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The probability distribution of the number of electrons in an “‘avalanche” in a low pressure
gas discharge is calculated and the result applied to the calculation of the breakdown prob-
ability. Under some simplifying assumptions the probability P, that the avalanche caused by
one initial electron, liberated from the cathode, leads to breakdown is found to be

Py=1-1/q

Pa=0

if g>1
if ¢<1,

in whichg=+ (exp[ﬁ,"a(x’)dx’]—— 1) is the average number of secondary electrons liberated at
the cathode as a result of the avalanche of the initial electron. The calculation has been gener-
alized to the case that the initial electron is liberated in the gas. Finally the relation between the
breakdown probability Po and the statistical distribution of sparking time lags is discussed.

I. INTRODUCTION

SELF-SUSTAINING gas discharge is pos-

sible only if the voltage between the elec-
trodes exceeds a certain critical value. The
transition from the non-conducting to the con-
ducting state is called a breakdown or a spark,
and the smallest value of the applied voltage at
which breakdown can occur is called breakdown-
or sparking-potential. The question has been
raised in the past as to whether a sharp criterion
for breakdown can be applied and if so, whether
the breakdown potential has a theoretically well
defined wvalue. These questions have been
answered in the affirmative by Braunbeck! and
Hertz? for the case of a gas at low pressure, using
some simplifying assumptions.

In a recent article, L. B. Loeb? has indicated
that in general most sparking thresholds are de-
termined by an equation of the form ¥ exp(ad)
=1, where exp(ad) represents the electron multi-
plication resulting from ionization by collision
in the gap length d, and v is related to the prob-
ability of liberation of secondary electrons (the
definition of @ and v will be given in Sections I1
and 1II). In this article Loeb has indicated that
in the prototype equation both v and exp(ad)
represent the average values of quantities which
are subject to considerable statistical fluctua-
tions. The magnitude of these fluctuations has a

( ;;N'I) Braunbeck, Zeits. f. Physik. 39, 6 (1926); 107, 180
1 .

2 G. Hertz, Zeits. f. Physik. 106, 102 (1937).

3L. B. Loeb, Rev. Mod. Phys. 20, 151 (1948).

bearing on the interpretation of breakdown-
potential measurements, and a statistical treat-
ment of the spark formation is therefore im-
portant. Such a treatment has been given pre-
viously®? in an incomplete way insofar as the
fluctuations from the average value exp(ad) of
the electron multiplication factor were neglected.
In Section II it will be shown that this neglect
is not justified, and it is the purpose of this paper
to take these fluctuations into account.

The fact that most processes in a gas dis-
charge, such as ionization by collision, etc., are
chance phenomena, has the result that an initial
electron, liberated in the gas or at the cathode
by an external agency (e.g., radiation), does not
invariably lead to breakdown, even when the
applied voltage exceeds the breakdown potential.
In order to understand this qualitatively we shall
give a rough sketch of the mechanism of con-
duction by a gas.

The initial electron will be accelerated in the
electric field and will undergo elastic and inelastic
collisions with gas molecules, ionizing some of the
molecules. The newly created electrons will take
part in the process of ionization and thus a so-
called ‘“‘avalanche” of electrons and positive ions
is formed. It has already been mentioned that
the number of ion pairs in an avalanche is subject
to considerable fluctuations. The electrons even-
tually reach the anode, leaving behind the
positive ions, which drift back toward the
cathode. In order to maintain the discharge new
electrons must be liberated in the gas or at the
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cathode by action of positive ions, photons, or
atoms in metastable states, created by the elec-
tron avalanche. Because of the statistical char-
acter of these processes it may occur at a certain
stage in the development of the spark that there
is no supply of new electrons, as a result of which
the discharge breaks off. If the probability of
interruption is denoted by Q, then P=1—Q s the
probability that the discharge is not interrupted,
which can be defined as the breakdown prob-
ability.

