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pressure, and therefore have no bearing on the
theory valid for a gas at low pressure. The
results of these experiments indeed seem to
indicate that at high pressure the curve showing

Po as a function of g is markedly different from
the type of curve expressed by Eq. (14),
especially at the foot of the curve. This is not
surprising since the processes of spark formation
in the two cases—high and low pressur" are

quite diferent.
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The Boltzmann transport equation has been solved for the electronic velocity distribution
function in a high t'requency gas discharge. The distribution is examined as a function of the
electron density. The conductivity is computed for two electron-molecule cross sections, one,
in which the cross section is inversely proportional to the electron velocity and two, in which

the cross section is independent of electron energy. The results show the extension of Margenau's
distribution to high densities.

tlon

HIS paper is an extension of the work of
Margenau' in which the Boltzmann Equa-

(e/m)E Vf=(B.f/Bt) (1)

was solved for high frequency fields K, =E coscot

for the case of low current densities. In it we

will apply the results of a former paper' (herein-
after referred to as I) in which the Coulomb
interaction term (8,f/8t) ~ of the Boltzmann
Equation was derived. Following the notation
in I, the distribution function f(v), normalized

to the electron density e, will be expanded in the
form

(B,fai 10 ds&
(~f0'+&fo),

EBt)4 s& ds
(3)

in which s=@', A =2'Jo"fads, B=Z'fo(0),
= 164r2/15 e4/m2 Inep/e2, p= (i&/124rnes)&, e and

' H. Margenau, Phys. Rev. 69, 508 {1946).' J. H. Cahn, Phys. Rev. 75, 293 (1949).

f(v) =f0(v)+v, (fi(e) coaot+g4(v) sincvt). (2)

The approximate collision term (8.fo/Bt) ~ is
given by

m are the charge and mass of the electron; the
average energy of electrons relative to electrons
is ~, that relative to ions is ~~.

We use the same electron-molecule and elec-
tron-ion collision term as in I, namely

(8 fo) b d s'
0 0

Bt ) sr Ps1ds )I

(4)

where P=m/2kT, 8=2m/M, T is the gas tem-

perature, and M is the molecular mass, so
that our total B.fo/Bt for electrons, molecules,
and ions is the sum of (3) and (4).

We will make the same simplifications as in

I in which the Coulomb interaction was neglected
in the momentum balance equation. We can
then use Eq. (23) in the paper by Margenau and
Hartman, '

B.fo V d e—(e'f~), f4+kg = fo'(s), —
Bt 6m~ dv X

(5)
g4 ——(AX/e) f

' H. Margenau and L. M. Hartman, Phys. Rev. 73, 309
(1948).
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After eliminating gi and fi in (5), we have finally

8,f~ y d 2yhs' 10 ds& b ds'
fo' = —(Afo'+Bfo)+ —(—fo'+ pfo)

Bt Bs& ds s+ ((oX)' s& ds ps&ds X
(6)

s&+10KB/88

f0=
¹ exp pds,

&0 [I+-,'(P/8) (yX) '/(s+ (~X) ') 5s&+10&PA/6

where
¹

is the normalization constant. As a check on (7) if we let a& be zero, (7) reduces to

(10BX/b) pv+ pv'
fo —N0 exp I —(2Pvdv)

~ 0 —,
' [(PyX) '/65+ (10PA X/8) Pv+ Pv'

As pointed out in I, (6) must be integrable because of particle conservation so that we obtain on
integrating (6), a simple first order equation whose integral in turn is

which agrees with (19) in I if y' is replaced by
2yq, ' because the R.M.S. value of y is com-
parable to yg, .

A further check on (7) is found in Eq. (15) of
Margenau4 which reads

I dS
f0= No exp I (9)"o I/O+ [l(v~)'/h/s+( ~)'5~

in our notation. Equation (7) is seen to reduce
to (9) when 8 and A, the interaction terms, are
negligible.

