
BE(a)/8~=g [J(J+1)—E'(~)j
+ (2J+1)(m+-,')H'(d/de) (H/(G —E))

3(~'+~+ (1/2))II[(d/«) (II/(G —~))j+
16J'(1+(1/2 J))'(1—%'/(G —~)3')'

can be taken from the table, and

BE(a)/8~ =J(J+1)[ig(~)/a~] . (14)

(13) The derivative Bq(~)/8~ is evaluated for constant
X, and must not be confused with the derivative
Bg/BX which is given, together with q, in the table.

APPENDIX
The results of Eqs. (12) and (13) are to be
substituted in Eq. (7). Ho= aP ~+bPP+cP, ',

H'= BcP,~.

(is)
(i6)

C. The Correspondence PrincipIe
Approximation

The result of reference (6) of primary interest
in the present work is the tabulation (Table I)
of a "reduced energy ratio, "

q, as a function of a
quantum number ratio ), and ~. q and X are
defined by

q(K) g ~=E(K)g ~/J(J+1), X=I»-/[J(J+1)]».

I» here is the limiting (prolate or oblate) sym-
metric top quantum number. q(~) and Bg(~)/8~

Then, if E(a, b, c) is an eigenvalue of the unperturbed
problem (i5), and E' the first-order energy correction due
to (16), E'= bc{Pal,', where the angular brackets denote an
average over the (unperturbed) eigenstate corresponding
to E(a, b, c).

Let E(a, b, c+bc) be the corresponding eigenvalue of
the Hamil tonian,

H =aP, '+bPP+ (c+Bc)P,',
and define e such that E(a, b, c+Bc)=E(a, b, c)+E'+e.
Then

8E(a, b, c) l. E'+e= lim
Bc bc~

but &=0(bc'), so BE(a, b, c)/Bc={P 2).
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On the Space Distribution of Slow Neutrons

G. C. Wicx
University of California, Berkeley, California
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The behavior of the neutron density about a plane- or point-source of fast neutrons within a
homogeneous slowing-down medium has been re-investigated. For the case of constant mean
free path a known analytical expression for the neutron density has been reduced to a form,
which is valid for slow neutrons and for any distance from the source. The feasibility of a
numerical evaluation of the formula is demonstrated for M= 1 (hydrogen). In particular, the
asymptotic behavior at very large distances has been studied. For the more realistic example
of a medium in which the mean free path decreases with decreasing energy of the neutrons,
formulae are presented describing the asymptotic density and the asymptotic energy spectrum
at large distances from the source.

I. INTRODUCTION

HE present paper is an extension, in two
directions, of previous work' on the trans-

port equation for the diffusion and slowing-down
of neutrons about a point source in an infinite
homogeneous medium. First, the formal solution
for the case of constant mean free path has been

' M. Verde and G. C. Wick, Phys. Rev. 7'1, 852 (1947),
henceforward referred to as "A."

reduced to a numerically manageable form for
sufticiently slow neutrons at all distances from
the source. Secondly, for the case of a mean free
path that decreases as the energy of the neutrons
decreases, an asymptotic formula valid at large
distances from the source has been derived.

A partial result for the first case, namely the
asymptotic form of the constant-mean-free-path
solution at very large distances was communi-
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cated by the author to Dr. Marshak, who kindly
included it in his general report on neutron
slowing down. ' For the convenience of the reader
we shall adhere as far as possible to Marshak's
notation, which is not very difkrent from that
in "A." Thorough familiarity with Parts I and
III-D of Marshak's report will be assumed and
those parts of our argument that have already
been reproduced in the report will be treated
summarily. Reference to "M" also allows us to
generalize immediately our formulae to the case
of an arbitrary mass number M of the slowing
down element. For simplicity we shall omit the
generalization for the case of a mixture, which is
fairly obvious; we shall also neglect neutron
capture and inelastic scattering.

The spatial distribution of neutrons about a
point source can be easily derived from the dis-
tribution about a plane source, see "M" Eq.
(62). We shall therefore limit ourselves to the
latter case, which is slightly simpler. Our dis-
tribution function P will thus be a function of s,
the perpendicular distance from the plane source,
of u the logarithmic energy variable (u=0 for
the primary fast neutrons of velocity vo) and of

p the cosine of the angle between the velocity and
the z axis. Integrating over the solid angle we
obtain Po(s, u), which is the main function we

wish to determine. Specifically the density of
neutrons at the distance s (we shall always
assume z &0, since the density is an even function
of s) within the energy internal du is

v 'l(u)&0(s, N,)du,

problem the mean free path is the same as
before (=1 by definition) and the variable
substituting u appears simply as a constant
parameter, that determines the scattering prob-
ability per unit solid angle: g(JLO, s), po being the
cosine of the scattering angle. In the general case
of mass number M of the scattering atoms, this
function is given by Eq. (140b) in "M" or

g(p s) =—(~' —&+I') 'L~(i) j'"+' (2)

Here

and
a = (M+ 1)'/4M;

p+ (p'+3P 1)'—
G(~) =

where g=2 InL(&+1)/(M —1)j. For 35= 1 see
also Eq. (32) below. It can be seen from Eq. (2)
that if M& 1 the functions g„(q) are holomorphic
in the whole complex plane of the g variable, and
satisfy the condition

G(ii) is the ratio v/v' of the velocities after and
before scattering through an angle arccosy. ' We
shall need later the Legendre coeKcients g„(s) of
g(~, s)

)+1
a-(s) =2~) d~& (~)g(i s)

—1

for instance

go(s)= (1+s) 'L1- """'J.
gi(s) =~(v+2) '(s+l) '

Xl s+1—i2M+(g+1+-,'M)e-«i+~i$ (5)

where I(u) is the mean free path and s is the
velocity (=voe ""). lim g„(s) =0. (6)

2. THE CASE OF CONSTANT MEAN FREE
PATH (1=1)

2.1 Out'l3ne of the Pxoceduxe

The classical method, which was independently
adopted in "A" and in the various papers sum-
marized in "M", is to reduce the transport
equation to a problem of the "one-velocity"
type, see "A" Eq. (2'), by means of a Laplace
transformation with respect to the energy vari-
able u, g being the new variable. In this reduced

' R. E. Marshak, Rev. Mod. Phys. 19, 185 (1947}.This
paper will be referred to as "M."

If M = 1 these statements hold true in the half-
plane (R(s) & —1, (R meaning real part.

After the transport equation has been further
reduced by means of a Fourier transformation
with respect to z, y being the new variable in
Marshak's notation (we use instead k=iy as in

3 The general form of Eq. (2) is easily understood if one
notices that the reduced transport equation describes
essentially the diffusion of neutrons having a power
spectrum e I"=(vo/v)~ l. It is seen that when neutrons with
this spectrum are scattered through any given angle, the
scattered neutrons have again exactly the same spectrum,
but owing to the change in velocity the proportionality
constant in the spectrum is changed in the ratio

(vtv')'" =
t |"(~)j'".
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Fir, . 1. The thick horizontal lines represent the "cuts"
in the complex k-plane, see Eq. {13).The continuous
vertical line is the integration path of Eq. (7). Two poles
k{q) and —k(q) are indicated, the strip between the dashed
lines is the convergence strip of the Fourier transform.
There may be other poles outside the convergence strip.

"A") one arrives finally at the formula

~+ joo

Po(z, u) = (1/27ri)') e—"'dk

see "M" Eq. (142a) or "A" Eq. (39). The real
constant a must be larger than the convergence
abscissa of the Laplace transform; in addition we
may assume o & —1, so that condition (6) always
holds true. The function pp must be obtained
from an infinite set of linear equations, "A" Eq.
(24a) or "M" Fq. (141a, b). Thus the problem
consists of two parts: determination of ItIp and
evaluation of the integrals in (7).

We are interested in the distribution of slow
neutrons, i.e. , large values of u. We assume for
instance u 10, corresponding to a reduction
from an initial energy of more than 20 kev to 1 ev.
On the other hand no restriction need be placed
on z. (We shall see, however, that when z is large
our formulae are valid under even Less stringent
conditions on u). We shall be able to eliminate
one of the integrations in Eq. (7) by the method
of residues. For the sake of clarity, we give first
a general outline of the procedure to be followed,
and fill in some of the details later.

