larger than the cross section for
ionized centers at temperatures above about
100'K.

The mobilities of the p-type samples are shown
in Fig. SA. and the n-type in Fig. 88. Of the
p-type samples, numbers 1, 2, 3, and 4 are non-
degenerate and number 5 is borderline, as the
degeneracy temperature is about 150'K. The
niobilit& values for sample I are anomalously
low. lt is thought that in this case the sample
is not homogeneous so that the method does not
give reliable results. The mobilities of the re-
maining p-type samples, numbers 2, 3, and 4,
and of the n-type samples, A and 8, can be
approximated over the temperature range b~ an
expression of the form

The empirical values of a are of the same order
as expected from theory. Equation (53) gives

~ = 1.8 X10 "N r log (1+x') . (59)

The factor multiplying the logarithm is listed in

Table IV for the different samples. The logarithm
is slowly varying with concentration and ten&-

perature, and may be expected to increase a b~.

a small factor. The order of niagnitude is about
the same as the observed. Actually, a large frac-
tion of the impurity centers are neutral over the
temperature range, the concentration of ions
decreasing with decrease in temperature, so that
the comparison is not significant except as t~i

general order of magnitude. The empirical values
of a do not decrease as rapidly as expected v ith
decreasing concentration. The discrepancy is

particularly large for sample A.

2'G. L. Pearson and W. Shockley (reference 1) have
found that the resistivity and Hall coefficient of a sample
of silicon similar in composition to sample 6 remain con-
stant to 10'K. Similar results were obtained for a ger-
manium sample with added impurities. I. Esterman, A.
Foner, and J. A. Randall I Phys. Rev. 72, 530A (1947)j
have reported that the resistivity and Hall coefficient of a
sample of germanium with 0.04 atomic percent Al added
remained substantially constant between 20'K and 200'K.

'~ N. F. Mott, Proc. Camb. Phil. Soc. 32, 281 (1936).

6.3. Impurity Scattering —Degenerate

In the degenerate cases, the concentrations
and resistivities approach constant values at low

temperatures. The resistivity is determined by
impurity scattering. Because of Fermi-Dirac
statistics, the effective velocities of the carriers
and thus the mobilities and resistivities become
temperature independent. The constancy of p

and R over a wide temperature range for samples

6, 7, 8, and D is striking. "
When degeneracy applies, it may be assumed

that there are impurity centers of only one type
and that these are all ionized. The concentration
of ions is then equal to that of the electrons (or
holes). Johnson and Lark-Horovitz" have ex-
tended the calculations of Conwell and Weisskopf
to cover this case. the problem is mathematically
identical with that of the calculation of the
resistivity of dilute solutions of metals of higher
valency in monovalent solvents such as Cu, Ag,
and Au. This latter problem has been discussed

by glott. 27 He assumes that the impurity ions
are screened by the electrons, so that the poten-
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tial of an ion is of the form

y = ~E / 0'en=i(~-h'j 8me') (3/n)in'. (62)

The form of the function f(y) is discussed below.
Putting in numerical values for silicon gives

y=3.4X10 'n&. (63)

Inserting constants for silicon into Eq. (61) and
converting to practical units gives

p = 1/net = (1.87 X 10"/n) f(y) (ohm cm). (64)

The function f(y) depends on what is assumed
for the field of an ion. Johnson and Lark-Horovitz
assume a cut-oA distance

d n~/2='=0 28n. (65)

which, using an extension of the Conwell-Weiss-
kopf theory, gives

f(y) = log(1+y'/ ) (66)

In the limiting case of y' small compared with
unity, the logarithm can be replaced by y'/ , 7r

giving

I/p = (sIi/4e) (3/vr) ln& (e.s.u. ). (67)

The mobility and thus the resistivity are in this
approximation independent of the dielectric
constant and eR'ective mass, and so should
depend only on the concentration. The resistivity
is inversely proportional to the cube root of the
concentration. In practical units

p =6270n &(ohm cm—). (68)

This is the formula as given by Johnson and
Lark-Horovitz.

V(r) = (Ze'/r) e-&", (60)

where Z is the diEerence in valency between the
solute and solvent atoms, and q depends on the
screening. To apply to our case we replace Z by
I/x, where r. is the dielectric constant.

Both Mott's theory and that of Johnson and
Lark-Horovitz lead to an expression for the
reciprocal of the mobility of the form:

1/p=(8~e'm'/3~'Ii') f(y)(e s u .) . . . (61)

The parameter y is a measure of the ratio of the
kinetic energy of an electron at the surface of the
Fermi distribution, Eo, to the potential energy
in the field of the ion:

Mott's expression for f(y) may be written in
the form

f(y) = log(1+ay) —~y/(I+w). (69)

The numerical factor c is inversely proportional
to the square of the screening constant, q, and
is equal to 2(n/3) & if the Thomas-Fermi method
is used to evaluate g. Mott believes that this
method yields a value for q which is too large.
The best value for c may therefore be several
times larger than 2(m. /3)i. In the derivation of
Eq. (69) the Born approximation is used to
determine the collision cross sections. This ap-
proximation is valid in the limit of large ratios
of kinetic to potential energy, that is, for large
values of y. This condition is not mell satisfied in
our case, and it is probable that the actual cross
sections are larger than given by the formula.

We would expect a formula based on screening
to be more accurate than one based on a cut-o6
distance for the ion held, so that Mott's formula
is to be preferred. The use of the Born approxima-
tion limits the accuracy that can be attained.

The experimental results do not agree well
with either formula except as to order of mag-
nitude. In Table V we have listed the limiting
resistivities and mobilities and have also listed
the values of the factor multiplying f(y) in Eq.
(64). It can be seen that these values are in fair
agreement with the observed valu'es of p, indi-
cating that f(y) 1. Both Lark-Horovitz's and
Mott's expressions yield values for f(y) which
are smaller than unity. It appears likely, how-
ever, that appropriate modi6cations of Nlott's
theory would yield agreement.
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