As was done in I, it is instructive to examine
(7) for two types of electron-molecule mean free
paths in which (a) r=X/v=constant, and (f)
X is independent of the energy.

For case (a) in which the time r between col-
lisions is a constant, (7) reduces to

fp = No exp
1+108'/b

1+[&P(qr) 2/g/1y (~r) 25+10PA r/f, 2k T
(10)

Computing A and 8 from (10) we obtain

P(v )'/~-
PA =8 1+, B=NgL',

1+(a) r) '

which when replaced in (10) give us the Max-
wellian distribution

fo No exp[ mv——'/2k—(T+T') 5,

be noted that at frequencies of the order of 20"
c.p.s. , the excess electron temperature T' is
independent of pressure for a large range of
pressures, and is given by

—',k T' = M/4(y/au)'. (12')

We next compute the drift velocity 8, from
which the current density is computed. We have,

cV(yr)'
)kT'=

4(1+co'r')
(12)

0--
~h ~ IO /CC

I +e ill'Ice
6

No [m/2vk(T+ T') 5 &—n—

Distribution (11) is found to be independent of
the electron density and so should be identi6ed
with (9) for the same assumption of mean free
path. This is easily seen to be the case. It should

4 See reference 1, p. 509.

4
I g p'e(ce

2 4 6 I IP IP I4 16 x

FK'. 1. Comparison of the electron distribution f0 for
three critical electron densities. The gas is assumed to
have a pressure of 1 mm, atomic number of 20, temperature
of 300'K. The electric field amplitude is assumed to be
1 volt/cm and the frequency, 10'o c.p.s. At electron
densities of 10'/cc or less, the excess electron temperature
r'=410'K.
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Tsar.E I. Mean energies and velocities of electrons
for three densities.

and the complex conductivity in turn by o in the
relation

7t!CC j= O e = rEe kle'. (16)

108
10"
1012

1.825 (10)' cm/sec.
1.347
1.088

0.145 ev
0.055 ev
0.039 ev

Ke then obtain for the complex conductivity,

O' = 0'7 ZO s

from (2),

4m
nv, =

~~ (fi cospot+gi sincot)v'dv. (13)

=ne'r(1+ivor) /m(1+ (d'or) ')

When +~10 ', r~10—,cur&&1 so that

(r =inc'/moo

(17)

4m ~" yVV3

nv, =

)(fp'(cospot+ pir singlet)dv. (14)

The current density j is then given by

This is the result obtained from ordinary dis-

iVIaking use of (5), (13) becomes persion theory when the damping is disregarded. '
lt should be pointed out that since (11) and (9)
are identical for this choice of cross section, and

3 & p 1+(&or)P hence independent of electron density, that (12)
and (17) are special case of Margenau's results. '

In case (b) we consider the distribution (7)

f d t under the condition that the mean free path X be
independent of the electronic energy. Because

be given by the integrations must be dealt with numerically,
v, = yr(cospot+ por sinptt) /1+ ((sr)'-'. and the frequency range for which this work is

of interest is of the order of 10,000 megacycles,
we choose pressures for which ark&&v over most

j=ne8„ (I&) of the range of v and approximate (7) by

x&+ (10BX/b) p&

fp=Np exp
2 p t"yq ' 10pAX1+--( —

(
xP+ PP

3bE &pob
dx (18)

where x =mvP/2k T
If we use the following notation,

lowing. When the interaction terms b~ and b3

are neglected in (19), we have

bi = (10BX/b)PP,

bp=1+ p(PI&)(v/~)',

b p
= (10PAX/b)P&,

we can write (18) as

so that

and

fp=Npe *», -

Np ——n((P/Pr) bp) &,

PA =bpB.