It is dear, from the nature of @p as a Laplace
transform, that ~ in Eq. (7) must be so large
that all singularities of ~tIp in the q plane will be
"to the left" of the integration path with respect

to g. We may pull the integration path through
the pole g(k) having the largest real part (R(g) 4

and obtain a residue:

where

(1/2zi) I @De&"dq =e«'& "R+

R=—R(k) = lim [q —s(k) jpo(g, k)

The remainder. . . is an integral running to the
left of s(k) but to the right of the next pole. We
shall see that the difference bg between the real
parts of the two poles is at least of the order of —,'.
Owing to the strong factor e&", the remainder is
of the order e &"~e 5 with respect to the first
residue and can be neglected. ' We are then left
with the integral

—z+us'(kp) =0 (12)

defines ko as a function of z/u. Formula (11) can
be used, therefore, if we can construct a table of

' The position of this pole in the g-plane depends on k,
as we shall see.

'As a matter of fact, this is an overestimate of the
remainder.

$0(z, u) = (1/27ri) ~I exp( —kz+us(k)) R(k)dk.
—'400

(10)

We shall then consider k as a complex variable,
and displace the integration path towards the
right in the k plane. Considering the point kp

where the path cuts the real axis, we shall see
that we may choose kp to be a "saddle-point" for
61[—kz+us(k) j.At kp the exponential factor in
(10) has a minimum along the real axis and a
strong maximum along the path if this is chosen
according to the prescription of "steepest de-
scent. " The exponent is then expanded in a
Taylor series in the usual way

kz+us(k) = —kpz+uso—+ ,'ugp"(k k-p)'+-
where

so = s(ko), so" = q" (kp).

One has then

$0(z, u) = (2m so"u) IR(ko) exp( —koz+uso). (11)

VJe notice that the minimum condition at kp
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limp„= 0.
n=oo

(14)

The sequence @p, $~, ~ satisfies an infinite set
of equations

(2n+1)q.@. k(n+1)y.+, —kny„, =S„„—(15)

the first of which is inhomogeneous (b««=1),
while the remaining ones form a recurrent
homogeneous relation (8„«=0 if n/0). Here

g(k«), q'(k «), g"(k«), R(k«) as functions of the
real variable kp.

In the passage from (10) to (11) we have
tacitly assumed that the path of "steepest
descent" is a straight path cutting across the
real axis at right angles. Actually it is not straight,
but it will be shown that the validity of Eq. (12)
is not affected. It will also appear, that Eq. (11)
goes over into the customary "age" approxima-
tion at small distances, and at very large dis-
tances into the asymptotic formula that was
reproduced in "M" Eq. (175),

2.2 The Function P, (k, ii)

We summarize here the main results of "A,"
Sections 3.1and 4.1,concerning the determination
of the function @p, in addition some relationships
will be derived for later use.

Let us consider @p as a function of the complex
variable k. pp is at first defined as a Fourier
transform; as such it has a meaning only within
a convergence strip ki &(R(k) &k2. It will appear
later that k~ and k2 are functions of g. The
definition of pp may, however, be extended by
analytical continuation; an expression of pp as a
continued fraction was given in "A," see also
later, from which it was inferred that pp is a
one-valued analytic function of k in the whole
k-plane provided this is cut along the real
intervals

—~ &k& —1 and +1&k&+~. (13)

In the k-plane pp has only isolated poles. The
situation is in general as sketched in Fig. 1.

In order to determine pp one must consider it
together with the remaining Legendre coeffi-
cients &I, p2, of the angular distribution
function @(/i), "A" Eq. (11). Within the con-
vergence strip this is a regular function of the
cosine p, , so that

and it is assumed that g satisfies the conditions
for Eq. (6) to be valid.

The analytical continuation of pp outside the
convergence strip may be eAected by requiring
(14) to be valid everywhere in the cut plane.
Disregarding for a moment the first Eq. (15)
(for n =0), one can see that the recurrent relation
has two linearly independent solutions, since pp
and @& may be chosen arbitrarily. Out of this
double infinity of solutions, condition (14) selects
one linearly independent solution. In fact it may
be easily seen that the characteristic equation
"A" Eq. (19) has a root «such that

~
«

~
&1, while

the other root «'=1j«has
~

«'~ )1. Under such
circumstances, Poincarh's theorem, see "A"
Sec. 3.1, assures us that there is only one solution
such that

limp„+i/Q„= «.
n=oo

This solution obviously satisfies Eq. (14); for all
other solutions the ratio tends to «', and Eq. (14)
is not satisfied. The only exception occurs on the
"cuts, " where

~
«) =

~

«'
~

= 1; (this is the reason
why pp is not unambiguously defined on the
cuts).

Turning now to the remaining inhomogeneous
equation, or Eq. (15) for n=0, two different
cases may present themselves. Either the solution
satisfying (1/) also satisfies the equation

ypPp —k&i. =0

in which case the inhomogeneous equation cannot
be satisfied; or the left hand side of (18) is &0,
and then the arbitrary multiplicative constant
in the solution can be adjusted so as to make the
left hand side of Eq. (18) equal to unity, i.e. , so
as to satisfy the whole system (15).

This is, of course, the familiar relationship: if
the homogeneous system, which is obtained by
replacing b„p by 0, has a non-trivial solution,
then the inhomogeneous system has none, and
vice verse. The former case will occur only for
special values of the parameter k; these have
been called "eigenvalues. " For each value of q,
there may be several eigenvalues k(ii). When k

approaches an eigenvalue k(ii), the multiplicative
constant tends to infinity, so that pp has a pole
singularity at k =k(ii). On the other hand it may
be easily seen from the recurrent relation that
the sequence @p, @&, , etc. where: @p

——1, ~-
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~ . ~ remains Rnite, so that all the
coefKicients p have a pole singularity of, at most,
the same degree as 40. Once the eigenvalue k(g)
is known, the behavior of the sequence
at k=k(g) can be computed directly from the
equations

4o = &; yo —k4~ = lim&, —1 0;
yi)i —2k&2 —k&0 ——0, , etc. , (19)

i.e., by solving the honzogeneous system, with the
initial conditions 40=1, 4i ——yo/k.

The following formulae are of use in the actual
evaluation of &0. From the system (15) one easily
derives an expression of po ' in terms of Pi/40,
then of p2/Qi, . One arrives finally at the con-
tinued fraction'

X=limX =ke/2=-,'(1—(1—k')&) (26)

The expression

$0 '=(U —XU i)/(V —XV i) (22')

with the initial values

U0=1, Ui=&0, V0=0, Vi ——1. (24)

The exact expression (20) can also be written

4p ' ——(U„—X„U„ i)/(V„—X„V„ i). (25)'

A more rapidly convergent expression for po '
can obviously be obtained if instead of setting
X =0 in Eq. (20), we replace X„by the limit, that
follows from Eq. (17)

&)0 +0
—1

where

(20)

p. = kmm'/(4~'-1) .

)..= [kn/(2n 1)5y—./y. , (21)

was in fact found to be far more satisfactory than
(22) in the numerical evaluations, see next
section.

An interesting limiting case arises when for
some reason the coeScients g (g) are negligible
for m &n. Then

(27)

40 '= U./V. , (22)

where U„and V are both solutions of the recur-
rent relation

The continued fraction "A" Eq. (25) is ob-
tained on passing to the limit for e= . ' The
customary way of evaluation consists in breaking

up the fraction at the nth denominator, i.e. ,

setting X„=O in Eq. (20). One has then

and one can easily show' that

4„/4„ i = Q„(1/k)/Q. i(1/k), (28)

where Q„ is the nth Legendre function of the
second kind. This may be fed into Eqs. (21) and
(20) or (25) to evaluate &0 in a finite form. An

especially simple example of this kind occurs
when q~~ so that, see Eq. (6),

uin+i = Vn~n Paula —i (23) yo(~) =pi(~) =. . . =1,
Po(k, ~) =Qo(1/k) =Artanhk/k (29)

0.5

F&G. 2.

~ See I. Wailer, Arkiv f. Mat. Astron. Fysik, 34A, No.
3, 4and 5.

~ It will be noticed that the equation as printed in "A"
contains a slip.

as one can easily prove.
Finally we wish to derive an expression for the

derivative 8&0/Bk. Deriving Eq. (14) we get

(2n+1)y„By„/Bk k(n+1) BP„—+i/8k
—kn8&„&/Bk = (n+1)p„+i+np„ i. (30)

Multiplying Eq. (14) by —8&„/Bk and (30) by
+@„and adding, one obtains

A —A +i=n@~ i@„+(n+1)@~@~+i—b~08$~/Bk,

~ We spare the reader the derivation of Eqs. (22) to (25),
which are well-known in the theory of continued fractions.
One can also arrive at them directly, setting:

y =m k "(eI) '1.3 ~ ~ (2n —1), ur„=yoU —y
and inserting into Eq. (15).