Since it is not yet possible to give a rigorous
calculation in which all secondary processes and
the influence of space charge formation are taken
into account, we limit ourselves to the case of a
gas at low pressure in which (1) the principal
means of maintenance of the discharge is through
liberation of secondary electrons from the
cathode by positive ions, and (2) the effects of
space charge accumulation on the breakdown
probability may be assumed to be negligible. As
shown by Schade,* space charge does not play
an appreciable role in the first and most im-
portant stage of the development of a spark in
a gas at low pressure. Furthermore we restrict
our treatment to cases in which the geometry of
the discharge tube is such that the electric field
is a function of one coordinate only, which we
denote by «x. This restriction is satisfied in
common cases, such as a uniform field between
plane parallel electrodes, and the field between
coaxial cylindrical electrodes.

Within the simplifying restrictions given above
the probability distribution of the number of
electrons in an avalanche will be calculated in
Section II, and the result will be applied to the
calculation of the breakdown probability in
Section III. The breakdown probability is de-
noted by P, if the initial electron is liberated at
the cathode. In general, if the initial electron is
liberated at some point x in the gas, the break-
down probability is denoted by P,. Besides the
dependence on x, the breakdown probability will
also depend on operational conditions such as
the nature and the pressure of the gas, and the
voltage between the electrodes.

* R. Schade, Zeits. f. Physik. 104, 487 (1937).

WIJSMAN

II. PROBABILITY DISTRIBUTION OF THE NUMBER
OF ELECTRONS IN AN AVALANCHE

To every point in the discharge is assigned a
coordinate x. Let the cathode be at x=0, the
anode at x=d. The energy distribution of the
electrons will depend in general upon x. Therefore
the probability a(x)dx that an electron ionizes
while drifting through a region between x and
x+dx also depends upon x. « is Townsends first
ionization coefficient.

One may now ask what the probability p(z, x)
is that a given electron which started from the
cathode has grown to an avalanche of # electrons
at a distance x from the cathode. We assume that
in every ionization only one additional electron
is created.

The value of (1, x) is easily found. It is the
probability that the electron has not ionized at
all between x=0 and x=x, and is given by

p(1, x) =exp[ —S(x)], (1)

in which

S(x) = f ala)dx'. @)
0
In order to find an expression for p(n, x) we
reason as follows: the probability that the
avalanche contains #—1 electrons at x=x' is

P(n“l, x’)- (33)

The probability that one and only one of these
electrons will ionize in the region between x’ and
x'+dx' is (n—1)a(x")dx'(1 —a(x')dx")*2 This
approaches, as dx'—0
(n—1a(x’)dx’'. (3b)

The number of electrons in the avalanche has
now increased from #z — 1 to #, and the probability
that none of these 7 electrons will ionize in the
region between x’+dx’ and «x is

exp[ —n{S(x) —S(x')} 1. (3¢)

If we take the product of the expressions (3a),
(3b), and (3c) and integrate over x’ we get
(for n>1)

p(n, x)=f p(n—1,x")(n—1)a(x)dx'
" Xexp[—n{SE) - SE)}T @)

The solution of Eq. (4), in view of Eq. (1), can
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easily be shown to be:

b(n, x) =exp[ —nS(x) J(exp[S(x)]-1)*.  (5)

In particular, for the avalanche at the anode we
have,

b(n, d) =exp[ —nS(d) J(exp[S(d)]-1)"".  (6)

The expectation value of # can be obtained from
Eq. (6) to be

i=3 np(n, d)=exp[S@)]

=exp[f a(x’)dx’]. )

We then can write (6) as:
p(n, d)=1/n(1—(1/m)"1.* (8)

For 7n>>1, which is the usual case, Eq. (8) can be
approximated by :

b(n, d)=(1/n) exp[ —n/7], &)

which shows that p(n, d) is exponentially de-
creasing with #. This formula also shows that
the fluctuations of # from the average value 7
are large.

If the initial electron is not liberated at the
cathode, but at some point x in the gas, the
avalanche will be shorter and therefore on the
average will not contain as many electrons. Let
the average number in the avalanche be 7, then
for the probability distribution we have by
analogy to (8),

1 N
pz(ﬂ, d) ‘—":“(1 "—_—) .
Nz Ny

III. BREAKDOWN PROBABILITY

(8a)

We may proceed to calculate the breakdown
probability P. This calculation is an extension
of the one given previously by Hertz.?