(
* x&+bi

f —N exp — ' dx
b xP+b,

Thus, at low densities, the variable term in (20)
vanishes with 1 —(B/pA)bp. The low density
approximation to (17) is therefore the Max-
wel lian function

We find that the integrand of the indefinite
integral may be written in a more meaningful
fashion, i.e.,

fp Np expL ———mvP/2k(T+ T') ], (21)

where the excess electron temperature ~k T'
=M/4(y/pi)P, agreeing with the result in (12')

(20) for quite a different electron-molecule cross
3 p ~ J. A. Stratton, Electromagnetic Theory (McGraw-Hill

Hook Company, Inc. , New York, 1941), First Edition, p.
The significance of 20 is seen from the fol- 327.
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section. This result is of course in accord with
AIargenau's Eqs. (23) and (24).'

At high densities, (19) reduces to the Max-
wellian form

fo No——exp( —mv'/2kT). (22)

The transition from low to high densities is
shown in Fig. 1.The mean energies and velocities
at the three densities exhibited in Fig. 1 are
given in Table I.

AVe next compute the effect of electron density
on the conductivity when X is constant. After
ehminating fi and gi from (13) using (3), and
making the approximation co)&&v, we find that
the drift velocity f, is given by

8.= y/ca[(48/3coX) cos&ut+sincot j,
showing that the in phase current is very much
smaller than the out of phase current at these

frequencies and pressures. The complex con-
ductivity o defined in (16) becomes

~ = (ne'/m~) D4r/3~X)+i j
=' i(ne'/mes).

This is identical with the result obtained for the
constant r case. The effect of varying density is
here small, but of course can be readily estimated
from the calculated values of v given in Table I.

In conclusion, it should be noted that whereas
in the d.c. case, we noted a lowering of the
entropy for increasing density, in the high fre-
quency case, the drift velocity (in phase com-
ponent) drops off with increasing density (see
Table I) so that the same statement about en-

tropy cannot be made. Since the out of phase
component remains constant while the average
velocity reduces for increasing density, the en-
tropy is reduced to this extent.
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A method for measuring the complex permeability, p, ,
of a ferromagnetic metal is described. The determination
of both components of p, is accomplished by a simultaneous
measurement of the changes in attenuation and phase
velocity introduced into a conducting system by the ferro-
magnetism of one of its walls. An experimental technique
involving pulsed magnetic fields is used. Values of p, for
samples of magnetic iron at 200 and 975 Mc as a function
of a polarizing magnetic field (which is parallel to the high

frequency field) are compared to the static incremental
permeabilities measured on the same sample. The inter-

pretation of the experimental results indicates several
characteristics of the magnetization in iron: the upper
limit of domain dimensions in polarizing fields less than
500 oersteds is 10 4 cm; domains have different degrees
of stability in the applied field; "weak-field domain" wall

displacements are practically eliminated at the frequencies
used; spin rotation and "strong-field domain" wall dis-

placements are only slightly damped and contribute to the
magnetization in weak as well as strong fields. Studies of
hysteresis phenomena are discussed, and results on two
types of permalloy presented.

I. INTRODUCTION

'I'UMEROUS investigations' have shown
that two basic mechanisms are responsible

* Paper I of this series, subtitled Magnetic Iron at 200
Mc, appeared in Phys. Rev. 71, 322 (L) (1947).The method
and its application to iron and permalloy at 200 Mc were
briefly presented at American Physical Society meetings
in January and A ril, 1947. Phys. Rev. 71, 472 (Abstracts
L4 and L5) (1947; Phys. Rev. 72, 173 (A) (1947).

*~ It is a pleasure to acknowledge the invaluable as-

for the changes in magnetization of a ferromag-
netic substance placed in an external magnetic
field. These mechanisms involve two different
effects of the field on the configuration of the
magnetically saturated regions, called domains,

sistance of Matthew Maloof in carrying out the experi-
mental work described in the present paper.

t R. Becker and W. Doering, Ferromagnetismus (Ver-
lagsbuchhandlung Julius Springer, Berlin, 1939).