I See for instance I. Wailer, reference 6, especially the
first paper.
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8@,/8k =2 P(n+1)y„y„+,
n~o

(31)

2.3 Numerical Evaluation of P,(k, g)

A „=nk(p i8&„/8k —g 8& i/8k)

(in particular:Ao ——0).Noticingthatlim A =0
and summing over n we have 0.0

0.1
0.2
0.3
0.4
0.5
0.5918+
0.64
0,7252+
0.89524
1

0
0.01007
0.04124
0.09670
0.183'
0.314
0.5
0.637
1.0
3.5

0
0.2030
0.4254
0.695
1.05'
1.60
2.483
3+22'
5.58'

38.615
2.36vl~

Txsr.E I.

2
2.091
2.40'
3.06
4.31
6.5

12.8
18.44
41.1

737
~11.1+

1
1.007
1.029
1.073
1.15
1.26
1.450
1.61
2.01
4.98

~1.18'

c (Eq.
(48a))

0.534
0.539
0.541
0.543
0.546

ceo =0.548

R(i -A)

0.823
0.752
0.696
0.655
0.594
0.58
0.553
0.522
0.500

As we shall see, when k is real and within the
interval —1&k&+1, &0 has a real pole if(k)
in the g-plane, such that g&0. This is what we
call the "main pole, " i.e. , the pole with the largest
real part, which is of paramount importance in
the method of steepest descent, Eqs. (10), (11),
(12). For small values of k the function g(k) can
be obtained from an expansion in powers of k-',

that will be discussed later for the general case,
see Eq. (65). For the special case 3f= 1 we have
obtained four eoefEicients of the expansion, thus

if =k'+ (l l/15) k'+ (1563/1575)k'

+(70709/118125)k'+
This was used for an evaluation of q, q', and g"
for k &0.5.

When 0.5 &k &1, however, it became necessary
to hnd the connection between g and k by a
numerical investigation of the function @0 as
illustrated by Fig. 2. Here @0

' is plotted as a
function of k' "for selected values of y, and the
pole singularity of pg appears as a zero for &0 ',
the position of which on the k axis varies as g
varies. This gives k as a function of g, or vice versa.

The 6gure is qualitatively correct for any
slowing down element (any M)."Quantitatively
we have carried out the program only in the case
of hydrogen (35=1). The calculation involves
the following steps:

First, the coefFicients g„(g) are computed for a
selected value of g, by means of the relation

g„+g(if) =g„(v)(2v+1 —n)/(2v+4+n) (32)

and the valises go=i/(1+v), gi=1(g+g) (Un-
fortunately a relation as simple as (32) does not
exist when lid A 1.)

Next a table of yo. .y and pi p is set up

"It is easy to see that U„and V satisfying Eqs. (23)
and |,'24) are even functions of k, so that po, Eq. (22), is
also even."In particular it is always true that the zero-point y(k)
increases from zero to + ~o while k' varies from 0 to +1.

for a given k, up to a suSciently high n, and the
sequences U and V are computed by means of
the homogeneous recurrent relation (23) (n =1,
2, ) starting from the initial values (24). The
expression (22') is then found to converge satis-
factorily to the value of &0 '(k, q). This process
is repeated for several values of k, and one of the
curves in Fig. 2 is obtained.

In practice it is only necessary to evaluate
&0

—' crudely for a few points so as to have an
idea of the position of the zero-point. Then @0

'
is evaluated more accurately for two or three
k'-values in the neighborhood of the zero-point,
which is then obtained by interpolation. It is
also possible to estimate by interpolation the
derivative 8&0 '/8k a.t the zero point; a more
accurate evaluation is obtained, however, from
Eq. (31) or

8yo-'/8k = —2 p(n+1)y.y.+ /yo' (33.)
nM

It may be pointed out that one has (see reference
8)

@0 'P. = L 1 3 (2n —1)/n! jk-"
X(U.—y V„). (34)

At the zero-point the term in V„vanishes.
Finally

8&& '/8k = 2 ELI '3' ' '(2n 1)/nlj'
e~o

X(2n+1)k '"-'U U +i (35)

involving only known quantities. It may be
easily shown that the series converges like

(2 l /k)2a —g &mn

The rather tedious procedure we have de-
scribed was actually carried out only for three g
values, indicated by an asterisk in the table
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below. It then turned out that in this region g
is almost exactly linear in (1—k) ' so that
accurate interpolation is easy. This behavior cor-
responds to formulae (48), (48a). As a conse-
quence it has been possible to compute without
undue labor a table of the function it(k) and its
derivatives il'(k) and s"(k).

In order to complete the table required by
the saddle-point formulae (11) and (12), one
has to evaluate R, Eq. (9).

iXow the function il(k) is defined by the
equation: &0 '(k, il) =0, so that

B&0 '/Bk—+ 's(k)8@p '/B-ii=0,

R = il'(k—)/(8@0 '/Bk) (36)

2.4 Asymptotic Formulae for k(il) When S—+~

An inspection of the values in Table I, to-
gether with Eq. (12) shows that when we make
the distance from the source s larger and larger
(keeping the energy u constant), we are led to
larger and larger values of g. At the same time
k(it)-+1, and e—+1, so that the convergence of
the sequence g to zero becomes very slow (see
Eq. (17)). This makes the convergence of the
expressions (22) or (22') unsuitable for numerical
work.

Although the y's are very close to unity when.

p is large, it is just their difference from unity
that determines the difference 1 —k(s), i.e. , the
quantity we wish to determine. In fact, as will

appear from the following, the differences
g„=1—y„cannot here be neglected up to a large
value of n. This makes also the method based on
the smallness of the g„'s (see Eqs. (27) and (28))
perfectly useless in the present case.

On the other hand, as we shall see, the recur-
rent system (15) takes for large g's a simple
asymptotic form, that makes the problem easier
than one might think.

In the hrst place, a simple asymptotic ex-

which may be computed from the value of the
expression (35). The results are summarized in
the Table I, which includes the data for k &0.5
obtained from the series expansion for g already
given and the expansion for R

R '=1—(2/3)k' —(l7/15)k4
+(48176/23625) k'+. . ..

pression may be given for the coellicients g (s),
when g—+ ~. Going back to the scattering func-
tion g, Eq. (2), we make use of the known
theorem, that if a function with a maximum is
raised to a high power, the ensuing sharp maxi-
mum is of Gaussian shape. Setting p, =cosO in

Eq. (3) and developing lnG(0) for small 0~

lnG(0) = O~'/2—3f
+ (04/24M) (1—3/M') + . . (37)

When this is substituted into Eq. (2) the 0'-term
yields a Gaussian, which decays to a negligible
value before the 0~'-term makes itself felt. (If g
is large, i.e. : il »cV.) Within the same approxima. -

tion one may replace the factor (3P 1+u')—&

simply by M ', so that finally

g(cosO, it) = (0./m M) exp( —il0'/M), (38)

(s+1 has been replaced by il in the exponent, for
the same reasons). In evaluating the integrals
(4) one may again make use of the fact that g,
Eq. (38), decays to a negligible value as soon as
0»(M/ii)&, which is a small angle. The main
contribution to the integral comes therefore from
small 0"-values, "for which one may use the well

known approximation

P„(cosO) = jo(Ln+2i]Q) (39)

where Jo is the Bessel function of zero order.
Inserting (38) and (39) into (4) one finds

a-(~) = ( /~) exp' —~(u+ l)'/4~j. (4o)

This expression has been compared with exact
numerical values by Marshak, with very good
agreement (see "M," footnote on page 231).

It may next be noticed that, g being large, the
exponential in Eq. (40) is a slowly variable
function of n in the whole region where it is not
negligibly small. This suggests the introduction
of a variable 0 =(M/4s)&(n+~~), the step lln= 1

corresponding to a very small step in 0 .
bo =(M/4ii)&, so that g„may be regarded as a

"It may be pointed out that this is not true if n becomes
very large. One may show, however, that (provided p is
large) the formula (40) represents g (g) correctly up to n
values such that Mn~/4g)&1, so that the exponential
becomes exceedingly small. In particular in the case of
hydrogen it is possible to derive from Eq. (32) a closed
expression for g when both n and y are large, no matter
what the ratio n/y is. For n))q the behavior of g as a
function of n becomes oscillatory and divers radically
from Eq. (40). These values are, however, so small that
the di8erence does not matter.
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+0/0 kf» ~

Using the difference notation

(42)

"ep~+ii= Pa+a it ~. ~be =—~(&4a+y+ b4~-y) ~ (43)
~'4n = ~4~+)- ~In-),

the remaining equations of the system may be
put into the form

Sy„„=[n/(n+ 1)]Sy„;
+L(2n+ 1)/k(n+1)](y„—k)y„, (44)

or alternatively,

&'4-+(ii+2) '~4.+(2 —2k 'V-)4. =0 (4~)

The difference notation emphasizes the similarity
to an eigenvalue problem of the Sturm-Liouville

type, and in particular to a Schrodinger equa-
tion. "

We assume now that g is real and )0. It may
be shown later that an eigenvalue k is then
necessarily real (see Appendix A). Since the
intervals —~ &k& —1 and +1&k&+~ are
excluded, and since the eigenvalues occur in

pairs of opposite sign (&0 being an even function
of k) we may limit our search to the interval
0&k &1.