Suppose that the initial electron is liberated
at the cathode. This electron creates an avalanche
containing n electrons and n—1 positive ions.

* After this article was written, it was kindly pointed
out that Eq. (8) had previously been derived by a slightly
different method by W. H. Furry, Phys. Rev. 52, 569
(1937) in an article “On fluctuation phenomena in the
passage of high energy electrons through lead.” In view of
the different field of application, the article had escaped
our notice. The parallelism of the statistical phenomena in
electron multiplication in showers and in gas discharges is
interesting.
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The positive ions drift back toward the cathode
and liberate secondary electrons, which create
new avalanches, etc. Since the liberation of elec-
trons at the cathode is a chance phenomenon, at
a certain stage in the process all the positive
ions may have drifted out of the discharge with-
out liberating any new electrons. In that case
the succession of avalanches is interrupted, the
probability of interruption being denoted by Q,.
The probability that the succession of avalanches
goes on indefinitely is then given by

Py=1—0,. (10)

We assume that each positive ion has a prob-
ability v of liberating an electron at the cathode,
while the probability that one positive ion
liberates more than one electron is assumed to
be negligibly small.

The positive ions from the first avalanche
liberate » secondary electrons with a probability
#o (»=0, 1, 2---). We want to investigate the
probability that the discharge will break off for a
certain value of ». For »=0 it is clearly 1, for
v=1 it is by definition Q,, in general it is Q¢ in
view of the fact that the processes caused by each
secondary electron are independent of each
other. Therefore it is immaterial also whether the
secondary electrons are liberated at the same
time or not. We then get

QO = i uOvQOV-

=0

(11)

The probability #, can be calculated as
follows. The first avalanche yields 7z electrons
and #n—1 positive ions with a probability p(z, d),
given by Eq. (8). The probability that »—1
positive ions liberate » secondary electrons is

(n;—l)v’(l—v)"”“’-

Therefore :

e s, Yty

n=1

Making use of the relationship

1 = (A +D)!
ar=(1—a) !,

blx=o !

if |a] <1
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the summation in the expression for %, can be

carried out with the result:
q'
Uy =——, (12)
(q+1)v+l

in which

q=7(ﬁ'—1)v (13)

and ¢ has a simple interpretation. Itis the average
number of secondary electrons liberated at the
cathode if the initial electron started from the
cathode. The current in a discharge will on the
average increase or decrease in time depending
upon whether ¢ is greater or smaller than unity.
The equation g=1 represents the classical con-
dition for a sparking threshold under the
assumed conditions.

After substitution of Eq. (12) into Eq. (11),
we obtain

@ qy 1
Q=X = :
CREHDTT g+ 1—g00

We can solve for Qp and find the two values
Qo=1 and Qy=1/q. The corresponding break-
down probabilities are, according to Eq. (10):
Py=0and Py=1—1/q. From physical considera-
tions it is clear that we must take the first solu-
tion in the case ¢<1, and the second in the case
¢>1. Mathematically this follows rigorously from
a more complicated derivation, not given here,**
which unambiguously gives the result

Py=0 for ¢<1,
Py=1—1/q for ¢>1. (14)

** The steps in this derivation are as follows. The
probability w(a, b) that ¢ primary electrons, starting from
the cathode, are succeeded by b secondary electrons can
be calculated to be,

wie, )= (*Fy )@t n-e
Qo can be given in the following form,

Qo= b;} ﬂgv(l, a)w(a, b)- - w(z, 0)

(infinite number of parameters a, - --z), which can be
evaluated and gives the result:

Qo=(1/29)(g+1—((g—1)?))3.

The cases ¢<1 and ¢>1 are distinguished by the value of
the square root

g<1, ((g—1)»)¥=1—gq and therefore Qp=1,
g>1, ((g—1)?)t=g—1 and therefore Qo=1/g,

which immediately leads to Eq. (14).
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This solution, in contrast to the one by Hertz,?
is simple and explicit in form. It is seen that P,
is appreciably less than unity in a region extend-
ing far beyond the threshold ¢=1. However, P,
as a function of the potential difference V
between the electrodes is determined only if one
knows ¢ as a function of V. Since in general ¢
increases rapidly with V in the region above the
breakdown potential, Py may rise from zero to
a value very close to 1 in a rather narrow voltage
region in contrast to values of g.