A further limitation is given by the fact that
a positive k must be larger than sons@ at least of
the y„'s.i4 In fact, if k&y for all n's, Eq. (42)
shows first that (assuming for instance @0&0):

"In the latter case we may compare the expression
2 —2k 'y with 8—V{@),"2"being the energy and 2k 'y„
the potential. The eigenvalue problem then is of the type
encountered when the energy level is given and a propor-
tionality constant in the potential must be found.

"This is analogous to the theorem that the energy must
be higher than the minimum of the potential {see reference
&3).

smooth function of a practically continuous
variable 0.

Let us now turn to the study of the system
(14) when q is large and k tends to a pole k(g).
As we have seen already, the poles k(q) may also
be characterized as the "eigenvalues" of the
parameter k, i.e., the values for which there exists
a non-trivial solution of the completely homo-

geneous system

(2n+1)~„y„k(—n+1)y„„kn—y„,=0,
(n=0, 1, 2, )

subject to the condition (14). The first equation
(41) is now

Pi&$0 or: 8&i&0; subsequently Eq. (44) shows
that: 8&g2&0, , etc., so that @„ increases
monotonically with n, and cannot tend to zero.

Since, for large g, y„&go=1—n/g, we have
finally to search for an eigenvalue k in the small
interval

1—u/q&k &1 (46)

ki ——limt q(1 —k)]. (48)

'~ For comparison let s=2cr. Marshak's kr corresponds
to our kr/M.

showing that 1 —k is at most of the order of 1/g.
Again using Eq. (42) and (44) we easily see

that bing,
~ and similarly bp», 8&2, are at

most of the order of 1/it. Although the argument
is not valid up to indefinitely high values of n,
we may see that the statement is true even there
from Eq. (17), since 1 —e is of the order of 1/g
at the most.

Thus, p„ is shown to be a slowly variable
function of n of the same kind as g„(g), and we

are justified in regarding it as a continuous func-
tion of the variable 0. above defined. According
to (46) we get k '=1+ki/g (or k=1 —ki/g).
Inserting this, together with the expression (40),
into (45), and dividing by bo'= M/4g, we obtain

PP/Bo'+o '8$/8o.

+8k ki/M+—(0/M)(1+kig ')e "]&=0.

In the limit g~~, br~0, the diA'erences may be
replaced with derivatives and the term k»q '
may be neglected, so that, with

8n/3f =2(M+1)'/3P

the equation becomes

d'P/do'+ o
—'dP/d o.

+[ 8ki/35+2& '(3—5+1)'e "]@=0 (47)

which was reproduced in "M" Eq. (169)."This
equation, together with the boundary condition
to be explained below, may be regarded as the
radial Schrodinger equation for a two-dimen-
sional particle, —8ki/M' being the energy and
—2L(M +1) /M]' e" being the potential. o is
identified with the distance from the origin. For
all values 3II=1, 2, the equation has only
one bound level. The argument shows that k»

approaches a finite value when q~~. A more
precise definition of k» is
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Now to the boundary conditions; these are

p—+0 as 0~~, p regular at 0 =0. (49)

The first condition does not require any com-
ment. The second implies

2.5 Higher Approximations

In order to study the asymptotic behavior of
the neutron density it is desirable to obtain
some further information about k(g) when q is
large. Let us write

dy/da =0;
d'p/d0' = &L4k, /M' —}(&+1)/cV }'] (50)

s=kq(1 —k) ' —c, (48a)

and (m+1)qh„g +~=(n+$)p„' so that:

Byo-'/Bk = —[Sg/My'(0) ] " y'(0) o do",

moreover k =1—k~/q, ds/dk = rP/k& so that
finally

Thus,

R=sM@'(0) Skye P'(o)odo.
0

(R/g) „=lim(R/s)

exists and may be easily evaluated once the
eigenfunction p(o) is known.

for cr=0. That these are the correct conditions
may be seen on comparing them with the dif-
ferences 8&0 and 8'&0 obtained by extrapolation
from h@~ and b'pq, as computed from Eqs. (42)
and (45), again neglecting terms of higher order
in 1/g.

Summarizing the results obtained so far, we
can say that the function k(g) for large g can be
determined approximately by solving the radial
Schrodinger equation for a mass-point moving
with zero angular momentum in a plane under
the action of a Gaussian potential. Furthermore,
one can prove that even for M=1, when the
well has its maximum depth, the equation
admits only one discrete eigenvalue. For M
tending to infinity the we11 becomes so shallow,
that it is barely sufhcient for binding, k&/3f
tends to a very small though finite value.

Having evaluated k& numerically, the behavior
of k for large q's is given to a first approximation
by Eq. (48). Within the same approximation we

easily get an expression for R from Eqs. (33) and

(36). Since p„ is a slowly variable function of n,
we may set:

= (bo) ' ~. d~

where c may be regarded as a function of k or
alternatively of g. We shall prove that c tends
to a finite value c„when g~~, i.e. , when k~i.
We can write, therefore:

ki
k 1 — +0(g—'). (48b)

In order to evaluate c„we might try to improve
the method of the previous section, retaining
terms of a higher order in 1/g. In particular, we
ought to correct for the errors incurred in

replacing the finite di8'erences with derivatives,
errors which are, as one easily sees, of the order
of (bo)'= (3I/4g). It is much easier, however, to
arrive at this goal by following a different
method, that we have developed and which was
adopted by Marshak in his report. It consists in

going back to the integral equation, of which the
system (15) is the Legendre development (see
"A" Eq. (24) or "M" (163)), and introducing
directly into it the approximation (38). Let us
use the same notation as in "A", where ~ was
the unit vector representing the direction of
motion, and p, the cosine of the angle between ca

and the s axis.
We have shown that the Legendre coefficients

p„vary slowly when n varies, and are markedly
di8'erent from zero over a range of n values of
the order of (4q/ill) &. This means that the angular
distribution function p(p), of which the P„are
the Legendre coefficients, extends over a narrow
solid angle around the pole p, =1, having an
aperture of the order of (3E/4q)& We may the. n

use some suitable projection of the unit sphere on
a plane tangent to the sphere at the pole, such
that the pole is represented by the origin of a
system of cartesian or polar coordinates in this
plane, and such that the small area in which p
is diR'erent from zero is not appreciably distorted
by the projection. Then arc cosy is approximately
measured by the distance s of the represen-
tative point from the origin, and the angle
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8=are cos(u cs') is approximately measured by
the distance 5 between the representative points
of ~ and ~'. lt is, however, convenient to choose
the unit of length in the plane in such a way
that it corresponds to an arc of (M/4g) & radians,
so that the eigenfunction occupies an area in the
plane of order unity.

Let us first preserve the same degree of ap-
proximation as in the previous section. Writing
the homogeneous integral equation corresponding
to the system (41)" in the form

we see that all terms are of order 1/s. Conse-
quently, we may set the factor p, =1 on the left
side, and (1—p) = —(arc cosy)'/2 = Ms'/8g—, on
the right-hand side, remembering what we said
about the units. Similarly, we have

dk) = (M/4g)ds,

ds being the element of area in the plane; we
also write p(s) instead of p(p). Remembering
now Eqs. (38) and (48), Eq. (52) becomes

4k&p(s) + (M/2) s'y(s)

—(u/s)~l exp( —s'/4)g(s')ds'=0, (53)

where the integral term on the right-hand side
may be 'written also symbolically as: neap(s),
6 being the Laplacian operator in the plane. It
is then clear that the equation can be consider-
ably simpli6ed by means of a two-dimensional
Fourier transformation

y, =p(y) =(1/2s)) y(s) exp(ia. s)ds. (54)

We indicate the Fourier transform with the
same letter p, but set the variable vector e as an
index to avoid confusion. Owing te the fact that
@(s) depends only on the modulus of s, @, also
depends only on the modulus a =

~
e

~
. On apply-

ing the Fourier transformation the operator e

becomes simply e "whilst

r(s'y) = —n.y. = —(d'/da'+ a-'d/da) y..
'I In the same way as "A" Eq. (24) corresponds to the

inhomogeneous system (15).

On making these substitutions, the equation
immediately reduces to Eq. (47) of the preceding
section. This is indeed not surprising, as there is
the following rather trivial connection between
the two methods.

A development in Legendre polynomials is
essentially a development in eigensolutions of the
wave equation on the sphere, whilst the Fourier
transformation is a development of p in eigen-
solutions of the wave equation in the plane. On
a small polar cap on the sphere, such that the
curvature may be neglected, the first develop-
ment is practically equivalent to the second, this
being the deeper reason for the connection (39),
as is well known. The inverse of Eq. (54), or

p(s) = (1/2~) ' p, exp( ie s)da—

= l y.Jo(as)ada (55)

is, in fact, the limiting form of the Legendre
development "A" Eq. (11), apart from a dif-
ferent normalization.

We now turn to the next higher approxima-
tion. This does not present any special difhculty,
and we shall only sketch the main steps. Since it
is now important to consider the distortion in the
projection on the plane, we must decide upon
the type of projection we want to use. We choose,
for instance, the homalographic projection

s = (4q/M) &2 sin(~ arc cosy) = [8s(1—p)/M]~.
(56)

The polar angle on the plane: p remains equal to
the longitude on the sphere, of course. One has
then exactly

1 —p = Ms'/8g; des = (M/4g) sdsd &p. (57)

We must use the full expression (37) where the
arc distance 0 is given by

(4s/M) O' =S'+ (M/4g) I S'/12 —s's "/2
+ss' cos(q —a') (s'+s")/4I, (58)

where

S = (s —s')' =s'+s"—2ss' cos(y —y'). (59)

Equation (58) is derived from the cosine theorem
of spherical trigonometry. Within the same ap-
proximation we may not replace g by s+1 in the
exponent of g, as in Eq. (38), and we must also
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TABLE II.

2
0.689
0.600

12
2.24
1.42

16
2.90
1.81

use a better approximation for the factor
(clP —sin'8) &. Finally we find that the integral
equation may be written

U(p) +s—' 4k,c„p(s) —(3Iki/2) s'@(s)

+ (a/64' M) exp (—S'/4) p(s') fds' =0, (60)

4c„~ p'(s)ds = (M/2) s'p'(s)ds

—(a/64' kiril) ~,

r exp( —S'/4)y(s)

X@(s')fdsds', (62)

where @ is now the zero-order solution.
This solves in principle the problem of com-

puting the second order correction, i.e., the coef-
ficient c„. It is also possible to apply to this
formula a Fourier transformation so as to express
the integrals in terms of the function @ that
can be evaluated more simply than p(s). Nu-
merical results for various M values will be
published by Mr. Marshall.

'7 This is a consequence of the fact that p differs from
the zero-order solution {ofEq. {53))only by a term of the
first order, and from the fact that the kernel of Eq. {53)is
symmetric.

where U(p) is the left hand side of Eq. (53).
Moreover, terms of order q

' are neglected, and
k has been expanded as in Eq. (48b). Finally, f is
defined by

f=S'+ (~'/2) I (s' —s")'—S2(s'+s")]
+8(2M —1)S'. (61)

We can nom evaluate the second-order coef-
ficient c„of the eigenvalue by means of the
mean-value theorem of perturbation theory.
Multiplying Eq. (60) by p(s), and integrating
with respect to ds, we find as usual that the
term U(@) gives only a contribution of the
order: q '."Therefore, we must have

2.6 Justification of the Method of Steepest
Descent

In order to fill the gaps that were left in the
derivation of the Eqs. (11) and (12), we shall
now first of all collect all the available informa-
tion about the poles of the function &0, i.e. , the
roots of the equation

f(» n) =4 '(k, n) =o. (63)

The integration path in the k plane, Eq. (7),
passes through the origin k=0; this is a con-
venient starting point for our investigation. It
was shown in "A" that when k —+0 any root s(k)
of Eq. (63) must tend to a root of any one
amongst the equations: po(g) =0; p&(s) =0;
Now q =0 is a root of the first equation, since

7o(0) =1-ao(0) =1- (1-s ') =o (64)

This indicates the existence of a function s(k)
satisfying (63) identically, such that g(0) =0. In
"A" Sec. 3.2 it was indicated that this function
may be expanded into a power series

s = haik'+qmk4+ (65)

See also "M"Eq. (142b). The first coeIIicients are
si=(3vivo') ',

n2=nP{(4vo'/5vm) (vi'/vi—) (vo"/2—vo') I (66)

The values of the y's and their derivatives ap-
pearing in the formulae refer to q=0 and are
given in "M" Eqs. (85a, b, c, d) and (147), and
Table X. Some typical values are given in

Table II.
The reciprocal development of k' in powers of

p (with diR'erent notations) has been used by
Wailer '

Let us now consider briefly the other branches
of the function s(k) in the neighborhood of k =0.
We first examine hydrogen. In this case q =0 is
the only root of F0=0, since F0=1—(it+1) '.
The other branches of g(k) are therefore con-
nected with the remaining equations, p&=0, etc.
Now for instance y&

——1 —(g+—,') ', and the root
is g = —~~. Assuming s(0) = —2, we get the
development

s(k) = —(1/2) —(1/15)k'+ ~ . (67)

A numerical investigation (see "A", Fig. 1), »s
shown that the two solutions (65) and (67) have
a very simple connection. In fact, s(k) has two
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branch-points on the imaginary axis: k= &ik~,
where kg'=0. 4. If we start from the origin along
the imaginary axis with the branch (65) and
make a loop around one of the branch points,
we come back to the origin with the value (67).
Both values, of course, are negative but (67) is
smaller than (65) which is in fact the "main
pole" of the function &0 in the g plane for these
values of k. Next we ought to consider branches
of q(k) such that g(0) is a root of yo ——0, go=0,
etc. These branches lie even further to the left
on the g-plane and the reader will be spared
further details.

Let us now turn to the general case M& 1.The
picture is now slightly more complicated since
already the equation po ——0 has several roots
besides g =0. These lie, however, considerably to
the left of the imaginary axis (see "M" Eq. (22)),
and will not be investigated further. The equa-
tion y& = 0 has no simple root such as g = —

& for
3f= 1. It may be proved, however, that the roots
have R(s) (—o'; the same applies to the roots of
yo ——0, etc, (see Appendix B). The connection
between the branches of y(k) associated with
these roots, and the "main" branch Eq. (65),
could be investigated numerically.

It may be pointed out, however, that our main
purpose in studying these secondary roots was
only to show that they lie sufFiciently far to the
left of the main pole, to justify the approxima-
tion (8). Moreover, it is not really necessary for
this to be true for all k values, but only for the
points of a suitable integration path in the
k-plane, or indeed for the portion of the integra-
tion path that gives a signihcant contribution
to the integral; it does not matter at all if on
the remaining portions the g(k) poles are close
together and the approximation (8) fails.

In order to make this point clear, let us
examine what is perhaps the most critical case,
namely M= j. , z=0. Because z=0, the saddle-
point, Eq. (12), is the origin k =0 and the path
of steepest descent is the undeformed path of
Eq. (7), i.e., the imaginary axis in the k plane.
Because 3II= j., thy distance bg between the
main pole and the next starts with a value -'„and
decreases with increasing ~k~, and the approxi-
mation (8) becomes increasingly worse. On the
other hand, the exponential factor is, considering

Eq. (65) with ri, =i:
cry(k) e—uy (68)

kodes/2ugy.

The condition is thus

ko(& j., or z(&2uq~~u.

It will be noticed that the approximation (8)
becomes better as s increases, because the dis-
tance bg when k is at the saddle-point ko be-
comes larger as ko increases (compares Eqs.
(65) and (67)). It may also be pointed out that
the case 3II=1, for which numerical examples
have been given before, is really the most
unfavorable case; for heavier elements the ap-
proximation is not good but excellent, "since the
distance 8g is considerably larger than ~ even at
k =0.

Let us now consider what happens when z
becomes u or larger, so that the saddle-point
ko approaches unity. In the first place, we must
prove that the integration path can be pulled to

"Considering only the quadratic term in Eq. (65)
involves, of course, an error. The true value of g{k) at the
branch point k~= —0.4 is about 0.34. This makes e""~e "
=0.033 instead of e 4=0.02.