Suppose now that the initial electron is
liberated at a point x in the gas. In analogy to
Egs. (10), (11), (12), and (13) we have

P;c:l"_Qz, (108.)
Qz = Z=0 uQOO', (1 la)
Uz =[g."/(g-+1)"*], (12a)
in which
ge=(—1). (13a)

Substitution of Eq. (12a) into Eq. (11a) gives:

@ qz“
Q=2 ———Qv.
s (qz+1)v+l
For ¢<1, Qo=1, so that Q,=1.
For ¢>1, Qo=1/q. In that case we find:

@ qzv q: -1
Q==Z———q"’=(qz+1—— :
=0 (g+1)+1 q

Substitution of the two values of Q, into Eq.
(10a) gives as a final result:

P.=0for ¢<1,
P.,=((1-1/9)/(1—1/gq+1/gz)) for ¢>1

in which Eq. (14) is included as a special case.

Since ¢.<gq for all values of x it follows from
comparison of Eqs. (14) and (14a) that P, <P
for all values of ¢>1.

The calculations can easily be extended to
cases in which more than one initial electron is
liberated at the same moment. For example in
the case that N electrons are liberated at point x
in the gas the breakdown probability is equal to
1—Q.". All the curves for the breakdown prob-
ability as a function of ¢ have the feature in
common that they are zero for ¢<1.

(14a)
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The breakdown potential can be defined as the
potential difference between the electrodes for
which g=1. It follows from Egs. (14) and (14a)
that below the breakdown potential (¢<1)P =0,
which means that the series of avalanches discon-
tinues sooner or later. It must be emphasized,
however, that this only holds in the case of a
gas at low pressure. At higher pressure, where
space charge formation is an essential element
in the development of the spark,® the breakdown
probability may be quite different, and there
may be no well defined breakdown potential
below which the breakdown probability is
exactly zero. An alternative definition of the
breakdown potential for this case is discussed by
Loeb.3

IV. EXPERIMENTAL DETERMINATION OF
BREAKDOWN PROBABILITY

There are several experimental methods by
which the breakdown probability can be deter-
mined. One of these is to observe the time lag
between the application of a certain voltage
between the electrodes and the occurrence of a
spark, while the cathode is irradiated con-
tinuously with ultraviolet light giving a known
number of initiating electrons from the cathode
per second. Experiments and calculations by
Zuber,® V. Laue,” and Schade,* prove that the
time lag consists of two parts. The first part
gives a contribution subject to statistical fluc-
tuations and is caused by the fact that break-
down depends first on the liberation of an initial
electron by the ultraviolet light, which may
occur with some delay, and second on the prob-
ability that this initial electron leads to break-
down. The second part of the time lag gives
approximately a constant contribution and is
due to the fact that the current has to build up
from zero to a finite value, the magnitude of
which is more or less arbitrarily determined by
the experimental observability. This formative
time lag is not appreciably influenced by the

5L. B. Loeb and J. M. Meek, J. App. Phys. 11, 438,
459 (1940). L. B. Loeb and J. M. Meek, The Mechanism of
the Electric Spark (Stanford University Press, California,
1941). L. B. Loeb, Fundamental Processes of Electrical
Discharge in Gases (John Wiley & Sons, Inc., New York,
1919). H. Raether, Zeits. f. Physik. 112, 464 (1939).

6 K. Zuber, Ann. d. Physik 76, 231 (1925).

7U. V. Laue, Ann. d. Physik 76, 261 (1925).
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statistical fluctuations in the number of charged
particles present, because these fluctuations are
only important in the very early stage of the
development of the spark.* The formative time
is of course strongly dependent on the voltage
between the electrodes. It should be remarked at
this point that the breakdown probability, as
calculated in Section III, gives the probability
that the series of avalanches goes on indefinitely,
whereas the result of a measurement depends on
the probability that the series of avalanches is
not interrupted during a finite time interval,
fixed by the measurement. However, if this
time interval is large compared to the time it
takes for the positive ions to cross the gap, the
results of Section III will give the right value
for the breakdown probability to a very good
approximation.