"From a mathematical standpoint one would have to
show that the poles q(k) with the largest real part move
further to the left as y increases.

"We refrained from extending our computations to this
case, because we understand that work on the heavier
elements is in progress elsewhere.

if k=iy. Since u is large, say u 10, this factor
becomes negligible before the branch point is
reached, i.e., before the main pole and the one
next to it come close together. "%hen now the
k point moves beyond the branch-point, there
will be two complex conjugate q values instead
of two real ones. It is clear on physical grounds,
however, that these values of the Fourier vari-
able k=iy can hardly contribute to the total
intensity for small values of s, because they
represent Fourier components of "wave-length"
short compared to the average width ~u& of
the z distribution. "

Essentially the same considerations apply
when z instead of sero is small, i.e., such that the
expansion (65) is still rapidly convergent at the
saddle-point ko. From Eqs. (12) and (65) one
finds

sju=g'(ko) =2siko+
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the right in the k-plane so as to pass through the
saddle-point; to this end we first choose the
a,bscissa ~ in Eq. (7) very large. We know that
when (R(s)~+ ~, the function &0 tends to the
expression (29) for all k points outside the cuts.
This is a regular analytic function in the k plane,
so that all the singularities k(q) must move
toward the cuts when (R(q)~+ ~. Thus, when
0 is sufficiently large we may deform the integra-
tion path in the k plane so as to pass through any
desired point ko on the real axis; a suitable path,
for instance, is a straight line parallel to the
imaginary axis: k=kq+iy with, say, ~y~ &1.
From k =ko+i we then move to infinity on
straight lines at an angle 0&z./2 with the real
axis. We then show that only a small portion of
the central vertical path is important. On this
central portion we may evaluate the g-integral
by means of Eq. (8); in fact, although Eqs. (65)
and (67) cannot be used when ~k~ ko is com-
parable to unity, the qualitative statement that
the secondary pole (67) is considerably to the
left of the main pole remains true. We then
expand the exponent ug(k) —zk in powers of
k —ko=iy, as stated before

uq —zk =ufo —zko —~2ugo"y'
—(i/6) usg"'y'+ . (69)

An estimate of the various terms can be made
remembering Eq. (48a). The derivatives of the
slowly variable quantity c may be neglected, if
we are interested merely in orders of magnitude.
Thus

so' kg(1 —ko)
—'; so" 2k'(1 —ko) '; ~ . . (70)

The positive sign of go" shows that the exponen-
tial of the expression (69) has indeed a maximum
at y=o. Ke show, furthermore, that the ex-
ponential may be represented by a Gaussian.
The condition (12) for ko in connection with (70)
shows that I —ko is of order unity when z is com-
parable with I, and when z&&u

1 —k.= (uk, /z) ~«1.

Now from (70) we have:

where yo
——[(1—ko)/zl&«1 because z u »1. If

only the quadratic term is retained, the ex-
ponential becomes small when y&yo. Now since
go'"=3go"(1 —ko) ', the cubic term is of the
order of y/(1 —ko) with respect to the quadratic
term; for instance, if y=yo the cubic term is

30(1—ko) '(y/yo)'=3o(1 —ko) '
= [z(1—k,) j-~&&1. (73)

In fact, if z u, 1 —ko 1 and the inequality
holds true. If on the other hand z &&u, we may
use (71) so that

(74)

The same argument applies a fortiori to the
higher order terms, which are of the order
[y/(1 —ko) ]",n & 2, with respect to the quadratic
term. This proves conclusively that the gaussian
approximation applies to the vertical straight
part of the path. As regards the inclined parts
of the path, we know from previous considera-
tions that g(k) moves to the left as k moves
toward infinity so that e"&&~& becomes even
smaller. At the same time the factor e '~ tends
to zero. We have thus reached a sufhcient justi-
fication for the steepest descent expression (11),
even though a closer investigation of upper
limits might be desirable for purposes of mathe-
matical rigor.

A few remarks remain to be made. The path
we have used is not strictly speaking the path of
steepest descent; as usual, it was sufficient to use
a path sufficiently close to the path of steepest
descent to achieve the result. It may be seen from
the formula (48a), neglecting the variation of c,
that the path of steepest descent in the limit of
large z, or ko close to unity, is a small circle of
equation: (1—k')'+k'" = uk&/z = (1 —ko)' if k =k'
+ik", i.e., a circle having the center at k = 1 and
passing through the saddle-point. The significant
contributions to the integral come from a small
angular fraction of this circle, of the order of yo
divided by the radius, i.e. , yo/(1 —ko) «1 accord-
ing to (73). This is why it was immaterial to
replace the circle by a straight line. "

so" = 2so'(1 —ko)-' = 2z/u(1 —k,);
hence the quadratic term in (69) is

kus, 'y = ——z(1 —k,)-'y' = —(y/Xo)', (72)

"In this limiting case of z very large, one might also
present the procedure as an asymptotic expansion with
respect to z, i.e., perform the integration with respect to k
first by pulling the integration path in the k plane and
taking the residue at k(y), this being given by Eq. (4').
The result is, however, the same.
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Another remark of interest is that when z is
very large, we need no longer request u&&1, but
only the weaker condition

uz»1. (75)

ln fact, this is seen to ensure the validity of (74)
and therefore of the Gaussian approximation. At
the same time it is no longer necessary for u to be
large in order to enable us to retain only the con-
tribution from the main pole in Eq. (8). In fact,
q(k) at the main pole is now large, indeed of the
ol der

s(kp) ki(1 —ko) ' (kiz/u) & (76)

while the secondary poles are negative. There-
fore, the distance bg between the main pole and
the one next to it is at least of the order of (76),
and the factor expressing the ratio of the residues
or e "~& has an exponent of the order

uhg~uq(kp) (kiuz) &

The condition for the secondary poles to be
negligible is then precisely the same condition
(76), ensuring the validity of the method of
steepest descent.

Summarizing the conditions under which Eq.
(11), (12) are expected to hold, we find

u»1, z arbitrary (77)
or

lPQ A (zu) & exp( —z+2(kiuz) & —c„u),
A = (4z)—&kit(R/g)„. (81)

The constants in this formula are determined by
the Eqs. (47), (51), and (62). Apart from a
slightly diAerent notation and a minor slip, Eq.
(81) corresponds to "M" Eq. (175).

The range of validity of the asymptotic
formula (81) depends on the accuracy with which
Eq. (48a) represents s(k) when c is regarded as
a constant c„.If the error is of the order of 1 —k.
which corresponds to the error g

' in Eq.
(48b), then, as one easily sees, we must expect
a correction term in the exponent of Eq. (81)
of the order u&z &, which would be negligible only
if z»u'. More generally we may regard the
three terms in the exponent of Eq. (81) as the

"M" Eq. (145); see also "M" Eq. (85c) and our
Eq. (66).

Turning now to the other extreme case: z»u,
we may use Eq. (71) for the saddle-point. This
follows from Eq. (48a) when we neglect the
variation of c with k. Correspondingly g(ko) is
obtained from (48a) with c=c„, so that, using
Eq. (71):

go = g(ko) = (kiz/u) ~ —c„. (8o)

Computing gp ln a similar way, one has hnally

z»1, uz»1.

2.7' Special Limiting Cases and. Numerical Re-
sults for Hydrogen

If z&&u the expression (11)takes a simple form,
owing to the fact that the saddle-point kt) is
close to the origin and one may neglect all the
higher powers of k in the series expansions of g
and R in powers of O'. For instance,

R '=go'(0)+
as one can see from Eqs. (9) and (20) neglecting
terms ~ko'. Following "M" Eq. (85a) we have
therefore: R '=P. Similarly we set:

g(k) = haik'+.

0
I '

lal

tC

EP

IL' 5
lal

Eq. 1

{UPPER CURVE)

lO

and the saddle-point ko is given by: z/u = s'(k, )
=2gi.ko, etc. Finally one finds

40(z, u) =
& i(47rgiu) & exp( —z'/4qiu) (79)

which coincides with the "age" approximation,

I I

R5

X (LOWER CURVE)

.5

Fio. 3. The logarithm of the neutron density $0 as a func-
tion of the distance z for u = 10 and M= i.
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first terms of an expansion in reciprocal powers
of go, i.e. , in powers of (I/z) ~. This will converge
quite slowly, except when z is enormously large.
There is not much point in computing further
coefhcients of the expansion.

In the particular case of hydrogen, however,
the numerical data reveal a remarkable con-
stancy of c, i.e., c approaches c„sooner than one
would expect in general, and as a result the

asymptotic formula (81) is better than one
might expect. "

The distribution function has been computed,
as an example, for hydrogen for I= 10, using the
data of Table I. The result is plotted in Fig. 3,
where the "age" approximation and the asymp-
totic formula are included also for comparison.
The age approximation fails, as one might
expect, when z becomes comparable to u, so that
ko is no longer « f. .

3. THE CASE OF VARIABLE MEAN FREE PATH

In mast practically important cases the mean
free path cannot be considered constant. For
many moderators, though not for all, it will
decrease with decreasing velocity of the neutrons.
At large distances from the source, an equi-
librium between the primary and the slow
neutrons is then readily established, so that the
slow neutron density is determined to a large
extent by the law for the primary neutrons, i.e.,
r 'e "~'&') in the case of a point source. We shall
see, however, that the asymptotic formula for
the slow neutrons differs from the above-men-
tioned law in that it has a smaller (in general
a fractional) power of the reciprocal distance
before the exponential.

3.1 The Asymptotic Behavior of i{i,(z, u)

Our problem is to find an asymptotic formula
for the neutron density $0(z, u) when z—+~,
while I is kept fixed at some value. It may be
pointed out that the range of u values in which
we are interested is finite, say: 0 (u (1n(Zo/kT),
Bo being the initial energy. We consider again
the case of a plane primary source. Again $0 may

2' This statement depends rather critically on the value
of k1 chosen in computing c from Eq. (48a}. The eigen-
value k1 is known with limited accuracy, so that the con-
stancy of c as exhibited in the last column of Table I may
be fortuitious. This, of course, does not acct the useful-
ness of Eq. (48a) as an interpolation formula.

be expressed in terms of its Fourier-Laplace
transform &0, Eq. (7), but &0 is given by a dif-
ferent set of equations.

We must, in fact, go back to "A" Eq. (2) or
"M" Eq. (63) and take into account the de-
pendence of l on the energy. Going through the
same transformations as those leading to "A"
Eq. (24) one finds

l(u) =li+l2e '", (83)

when /i, l2, e are positive constants. As we said,
we set

l(0) —=li+ l2 ——1. (84)

The proof can be easily generalized to a formula
containing a sum of many exponentials.

With Eq. (83) one easily expresses the con-
nection between X and @ as follaws:

v) =44(~ s)+124(I v+~) (83)
"In sharp contrast with the constant mean free path

case.

where X is the Fourier-Laplace transform of
l(N)P; the connection between X and @ is thus:
X =2{l(N)g 'p} if 2 means Laplace transform.
We have to obtain p from Eq. (82), and then
insert &0= J'ada& into Eq. (7).

In order to study the asymptotic behavior of
$0 we may try again to pull the integration path
in the k-plane, see Fig. 1, toward the right until
we are stopped by a singularity; the position and
character of this singularity determines the
asymptotic behavior. Now we shall see that the
analysis of the singularity in the k-plane when
(R(v) is large can be made on similar lines as in
Section 2.4. In order to make use of this fact we
first prove that:

(a) When $,(g) &cr (this being a suitable constant) the
convergence abscissae in the k-plane are independent of
p'3 and precisely the convergence strip is

—1&R(k) &+1
if we choose the mean free path of the primary neutrons
l(0} as the unit of length.

(b} The convergence strip is determined by the fixed
singular points k = +1,and the character of the singularity
when k~&1 is independent of y as long as (R(g}&e.

For the sake of simplicity we shall prove these
statements under the assumption
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Inserting into Eq. (82) we get

[1 k—lip]y(p, g) —
) g(ru ~', g)@(p')d(o'

= kl2II&(y, g+ e)+1/4». (86)

Regarding for a moment the right-hand side of
this equation as given, we notice that the left-
hand side coincides with that of the integral
equation "A" Eq. (24) except that k is substi-
tuted by kli. Hence (86) can be solved for p(y, g)
if klan is different from any of the "eigenvalues"
k(s) that we studied before. Now let us choose
o in such a way that when $.(g) &o the eigen-
value k(s) with the smallest real part satisfies

I, & e. Ik(q) I. (87)

"If it were, the distribution of the slow neutrons would
decay faster than that of the primary ones with which
they are in equilibrium, an obvious impossibility.

This is always possible since k(s)-+1&li when
N, (q)~+ ~. Then clearly if: —1((R(k) &+1
(as we shall assume from now on), kli in Eq. (86)
cue not be equal to an eigenvalue. This proves,
then, that when (R(g) &n one can use Eq. (86)
to find P(p, g) if P(p, s+ e) is known. If the latter
is regular, p(p, g) is also regular.

Now we know that when (R(g)-+1 ~, y(p, q)
becomes the Laplace transform of the primary
neutrons for which the convergence strip is
—1((R(k) (+1.Thus, for a very large s, p is
regular within this strip. Then, according to the
above statement, we can move in steps bq=e
toward smaller values of g and prove that P
remains regular, as long as (R(q) )o. On the
other hand, the convergence strip of p(p, q)
cannot be wider than that for p(p, + ~),24

which becomes singular when k~+1. The same
is expected, therefore, of p(y, g) as long as
(R(q) & o. This completes the proof of statements
(a) and (b).

We are now going to investigate the properties
of the Fourier-Laplace transform when g is very
large. We shall find that as k~1, p behaves like
(1 —k)~' where p is a constant (2. The above
argument shows then that the behavior of p is
of the same type also for values of g that are
not large, subject only to the condition $(g) )e.

We can now drop the special assumption (83),
since the discussion is equally simple in the

general case, provided l(u) is a decreasing func-
tion of N. Referring to the form (86) of the
integral equation, we notice that the connection
between p and X, in the case of large g, takes a
simple form, owing to the fact that the main
contribution to the Laplace integral comes from
very small values of N. Therefore, omitting for
simplicity the remaining variables,

X(g) = ~ e
—&"l(u)P(u)du

e &"[l(0)+ul'(0)+ )f(u)du, (88)
J,

so that, remembering Eq. (84) and setting
I'(0)/l(0) = —y, we find

&(~) = 4(n)+v~k/~a+ (89)

We must expect the successive terms in this
development to be of decreasing order of mag-
nitude, for large s, as can also be verified u pos-
teriori on the final result. This shows, at least,
that the approximation is consistent.

Since in the case of large g we are dealing
mainly with neutrons that have suffered only
small energy losses, the results obtained for con-
stant m. f.p. should offer some guidance. There-
fore, we surmise that we shall have to study the
function p for small values of 8 =arc cosy, , and set
ii=1 —i7'/2, then introducing approximation (38)
for the scattering function and the variables
s= (M/4q) &8. With this change of variable the
partial derivative in Eq. (89) sulfers the trans-
formation: 8/By~8/By+ (s/2s) 8/» Taking .this
into account and introducing Eq. (89) into the
integral equation, we find

[(1—k) + (kMs'/8s) jg
vkpr~4/~ —n+ (e/2n)~4/» j

—(n/4»s) ~l exp( W/4)g—(s')ds' = 1/4». (90)

In this equation we neglect terms of higher order
than q

—', and thus replace ykp with yk before the
square bracket. Finally, after multiplying with
qk ' and remembering the abbreviation intro-
duced after Eq. (53), the equation becomes

kg& —s8@/8 s (s/2) By/»—+ (M/8y) s'P
—(alkyd) e~ y = s/4»ky; k = (1—k)/ky. (91)
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4'(it s)=Z o (rt)w (s) (93)

fnserting into Eq. (91) and using the ortho-
gonality property of the eigenfunctions m„:

~tw 'w ds=8

we find

(krt+ p„1)a„atda—./ds =—(rl/ky)A, (94)

where

4irA = t w„ds.
J

(95)

In order to solve this equation we consider the
eigenvalue problem

—(s/2) dw/ds+ (M/8y) s'w
—(a/kp)e~ w = (p —1)w (92)

which is similar to Eq. (53) and can be treated
in a similar manner; p —1 corresponds to k~ in
Eq. (53) and is the variable parameter. The
eigenvalues of p form a discrete sequence p, p&,

p2, (see later). These eigenvalues depend on
k, but when k is close to unity we may take them
equal to their limiting values for 4=1, i.e. , set
a/kg =a/y in Eq. (92). We call p the lowest
eigenvalue, which as we shall see is &2, when k
is close to unity. Call m, zv~, m2, the cor-
responding eigenfunctions and develop p:

interested in the singularity of p at this point.
Now we can see that for an eigenvalue that
satisfies p)2, the expression (98) remains finite
when h —+0, while if p &2 we can write