An effective method in observing the sparking
time lag employs the Kerr cell optical shutter.
This method has been used by Wilson?® to observe
sparking in air at atmospheric pressure. The
results of measurements of this type give the
probability that a spark occurs within a fixed
time interval after the application of a voltage
between the electrodes. This probability is called
by Wilson sparking probability, but should be
clearly distinguished from the breakdown prob-
ability as defined in this paper. For the relation
between both probabilities the following ex-
pression can be derived.

R(V, T) =1—exp[—nPo(T— To):] for T'> To

=0 for T<T,, (15)

in which R(V, T)=probability that a spark
occurs within a time interval T after application
of a voltage V between the electrodes, n=aver-
age number of electrons liberated per second at
the cathode by an external source of radiation,
Py=breakdown probability for each liberated
electron, for a gas at low pressure given by Eq.
(14), and To=formative time lag. Py and T, are
both functions of V.

With help of Eq. (15) the theory of breakdown
probability in a gas at low pressure, as presented
in this paper, can be checked experimentally.
The only experiments of the type described
above have been performed in air at atmospheric

8 R. R. Wilson, Phys. Rev. 50, 1082 (1936).
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pressure, and therefore have no bearing on the
theory valid for a gas at low pressure. The
results of these experiments indeed seem to
indicate that at high pressure the curve showing
P, as a function of ¢ is markedly different from
the type of curve expressed by Eq. (14),
especially at the foot of the curve. This is not
surprising since the processes of spark formation
in the two cases—high and low pressure—are
quite different.

JULIUS H. CAHN
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The Boltzmann transport equation has been solved for the electronic velocity distribution
function in a high frequency gas discharge. The distribution is examined as a function of the
electron density. The conductivity is computed for two electron-molecule cross sections, one,
in which the cross section is inversely proportional to the electron velocity and two, in which
the cross section is independent of electron energy. The results show the extension of Margenau'’s

distribution to high densities.

HIS paper is an extension of the work of
Margenau! in which the Boltzmann Equa-

tion
(¢/m)E-Vf=(3.f/t) (1)
was solved for high frequency fields E,=E coswt
for the case of low current densities. In it we
will apply the results of a former paper? (herein-
after referred to as I) in which the Coulomb
interaction term (8.f/d¢); of the Boltzmann
Equation was derived. Following the notation
in 1, the distribution function f(v), normalized
to the electron density 7, will be expanded in the

form

F(v) =fo(v) +v.(f1(v) coswt+gi1(v) sinwt).  (2)
The approximate collision term (d.fo/df): is
given by

acfo

ot

in which s=1?, 4=28"/i*fuds, B=2£fo(0), £’
=16n%/15-¢*/m? Inép/e?, p=(&1/127ne?)?, e and

1 H. Margenau, Phys. Rev. 69, 508 (1946).
2]. H. Cahn, Phys. Rev. 75, 293 (1949).

10 ds?
) = (A + B, 3)
1 st ods

m are the charge and mass of the electron; the
average energy of electrons relative to electrons
is & that relative to ions is &.

We use the same electron-molecule and elec-
tron-ion collision term as in I, namely

() 22 grva,
at )M PRI AR )
where B=m/2kT, 6=2m/M, T is the gas tem-
perature, and M is the molecular mass, so
that our total d.fo/d¢ for electrons, molecules,
and ions is the sum of (3) and (4).

We will make the same simplifications as in
I in which the Coulomb interaction was neglected
in the momentum balance equation. We can
then use Eq. (23) in the paper by Margenau and
Hartman,?

acfo Y d
=——(v*1),
.  6vidy

4 Y
fitwgi=——f(v),
A v
(5)
g1=(wN/v)f1.
3 H. Margenau and L. M. Hartman, Phys. Rev. 73, 309
(1948).