+tw !+
e—"x'—&dx=h& —' fly 1 Pdy

= (1 —p)!k~'. (99)

Hence the highest singularity will arise from the
lowest eigenvalue. We consider, therefore, only
the first term in the expansion (93) and drop
henceforward the index n. Noticing that as
k~1, h= (1—k)/y, we have finally the behavior
in this limit

&~Ay'-'(1 p)!—w(s)rt~ 'e«' "'~(1—k)' '. (100)

For us the most important part of this formula
is the last term or: (1—k)r ', that gives, as we
have said, the singular behavior of p also for
finite values of g. This solves, therefore, the
problem of the asymptotic behavior for large
distances, for according to a we11-known Tau-
berian theorem it is permissible, in computing
the asymptotic behavior of the inverse trans-
form, to consider all factors as constant, except
the singular term of the type indicated, thus
obtaining a dependence on s of the type (com-
pare Eq. (7))

a„(+~) =A„(1—k) '. (96)

The solution of Eq. (94) contains an integration
constant that may be determined from the con-
dition

II+1~
~ (1/2iri)

a) 4oc

e-'*(1—k) &-'dk

=const. s'—&e '. (101)

This follows from Eq. (86), remembering that
g~O when g—++ ~. Therefore,

For a point source, remembering "M" Eq. (62),
we get the asymptotic dependence

(97) Pp r'e", (102)

Multiplying by w„(s) and integrating over ds,
and setting

p = 1 iP/2 =1—(3f/—8')s'=1,
we get Eq. (96).

The solution of (94) is then

r being the distance from the source measured
in mean free paths of the primary neutrons. In
order to use this law we have to solve the eigen-
value problem Eq. (92) with k=1. The pro-
cedure that was applied to Eq. (53) can be used
here; namely, we perform a Fourier transforma-
tion (Eq. (54)) and notice that

u„(it) = (A„/ky)e"&it~ ') e "'x' ™dx. (98) r(sdw/ds) = —(V. e)P(w)
= —(2+o d/do) F(w). (103)

Examine now the behavior of this expression
when k—+j., t.i. : k~0, remembering that we are

Finally we set

U(a) =e & *1~5(w) (104)
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TABLE III. Variab1e mean free path; carbon.

I d'/do'+e 'dlde+ (4y/M)(2p 3—)
+ 2I (M+1) /M]'e "

—(2y/M)'o' I U(o) =0 (105)

Initial energy of
neutrons in Mev: 0 0.5

0.27—0.03
0.42
0.53

0.59
0.84

that differs from Eq. (47) in having a different
potential and a difkrent meaning for the
"energy" term. Clearly the presence of the
quadratic term in the "potential" makes the
eigenvalue spectrum discrete. When y tends to
zero, the lowest eigenvalue must tend to the
discrete eigenvalue of problem (47), and the
higher eigenvalues must crowd together, repro-
ducing the continuous spectrum. If y is suf-
ficiently small the second eigenvalue must be
close to the zero line, i.e., p must be close to ~.

A very rough evaluation of the lowest eigen-
value has been made by the Ritz method, using
the eigenfunction e " '~' with X the variable
parameter. The minimum condition is

a(1+X)-'+y'X '/2M =M/8. (106)

The y term is often small, so that it is permissible
to develop ) in powers of y. As an example we
find for carbon, M = 12, the result: p = 1.5
—0.42' '+0.078&y+ . Assuming an energy
dependence of the m. f.p. : l(u) =2.75+2E, E
being the energy in Mev, the data in Table III
have been obtained.

3.2 Remarks on the Energy Spectrum at Large
Distances

Using the g-dependence of Eq. (100) and
inverting the Laplace transformation, it would
be easy to derive also the dependence of the
neutron density on I, i.e., the spectrum. The
formula, however, would hold only for very
small I, or energies very near the primary one,
being derived from an expression valid only for
very large g.

A greater interest attaches the spectrum for
large I, or in the slow neutron region. This can
be derived (compare "A" Section 4.2) from the
position of the first singularity that one meets as
g moves to the left in the complex plane.

We must now drop the assumption $(ii) )e,
that was made in Section 3.1. It is then easy to
see that the singularity in the q plane must occur
when kfi in Eq. (86) becomes equal to the eigen-
value k(g) with the largest real part, i.e., the

eigenvalue given by Eq. (65), or: k(g) = (g/g&)&,
when g is small and by (48b) if g is large.

We write therefore

kl( ~) =k(g)l(0) (107)

where gi is the solution of

li =E( ~) =k(q)l(0). — (110)

The author wishes to express his gratitude to
Dr. Marshak for criticism and for encouraging
him to bring this work to completion. Thanks
are also due Drs. Placzek, Wigner, Bethe, and
Rose for some friendly advice.

APPENDIX A

Eigenvalues k(q) when v is real and )0. We
first prove that in this case: ig„(s) ~

(1 for all n.
Equation (2) may be written

g(~, n) = (~/~)G'~'dG/du.

introducing explicitly the value of the mean
free paths for zero velocity: /(~) and for the
initial velocity: l(0).

In order to find the spectrum, we now first
keep k fixed and invert the Laplace transform
(compare "A" (22a) and "A" (40)) finding an
expression of the type

p+ joo

(1/2~i) I y(q)e&"dq = F(k)e»"+ ~ (108)
Jp-ico

where q~ is the solution of Eq. (107) and F(k) is
the residue of p at g~, and the terms omitted
correspond to singularities further to the left in
the complex g-plane. Unfortunately, it is not
easy to determine F(k) accurately, except by
the kind of numerical work described in "A"
Section 5. We know, however, that as k~1,
F(k) behaves like (1—k)r '. For large r that is
all we need, and we finally find that for large u
the energy spectrum at large distances, i.e., the
dependence of $0 on u, is given by

(109)
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One has then from Eq. (4)

~+I
lg„l (2w Ig Id', -2a G2~idG

needless to say, in the limit in which our system
may be approximated by Eq. (47) the continuous
eigenvalues of the latter equation, i.e. , those with
ki&0, go over, according to Eq. (48b), into the
continuum of real values of k with k)+1.

APPENDIX B
In the interval: 0& rt&+ a the maximum of the
right hand side occurs at q =0 so that

I g I ((a/ir)dG/dt's.

Roots of pi=0, y2=0, etc. It will suSce to
prove that Ig I

&1 for n=1, 2, . when
g &a 1 —e~ =1.

(R(it) & —2. From Eq. (111)we have, remember-
Multiplying now Eq. (41) by P *and summing ing that G &1,

over e we get

E(2 +1) -le-I' Therefore, Eq. (4) yields

=k Z( +1)(~- ~-*+~-~.+ *) (»3)
a~0

Owing to (112): y„—= 1 —g„)0, therefore k is
the ratio of two real forms one of which is essen-
tially positive and must be real, as stated in the
text.

Needless to say, this proof assumes that the
sums in (113) are convergent; according to Eq.
(17) this will always be the case unless

I el =1,
i.e., k real and )+1 or & —1.

It may be pointed out, however, that the latter
exceptional values of k may also be regarded as
eigenvalues, and more precisely as forming the
continuous spectrum of eigenvalues of Eq. (41).
Kithout going into details, we may point out
that the question is entirely analogous to that
about the continuous eigenvalues of a differen-
tial equation such as, for instance, Eq. (47). As
is mell known all positive values of the "energy"
parameter —8ki/M are regarded as eigenvalues,
although the corresponding eigensolutions do not
satisfy the ordinary condition of quadratic
integrability, but only a weaker condition. En-
tirely similar considerations apply here; and,

Ig-(n) I
&2a IP-(t ) I (dG/dt )dt (114)

-1

For n= 1 the integral is quite simple; one finds

I gi I
((3E+1)/2M & 1 (115)

as we want. For n)1 we consider M= i first.
It is easily found that the roots of F2=0 are
—1&i2 ~, those of ya

——0 are —(3/2) &i(3/2)&,
etc. , i.e., all these roots have (R(it) & —i~.

If M) i we apply Schwartz's inequality to
Eq. (114) and find

lg~l'&(2a)' ~P„'dy "(dG/dt's)'dt's.

Now

f f t

(dG/dt's)'dti = i (dG/dt's)dG& (M' —I)-&, GdG
4 J

= (2a) '(3P —1)—&

by a simple majoration. Finally

I g„ I

' &2a(3P 1) &2/(2n+ 1) — (116)

which is (1 for %=2, 3, , n=2, 3,


